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A Hyperspectral Reflectance 
Database of Plastic Debris with 
Different Fractional Abundance in 
River Systems
Mohammadali Olyaei    ✉, Ardeshir Ebtehaj & Christopher R. Ellis

Plastic debris pollution transported by river systems to lakes and oceans has emerged as a significant 
environmental concern with adverse impacts on ecosystems, food webs, and human health. Remote 
sensing presents a cost-effective approach to bolster interception and removal efforts. However, unlike 
marine environments, the optical properties of plastic debris in fresh waters remain poorly understood. 
This study aims to address this gap by providing an open-access hyperspectral reflectance database 
of floating weathered and virgin plastic debris found in river systems under controlled laboratory 
experiments. Utilizing natural waters from the Mississippi River, the database was assembled using a 
remote sensing data acquisition system deployed over a hydraulic flume operating under subcritical 
flow conditions and varying suspended sediment concentrations. The measurements encompass 
hyperspectral diffused light reflectance from ultraviolet (UV, 350 nm) to shortwave infrared (SWIR, 
2500 nm) wavelengths. The database archived in Network Common Data Form (NetCDF) and Comma-
separated values (CSV), offers valuable insights for better understanding key spectral signatures 
indicative of floating plastic debris, with different fractional abundance, in freshwater ecosystems.

Background & Summary
Plastic pollution in aquatic environments presents significant environmental, economic, and recreational con-
cerns1–3. Plastic pollution in the oceans stands out as a pressing environmental issue, garnering recognition from 
the United Nations Environment Programme (UNEP) as one of the foremost emerging pollution challenges4,5. 
This recognition has spurred investments in research, social awareness campaigns, and proactive measures for 
control and prevention3,6 with some completed or ongoing projects documented in7. The plastic contamination 
of lakes and rivers has received comparatively less attention8,9 than oceans, even though a significant portion of 
plastic waste finds its way to the oceans via river networks, with annual estimates ranging from 0.8 to 2.7 million 
metric tons10,11. Accurate estimation of plastic emissions from rivers to the global oceans necessitates detailed 
information on the spatiotemporal flux of the floating debris12,13, which can be intensified during extreme flood 
events14. Traditional methods for detecting plastic litter in aquatic environments rely on labor-intensive in situ 
sampling15,16, which proves to be time-consuming and expensive17,18. Alternatively, high-resolution optical 
remote sensing technologies offer cost-effective solutions with extensive space-time coverage19–22.

Remote sensing of plastic litter requires proper characterization of its optical spectral characteristics espe-
cially within the visible to near-infrared (VNIR) and short-wave infrared (SWIR) segments of the electromag-
netic spectrum23–25. A substantial body of research has been dedicated to measuring the spectral reflectance 
of marine litter, both in controlled laboratory settings26 and in field conditions27,28. Laboratory investigations 
have primarily focused on scrutinizing the spectral signatures of various virgin and weathered plastics under 
dry and wet conditions across the VNIR to SWIR bands29–35. It is found that different plastic types display 
unique spectral signatures31,32,36 contingent upon their material composition, age, and the optical complexities of 
their surrounding waters. In contrast, field studies have predominantly concentrated on formulating algorithms 
for plastic debris detection in marine environments, utilizing airborne and spaceborne platforms such as the 
multispectral instrument aboard the Sentinel-2 satellite37–43. However, research and methodologies concerning 
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freshwater riverine and lake ecosystems have been relatively limited, with only a handful of studies employing 
unmanned aerial vehicles (UAVs)19 and satellites44 for plastic litter detection using deep learning techniques45,46, 
as well as in situ imaging47,48.

Conducting field-scale experiments in freshwater aquatic environments is costly, primarily due to the limited 
space-time resolution of remote sensing platforms and the complexities associated with accurate labeling of the 
observations38,49– 51. Furthermore, the presence of various other floating materials within the field of view (FOV) 
can obscure the spectral signature of plastic litter, including different types of Sargassum, driftwood, white caps, 
and water foams25,52,53. While discriminating floating algae from other debris is feasible due to the distinct opti-
cal properties of chlorophyll pigments, distinguishing between different plastic types and non-plastic debris 
remains challenging52. As previously noted, laboratory experiments31,33,34,54,55 have primarily focused on the 
spectral properties of marine litter. These experiments often employed simplified background environments 
such as static water and a single type of plastic debris within the FOV without explicitly accounting for the het-
erogeneity of sub-grid debris abundance. These limitations can be important for remote sensing of small patches 
of different types of debris in freshwater ecosystems, where factors such as flow turbulence and background 
dynamics, including flow turbidity, waves, and water foams, can alter spectral signatures within the FOV.

Turbid waters with high concentrations of fine-grain suspended sediments tend to exhibit higher reflectance 
compared to clear water, particularly in the visible and NIR bands56–59. At the same time, the presence of turbid 
waters can also attenuate the magnitude of submerged plastic reflectance54,60 due to a combination of strong 
water absorption in the SWIR spectrum and reduced water transparency in the visible region52. In lakes and riv-
ers, the presence of colored dissolved organic matter (CDOM) can also affect the reflectance signal in the visible 
part of the spectrum; however, the peak near 810 nm is proven to be effective in retrieving water quality param-
eters such as suspended sediments and algal pigments61. In marine environments, it has been demonstrated that 
breaking wind waves or whitecaps can alter the magnitude and spectral shape of surface water reflectance62,63. 
These effects are partially attributed to foam plumes and subsurface bubbles, which enhance the reflectance 
primarily in the visible and to a lesser extent in NIR and SWIR bands64 and often manifest themselves as absorp-
tion lines centered around 600, 756, 980, 1198, 1448, and 1932 nm65. Therefore, we hypothesize that the spectral 
signatures of plastic debris in river systems can be influenced markedly by their fractional abundance and the 
optically active background constituents.

To investigate this hypothesis, we designed a data acquisition system at one of the Saint Anthony Falls 
Laboratory’s (SAFL) flumes to collect diffused hyperspectral reflectance of various types of virgin and weath-
ered plastic debris over fresh water from the Mississippi River with the following contributions. (i) The study 
accounts for the sub-grid fractions of debris by synchronizing a spectroradiometer with a digital single-lens 
reflex (DSLR) camera. (ii) Various water flow regimes have been designed to replicate different background 
dynamics, including turbidity and surface water foams. (iii) A collective inference is made regarding important 
absorption lines across different types of debris, particularly mixed-type plastics. (iv) The collected reflectance 
database is presented in a machine-independent format containing reflectance spectra of plastic specimens, 
coincident RGB images, labeled images capturing the debris fractional abundance within the FOV, as well as 
key measured environmental variables (e.g., sediment concentration, debris polymer, color, background flow 
status, flow discharge, etc). This open-source dataset will provide valuable insights into the spectral signatures 
of various types of floating plastic litter in different freshwater conditions. It aims to advance technologies for 
remotely detecting plastic pollution and estimating its flow from rivers to oceans. Additionally, it will encour-
age cross-disciplinary collaborations and support the development of remote sensing technologies for accurate 
detection of floating plastic using airborne and satellite imagery.

Methods
Spectral acquisition system.  An indoor data acquisition system (Fig. 1) was designed to measure the 
diffuse reflectance of floating debris over a hydraulic flume. An Analytical Spectral Devices (ASD) spectroradi-
ometer (350–2500 nm) with a resolution of 3 (10–12) nm in VINR (SWIR) was deployed. The foreoptic FOV was 
maintained constant at 25° across all measurements. The spectroradiometer was mounted on a mobile carriage 
system, allowing for adjustment of its position in the flume and its distance from the water surface. Throughout 
the experiments, the distance from the end of the fiber optic cable to the water surface was set to 110 cm, resulting 
in a FOV with a diameter of 48 cm. The ASD was set to average five scans per measurement. A digital single-lens 
reflex (DSLR) camera was mounted on the carriage and synchronized with the spectroradiometer to simultane-
ously image (Fig. 1a) the sub-grid fractional abundance and type of plastics within the FOV.

The light source was provided by a set of six Tungesten-Halogen lights operating at temperature 3000 K offer-
ing stable illumination across the complete spectral range of the spectroradiometer for accurate indoor diffuse 
reflectance measurements (Fig. 1b). A Direct Current (DC) power supply was employed to provide precise con-
trol over the illumination intensity by eliminating the periodic fluctuations in the SWIR region of the spectrum 
– caused by the interference between the light source powered by alternating current and the ASD scan rate. The 
lights were positioned off-nadir to prevent multiple (specular) reflections within the FOV of ASD and the DSLR 
camera while providing adequate radiance.

It is well understood that reflectance =
Γ

Γ
R up

dn
 is defined as the ratio of upwelling Γup to the downwelling irra-

diance dnΓ 24, which can represent both diffused and directional reflection mechanisms31. Since the ASD is a 
radiometer, a reference Lambertian reflectance value must be acquired to calibrate the subsequent measure-
ments. To that end, a white GORE-TEX Polytetrafluoroethylene disk, with a wide-band reflectance of close to 1 
and a diameter of D = 70 cm, was used to cover the entire FOV as an ideal reflector. The disk material was cho-
sen based on personal communications with the spectroradiometer design team. The spectroradiometer was 
recalibrated for each experiment round, especially when the background settings (e.g., sediment concentration, 

https://doi.org/10.1038/s41597-024-03974-x


3Scientific Data |         (2024) 11:1253  | https://doi.org/10.1038/s41597-024-03974-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

illumination intensity) were changed. The following key steps are considered to systematize the data collection 
process. (1) A representative number of plastic-type specimens is used. (2) A wide range of background water 
turbidity and foamy conditions is simulated. (3) Multiple measurements per sample are collected to minimize 
noise and variability. (4) The measurements are categorized into relevant labels and subgroups for organized 
analyses. (5) Quality assurance is applied before the data are organized in a structured format. (6) The data are 
validated and compared against other published data sets.

Flume and water flow characteristics.  Spectral measurements were conducted over the tilted flume at 
SAFL. The flume, with dimensions 14.6 × 0.9 × 0.6 m, can transport up to 0.17 m3s−1 of discharge. The flume has 
a pivot that allows it to tilt up to 6° and reproduce a wide range of river flows and sediment transport regimes. The 
bottom of the flume was covered by 16 cm coarse sand (Fig. 1c) to resemble natural sediments in riverine systems. 
The perimeter of the flume was painted black at the location of the spectral acquisition system to alleviate multiple 
reflections at the boundaries and resemble an optically deep region. The discharge was set to 0.01 m3s−1, resulting 
in a Froude number of 0.045, implying a subcritical flow regime. The streamwise velocity was measured using an 
Acoustic Doppler velocimetry (ADV), at the channel center (Fig. 1d), and the flume slope was set to zero.

Three distinct background conditions were considered: naturally clear, turbid, and foamy waters. Mississippi 
water served as the clear water reference as the bottom of the channel was visible at a depth of around 20 cm 
during the experiments in the winter. The concentration of suspended sediments was changed to increase the 
turbidity as it impacts the surface reflectance across VNIR to SWIR59,66, particularly between 700 and 900 nm 
wavelength67. Well-mixed suspended sediments require a shear velocity u* considerably greater than the set-
tling velocity vs, a condition that can be assessed through the Rouse number Ro = vs/κu*, where κ = 0.41 is 
the Von Kármán constant68. To fulfill this condition, fine silt, with d50 = 0.0075 mm, was used resulting in 
Ro ∈ [0.02 − 0.07] ≪ 1, assuring a well-mixed suspended sediment load69.

The silt particles were released into the water via an in-house built sediment feeder (Fig. 1c), positioned 6 m 
upstream of the reflectance acquisition system. To that end, the feeder uses a peristaltic pump with an adjustable 
angular velocity. For measuring the total suspended material (TSM), we developed a mass flux curve repre-
senting the weight of released sediments in time as a function of the angular velocity to produce five different 
well-mixed TSM values at 58, 116, 180, 242, and 313 mgl−1. The selected TSM range of 58 to 313 mgl−1 encom-
passes various natural turbidity levels, including concentrations above 100 mgl−1, which are indicative of high 
turbid conditions typically found in certain river systems and estuaries66,70. A propeller attached to an electric 
motor was properly positioned to generate upstream bubbles and make the water surface foamy for obtaining 
measurements over foamy waters. In a marine environment, whitecap reflectance varies based on the foam lay-
ers and the concentration of submerged bubbles that appear white to human eyes65. Inspired by this observation, 
we employed an image segmentation technique to quantify the extent of foam within FOV, as explained later.

Plastic specimens.  In this study, we examine three primary floating polymers: polyethylene, polypropylene 
(PP), and expanded polystyrene (EPS)21. For polyethylene specimens, the variants are Polyethylene terephthalate 
(PET), High-density Polyethylene (HDPE), and Low-density polyethylene (LDPE). Examples for each group 
include water bottles, detergent or milk containers, and cups. The polypropylene plastic specimens are mainly ropes 
and bags and foams are used for EPS polymers. Three distinct settings for plastics were defined. i) Single virgin:  
Plastic specimens from one specific type of polymer were used. ii) Mix virgin: Plastics from multiple polymer 
types are used. iii) Weathered plastics: A collection of mixed weathered plastics is gathered from the Mississippi 

Fig. 1  (a) The ASD FieldSpec-4 spectroradiometer along with the DSLR camera, (b) Illumination system and 
the reference panel showing that the walls were painted black, (c) Sediment feeder placement in the flume, 
(d) floating plastic debris in a turbid flow showing the position of the Acoustic Doppler Velocimeter (ADV).
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River and Lake Hiawatha in Minneapolis. Figure 2 depicts the plastic and background settings along with the 
pictures of the specimens within each group. For each set of measurements across all debris subgroups, plastic 
debris was released upstream in the flume channel. As the debris entered the FOV, we began recording with both 
the ASD spectrometer and the DSLR camera multiple times until all debris exited the FOV. The synchronization 
between the ASD spectra and the RGB images was achieved by matching their timestamps, and we discarded 
any spectra without a corresponding RGB image with a matching timestamp. Since we intended to emulate the 
natural movement of plastic debris over river flow systems, we did not manually alter the dryness or wetness of 
the plastic specimens. However, the surface of HDPE, EPSF, and PET samples, whose densities are significantly 
lighter than water, remain likely dry even though some wetness is expected due to some rotational movements.
In foamy waters, the likelihood of surface wetness increases markedly because of turbulence. However, the PP and 
LDPE samples are denser than other specimens and more prone to partial submergence and surface wetness. In 
total, 2078 measurements of spectral reflectance were obtained for 21 subgroups: seven specimen types (i.e., PET, 
HDPE, LDPE, PP, EPSF, Mixed, and Weathered) and three background water conditions (i.e., normal, sediment, 
and foamy). Table 1 provides an overview of sample distributes within these subgroups.

Labeling DSLR images.  All coincident DSLR RGB images are cropped to display the circular FOV of 
the ASD spectroradiometer. The plastic fractions within the FOV are estimated using an image segmentation 
approach based on Otsu’s method71 of color thresholding72. To that end, the RGB color model is first trans-
formed into the YCbCr color code, separating the luminance (Y) from chrominance (Cb and Cr). Unlike the RGB 
domain, the YCbCr color space separates the brightness from colors, allowing improved segmentation73. Otsu’s 
method is among variance-based techniques74 that seek a threshold that minimizes the within-class variance 
between the background and foreground values of an image75. Figure 3 shows examples of the image segmenta-
tion approach for different plastic specimens.

Fig. 2  Floating plastic specimens in different settings (Single virgin, Mix virgin, and Weathered) against various 
background conditions (Normal, Turbid, and Foamy). The numbers are the percentage of experiments for each 
setting.

Background Waters

SumNormal Sediment Foamy

SpecimenType

PET 54 (2.6%)–10.9% 119 (5.7%)–19.2% 19 (0.9%)–20.4% 192 (9.2%)

HDPE 30 (1.4%)–13.2% 89 (4.3%)–21.2% 26 (1.3%)–16.4% 145 (7.0%)

LDPE 18 (0.8%)–10.6% 82 (3.9%)–16.6% 52 (2.5%)–15.2% 152 (7.3%)

PP 52 (2.6%)–19.9% 114 (5.5%)–19.1% 68 (3.3%)–15.8% 234 (11.3%)

EPSF 16 (0.8%)–22.6% 68 (3.3%)–22.3% 8 (0.4%)–17.1% 92 (4.4%)

Mix 445 (21.4%)–28.5% 332 (16.0%)–28.2% 231 (11.1%)–29.8% 1008 (48.5%)

Weathered 23 (1.1%)–33.1% 159 (7.7%)–29.0% 73 (3.5%)–35.9% 255 (12.3%)

Sum 638 (30.7%) 963 (46.3%) 477 (23.0%) 2078 (100%)

Table 1.  Number of measurements categorized by different plastic types and background waters, with 
percentages indicated in parentheses followed by the mean value of plastic fraction.
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An additional step is taken to estimate the foam fractions. Initially, the RGB image is converted into a 
grayscale image by forming a weighted sum of the three R (red), G (green), and B (blue) channels using the 
coefficient from the National Television Standards Committee (NTSC)76. Subsequently, pixels above a speci-
fied threshold are selected to separate white foams from the background, after removing the plastic labels. We 
found that setting the threshold as 160 out of 255 could effectively capture the foamy pixels by trial and error. 
Figure 4(a) represents the histogram of foam fraction showing a range of 0–12% with a mode of 1.5%. An exam-
ple of segmenting the foams from the background water and the floating debris is shown in Fig. 4(b).

Data Records
The data are at Zenodo research repository77. The entire set of data records is stored in a machine-independent 
Network Common Data Form (NetCDF) and Comma-separated values (CSV) format. Each file follows the 
labeling structure in the format of ON_PT_WSC_C_SC_F_QF, where the observation number (ON), specimen 
polymer type (PT), background water condition followed by sediment concentration (WSC), specimen color 
(C), plastic fraction within the FOV (F), and a quality flag (QF)78 are stored. The flag ranges from 1 to 5 repre-
senting low to high quality values of the provided segmentation based on visual inspections.

Specifically, each NetCDF file contains the following data fields: i) hyperspectral reflectance spectrum from 
350–2500 nm with the aforementioned spectral resolutions; ii) coincident RGB images associated with the time 
of spectral measurements within the FOV; iii) labeled images segmenting the plastics and foams from the back-
ground water; and iv) general information related to polymer type, color, the categories describing water back-
ground (clear, turbid, and foamy), the areal fraction of the debris, sediment contention, flow discharge, and the 
quality flag – as reported in Table 2. The CSV files only contain the spectral measurements. It is worth noting 
that after recording each reflectance spectrum, a splice correction was applied to remove potential discontinuity 
in spectral measurements at 1000 and 1800 nm, where the type of scanner changes in the ASD spectroradiome-
ter. To that end, we used the technical guides79 that offer splice corrections based on the calculated biases at the 
spectral interfaces between the scanners.

Plastic fraction signatures.  Figure 5 represents some statistics of the collected reflectance spectra in the 
clear water for single virgin specimens (i.e., PET, HDPE, LDPE, PP, and EPSF), mixed and weathered plastics. The 
statistics are calculated based on the number of sample spectra provided in Table 1. The mean spectra for plastic 

Fig. 3  Examples of image segmentation approach using color thresholding for (a) green PET bottle, (b) red and 
yellow polypropylene rope, and (c) red LDPE cups.

Fig. 4  (a) Histogram of foam fractions, based on thresholding the grayscale imageries, with foamy pixels 
exhibiting intensities greater than 160. (b) Example of image segmentation with LDPE cup specimens in a 
foamy flow with three labels (water, foam, and plastics). The foam fraction is equal to 12.4% of FOV.
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fractions above and below the median are added to assess the impacts. As is evident, higher plastic fractions lead 
to increased reflectance across all spectra, while the absorption lines remain relatively unchanged. Notably, cer-
tain absorption lines are shared among single plastics such as wavelengths around 1145, 1680, 2165 nm for LDPE 
and EPSF, as well as 1215, 1420, and 1730 nm for HDPE and PP. The reflectance corresponding to maximum and 
minimum plastic fractions is also shown in Fig. 5. The spectra for the minimum plastic fraction are nearly zero 
in the SWIR range, indicating that water is the dominant component. The spectrum for the maximum plastic 
fraction shares similar absorption features with the mean spectrum, except for the mixed and weathered types. 
This is expected due to the varying composition of debris in these categories.

Sediment signatures.  The impacts of suspended sediments and foams on the spectrum of clear water are 
investigated using the spectral angular mapper (SAM) score for each plastic type20. The SAM score is an angular 
similarity metric between two vectors. Given the two spectra t = {t1, t2, …, tb} and s = {s1, s2, …, sb} at b wave-
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invariant to shifts in signal magnitude, which primarily occur as plastic coverage increases. Therefore, any 
increase in within-type SAM scores reflects changes in spectral shapes rather than magnitude, capturing the 
effects of suspended sediments and foams on the reflectance spectra due to the background influences. The mean 
SAM scores (Fig. 6) for each debris group between clear and turbid waters are as follows: 2.4° (HDPE), 5.5° 
(LDPE), 8.3° (PP), 9.3° (EPSF), and 9.9° (PET).

To offer additional insights, Fig. 7 shows the mean of plastic spectra for HDPE and PET samples with differ-
ent sediment concentrations and sub-scale fractions. In these cases, it is evident that increased sediment concen-
tration sharpens the main absorption lines but does not drastically change their positions, especially across the 
regions where the background reflectance rises markedly. Although prior literature66,70 has documented that in 
the highly reflective segment of the clear water spectrum, the red region, the precise location of the absorption 
lines differ81 due to the possible variations in dissolved optically active constituents. Nevertheless, two distinct 
reflectance peaks around 810 nm and 1070 nm, shown by red arrows in Fig. 7, are found to be attributed to turbid 
waters consistent with the previous findings54,60. Figure 8(a) compares only the clear and turbid water spectra –  
showing an increase in reflectance with rising sediment concentrations and highlighting the known major and 
minor signatures at 810 and 1070 nm, respectively.

The SAM score between PET (HDPE) samples in clear and highly turbid waters (i.e., C = 313 mgl−1) is 
around 17.3° (12.6°). Thus even for HDPE with the lowest mean SAM score (Fig. 6), a high sediment concentra-
tion increases the score by more than five times. We observe that the rise in SAM scores in VNIR (i.e.,  < 1000 
nm) is higher than SWIR for PET (HDPE) by 90% (3)% as the sediment concentration rises from 0 to 313 mgl−1. 
This implies that higher turbidity can variably affect the spectral response of floating plastic debris across VNIR 
and SWIR bands depending on the plastic types and subgrid fractions.

Foam signatures.  The mean SAM scores between foamy and clear waters are as follows: 4.2° (HDPE), 10° 
(PET), 12.1° (PP), 14.6° (LDPE), and 26.6° (EPSF). All the SAM scores are higher than those obtained for turbid 
waters counterparts. Among different plastic types, the increase in SAM scores is pronounced for PP and LDPE 
specimens and is the highest for EPSF samples. Figure 9 compares the mean of the collected spectra for PP and 
EPSF specimens in clear and foamy waters. Unlike the impacts of suspended sediments, the increase in SAM 
scores in the SWIR region is higher than VNIR as the score increases by 36 (700)% for PP (EPSF) due to the 
presence of foam.

For the PP rope samples, the background foam decreases the reflectance and flattens the absorption lines, 
especially over the SWIR region. This can be partly attributed to the fact that those samples were prone to be 
partially submerged and their reflectance can be masked by high water absorption. Experiments identify a few 
significant absorption lines at 756 nm, 980 nm, 1198, and 1448 nm, shown with blue arrows, which are consist-
ent with those reported in the literature65. For EPSF, an additional absorption line appears at 1932 nm, resulting 
in the largest SAM score changes, which also manifested themselves in Fig. 8(b) that compares the clear and 

Term Definition

Reflectance Hyperspectral reflectance of the plastic specimen measured across the spectrum from 350 to 2500 nm.

RgbImage Digital image of the FOV comprising three color channels: red, green, and blue.

LableledImage Pixel-wise image indicating water, plastics, and foams within the FOV.

Debris Polymer The constitute polymer (e.g., PET, HDPE,...) of the plastic specimens.

Debris Color The colors of the plastic specimen (T: Transparent, G: Green, W: White, R: Red, Y: Yellow, M: Mix).

Background flow status Three categories describing the water background conditions: clear, turbid, and foamy.

Plastic fraction (%) Percentage of sub-grid fraction of the plastic litter.

Foam fraction (%) Percentage of sub-grid fraction of foamy waters.

Sediment concentration Suspended sediment concentration mgl−1.

Flow discharge Discharge of the flume in m3s−1.

Quality Flag A numeric value indicating the quality of the pixel-wise labeled image.

Table 2.  Description of attributes used in the NETCDF library.
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foamy waters spectra. The reduction in the mean spectra in foamy water compared to clear water for both PP 
and EPSF specimens (Fig. 9) can be chiefly attributed to higher level wetness and submergence of plastic debris 
due to the induced turbulence. At the same time, the plastic fractions in foamy waters were lower than the clear 
water counterparts in both cases, which can cause a drop in the mean spectra.

Fig. 5  Mean reflectance R and 75% confidence bound of plastic litter spectra in the clear water along with box 
plot of plastic fractions for (a) PET, (b) HDPE, (c) LDPE, (d) PP, (e) EPSF, (f) Mixed, and (g) Weathered 
specimens. The mean reflectance for those samples with plastic fractions greater ( +R50 ) and smaller (R50−) than 
50% of FOV are also shown with vertical lines marking the main absorption lines. The reflectance 
corresponding to maximum (Rmax) and minimum (Rmin) plastic fractions are shown with solid and dashed 
lines, respectively, in pale red. The box plots show the interquartile range around the median with whiskers 
extending to 1.5 times the interquartile range of plastic fractions.

Fig. 6  Heatmap illustrating the Spectral Angle Mapper (SAM) scores between the measured spectra for all 21 
debris subgroups, comprising seven plastic types and three background water conditions including clear (C), 
turbid (T), and foamy (F).

https://doi.org/10.1038/s41597-024-03974-x
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Technical Validation
Two complementary approaches are pursued for the technical validation of the presented dataset. First, we con-
duct a cross-comparison with existing public datasets obtained under different background conditions. Second, 
a classification machine learning algorithm is used to demonstrate that the collected data sets capture cohesively 
the spectral signatures of plastic debris and background waters.

Cross comparisons and assessments.  Figure 10 compares the mean of the collected spectra in the clear 
waters for single virgin plastics (i.e., PET, LDPE, and PP) with analogous re-scaled reflectance spectra of ocean 
dry plastics, obtained from a publicly available dataset33,36,54. Since the mean values of spectra are highly depend-
ent on the distance to the reference panel and illumination intensity values at the time of calibration, we rescaled 
the previously published spectra to match the same mean and variance through z-score normalization. The pub-
lished spectra for PET, LDEP, and PP were collected over a water tank with no natural water flows, where debris 
samples were placed at different depths33,54. The spectra were measured through an 8° foreoptic FOV and lacked 
any information about the impacts of water foams and the sub-grid fractions of plastic debris. For HDPE, the 
published spectra36 were also collected in a tank but with different nadir angles. We selected those measurements 
with a nadir viewing angle of θ = 0.

Fig. 7  Mean of plastic litter spectra at different levels of sediment concentrations (i.e., 0, 58, 22, 180, 242 and 
313 mgl−1) for (a) PET with plastic fraction 15% and (b) HDPE with plastic fraction 25%. Red arrows indicate 
notable peak reflectance values attributed to water turbidity.

Fig. 8  Comparison of spectra for (a) clear versus turbid waters with varying sediment levels and (b) clear versus 
foamy water.

Fig. 9  Mean and 75% confidence bound of plastic litter spectra in the foamy (solid line) and clear water (dashed line) 
for (a) PP and (b) EPSF. Blue arrows indicate notable absorption lines attributed to the presence of water foams.
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In the SWIR region, comparisons demonstrate the consistency of the new data set with the published one 
in terms of the identified absorption lines with discrepancies of less than 50 nm. The lowest and the highest 
discrepancies are between the PET and LDPE samples. These differences are expected concerning differences 
in acquisition systems, composition of background waters, sample characteristics, and preparation techniques 
across the two datasets. The SAM scores between the measured spectrum and their counterparts from the lit-
erature are also computed and reported in Fig. 10. The computations are conducted for the entire spectrum 
including VNIR and SWIR. As expected, on average the SAM scores in SWIR are lower than VNIR by 50%. For 
EPSF samples, the presented results are also consistent with those provided in Fig. 4(a) in31.

However, the newly provided data diverges from those in33,54 over the VIS and NIR regions. The difference 
in the VIS region is expected due to the varying specimens’ colors. However, the bed materials, variability of 
the optically active constituents of the background water, and random distribution of the plastic debris with 
various area fractions explain the differences in the NIR bands. As shown in Fig. 5, the median of subgrid plastic 
fractions in the provided data set varies from 10 to 28% in the FOV, implying that the water signatures can be a 
primary factor influencing the differences in the shape of the spectra. This is evident in Fig. 9, where, unlike the 
previously published data, the spectra in the new dataset peak in the red region 600–700 nm. The produced data 
also show peak reflectance values around 810 and 1070 nm, capturing the turbid water signatures, as explained 
previously.

Cross validation using machine learning.  The second validation approach tests whether the collected 
dataset provides coherent reflectance signatures and contains generalized predictive information. To that end, the 
dataset of single virgin plastics is split into training (70%) and testing (30%) sets. The eXtreme Gradient Boosting 
(XGboost)82,83 is used to train a sequential ensemble of decision trees as a classifier to learn the signatures associ-
ated with the occurrence and type of the debris. For the training, the learning rate and maximum depth are set to 
0.05 and 13, respectively. Through grid search, it was determined that applying regularization does not enhance 
the classification performance.

The confusion matrix (Fig. 11) for the test data set shows that the recall or probability of detection (last row) 
and the precision (last column) exceed 90% for all plastic types in the test set with an accuracy (lower diagonal 
element) greater than 94%. In most plastic types, except PP and PET samples, the recall is smaller than precision, 
indicating that the classifier is more vulnerable to higher false negative than false positive rates. The low preci-
sion in PP detection can be attributed to the fact that ropes could be partially submerged within the FOV and 
thus their reflectance signals can be easily masked due to high water absorption.

The largest (smallest) false negative rate (i.e., type-II error) is around 8 (1.8)% for EPSF (PET) specimens. 
A low false negative rate for a class often indicates that the within-class spectra are similar but remain highly dis-
similar to the other class spectra, which is evident for PET samples. On the other hand, as previously discussed, 
water foams affect the EPSF spectra markedly resulting in a high within-class dissimilarity with a SAM score 
of 26.6°. It’s important to highlight that most false negative rates for EPSF samples were found within the PP 
classes. This is primarily because the SAM score between the EPSF and PP types is smaller than the with-class 
SAM score for the EPSF samples (Fig. 6).

Fig. 10  Comparison of the mean spectra of plastic litter in clear water with analogous dry spectra from33 and36 
shown with dashed lines and asterisks, for (a) PET, (b) HDPE, (c) LDPE, and (d) PP. The red-ordered triples 
represent the SAM scores between the new and previously published spectra across the entire spectrum, VNIR, 
and SWIR regions, respectively.
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Usage Notes
We have included the scripts for data reading and visualization in the GitHub shared repository, organized into 
two folders: MATLAB_Codes and Python_Codes, as outlined below:

	 1.	 MatlabDemo.m: This MATLAB script loops through all the NetCDF files stored in the data_NetCDF folder 
and enables visualization of all 21 subgroups. Based on the user identification of the observation number 
(ON), the software shows the RGB image, labeled image, the spectra, and ancillary information related to 
measurement conditions (e.g., background condition, plastic fraction).

	 2.	 PythonDemo.ipynb: A Python script similar to the explained MATLAB script is also provided.
	 3.	 Statistical_analysis_Xgboost.ipynb: This Jupyter Notebook Python script offers additional visualizations 

including a bar plot illustrating the percentage of measurements categorized by material and background 
waters as well as the distributions and box plots of reflectance across 10 random wavelengths. Additionally, 
it presents the spectrum of each sampled group in the clear, turbid, and foamy waters together with the 
SAM scores. Finally, it provides codes utilizing the XGBoost library in Python for supervised classification 
of the measured spectra and computation of the confusion matrix.

We additionally provided a tabular presentation of the data containing all 2078 measured spectra, stored 
in both *.mat (for MATLAB) and *.feather (for Python). The feather format in Python allows efficient reading 
and writing of the data frame. This tabular data includes the plastic fractions and identifiers representing the 21 
subgroups, explained in the Readme.txt file. The library can be deployed for exploring the spectral behavior of 
different plastic litter with various background conditions and applying different machine-learning techniques.

It must be emphasized that the presented dataset does not account for other floating materials, such as mac-
roalgae, cyanobacteria, and CDOM, which can be found in large river systems. Future research could inves-
tigate the complexities related to the presence of these optically active constituents. Further characterization 
of the effects of various types and ages of weathered plastics will also enhance our understanding of plastic  
debris signature.

Code availability
The software codes for working with the database in MATLAB and Python are accessible on GitHub at https://
github.com/olyae001/Hyperspectral_reflectance_library or https://github.com/aebtehaj/Hyperspectral_
reflectance_library.

Received: 14 May 2024; Accepted: 4 October 2024;
Published: xx xx xxxx

References
	 1.	 Mihai, F.-C. et al. Plastic pollution in marine and freshwater environments: abundance, sources, and mitigation. In Emerging 

Contaminants in the Environment, 241–274 (Elsevier, 2022).
	 2.	 Van Emmerik, T. & Schwarz, A. Plastic debris in rivers. Wiley Interdisciplinary Reviews: Water 7, e1398 (2020).

Fig. 11  Confusion matrix for classification of single virgin plastics using XGBoost decision tree for a test 
data set as explained in the text. The blue values in the last row (column) represent the recall (precision). The 
accuracy is reported in the lower diagonal element of the matrix.

https://doi.org/10.1038/s41597-024-03974-x
https://github.com/olyae001/Hyperspectral_reflectance_library
https://github.com/olyae001/Hyperspectral_reflectance_library
https://github.com/aebtehaj/Hyperspectral_reflectance_library
https://github.com/aebtehaj/Hyperspectral_reflectance_library


1 1Scientific Data |         (2024) 11:1253  | https://doi.org/10.1038/s41597-024-03974-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 3.	 McIlgorm, A., Campbell, H. F. & Rule, M. J. The economic cost and control of marine debris damage in the asia-pacific region. Ocean 
& coastal management 54, 643–651 (2011).

	 4.	 UNEP, U. Year book 2014 emerging issues update. United Nations Environment Programme, Nairobi, Kenya (2014).
	 5.	 Imhof, H. K. et al. Variation in plastic abundance at different lake beach zones-a case study. Science of the Total Environment 613, 

530–537 (2018).
	 6.	 Wendt-Potthoff, K. et al. Monitoring plastics in rivers and lakes: Guidelines for the harmonization of methodologies (United Nations 

Environment Programme, 2020).
	 7.	 Blume, S. et al. Advances in remote sensing of plastic waste. Tech. Rep., Deutsche Gesellschaft für Internationale Zusammenarbeit 

(GIZ) GmbH https://www.giz.de/en/worldwide/93799.html (2023).
	 8.	 Dris, R. et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environmental chemistry 

12, 539–550 (2015).
	 9.	 Blettler, M. C., Abrial, E., Khan, F. R., Sivri, N. & Espinola, L. A. Freshwater plastic pollution: Recognizing research biases and 

identifying knowledge gaps. Water research 143, 416–424 (2018).
	10.	 Lebreton, L. C. et al. River plastic emissions to the world’s oceans. Nature communications 8, 15611 (2017).
	11.	 Jia, T. et al. Deep learning for detecting macroplastic litter in water bodies: a review. Water Research 231, 119632 (2023).
	12.	 Van Emmerik, T. et al. A methodology to characterize riverine macroplastic emission into the ocean. Frontiers in Marine Science 5, 

372 (2018).
	13.	 González-Fernández, D. et al. Floating macrolitter leaked from europe into the ocean. Nature Sustainability 4, 474–483 (2021).
	14.	 Van Emmerik, T. H. et al. River plastic transport and deposition amplified by extreme flood. Nature Water 1, 514–522 (2023).
	15.	 Hardesty, B. D., Lawson, T., van der Velde, T., Lansdell, M. & Wilcox, C. Estimating quantities and sources of marine debris at a 

continental scale. Frontiers in Ecology and the Environment 15, 18–25 (2017).
	16.	 Grøsvik, B. E. et al. Assessment of marine litter in the barents sea, a part of the joint norwegian–russian ecosystem survey. Frontiers 

in Marine Science 5, 72 (2018).
	17.	 Ryan, P. G., Moore, C. J., Van Franeker, J. A. & Moloney, C. L. Monitoring the abundance of plastic debris in the marine environment. 

Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1999–2012 (2009).
	18.	 Salgado-Hernanz, P. M. et al. Assessment of marine litter through remote sensing: recent approaches and future goals. Marine 

Pollution Bulletin 168, 112347 (2021).
	19.	 Geraeds, M., van Emmerik, T., de Vries, R. & bin Ab Razak, M. S. Riverine plastic litter monitoring using unmanned aerial vehicles 

(uavs). Remote Sensing 11, 2045 (2019).
	20.	 Tasseron, P. F., Schreyers, L., Peller, J., Biermann, L. & van Emmerik, T. Toward robust river plastic detection: Combining lab and 

field-based hyperspectral imagery. Earth and Space Science (2022).
	21.	 Veettil, B. K., Quan, N. H., Hauser, L. T., Van, D. D. & Quang, N. X. Coastal and marine plastic litter monitoring using remote 

sensing: A review. Estuarine, Coastal and Shelf Science 108160 (2022).
	22.	 Park, Y.-J., Garaba, S. P. & Sainte-Rose, B. Detecting the great pacific garbage patch floating plastic litter using worldview-3 satellite 

imagery. Optics Express 29, 35288–35298 (2021).
	23.	 Topouzelis, K., Papageorgiou, D., Suaria, G. & Aliani, S. Floating marine litter detection algorithms and techniques using optical 

remote sensing data: A review. Marine Pollution Bulletin 170, 112675 (2021).
	24.	 Goddijn-Murphy, L., Peters, S., Van Sebille, E., James, N. A. & Gibb, S. Concept for a hyperspectral remote sensing algorithm for 

floating marine macro plastics. Marine pollution bulletin 126, 255–262 (2018).
	25.	 Karakuş, O. On advances, challenges and potentials of remote sensing image analysis in marine debris and suspected plastics 

monitoring. Frontiers in Remote Sensing 4, 1302384 (2023).
	26.	 Garaba, S. P. & Harmel, T. Top-of-atmosphere hyper and multispectral signatures of submerged plastic litter with changing water 

clarity and depth. Optics Express 30, 16553–16571 (2022).
	27.	 Ciappa, A. C. Marine plastic litter detection offshore hawai’i by sentinel-2. Marine Pollution Bulletin 168, 112457 (2021).
	28.	 Garaba, S. P. et al. Sensing ocean plastics with an airborne hyperspectral shortwave infrared imager. Environmental science & 

technology 52, 11699–11707 (2018).
	29.	 Bonifazi, G., Capobianco, G. & Serranti, S. A hierarchical classification approach for recognition of low-density (ldpe) and high-

density polyethylene (hdpe) in mixed plastic waste based on short-wave infrared (swir) hyperspectral imaging. Spectrochimica Acta 
Part A: Molecular and Biomolecular Spectroscopy 198, 115–122 (2018).

	30.	 Serranti, S., Palmieri, R., Bonifazi, G. & Cózar, A. Characterization of microplastic litter from oceans by an innovative approach 
based on hyperspectral imaging. Waste Management 76, 117–125 (2018).

	31.	 Goddijn-Murphy, L. & Dufaur, J. Proof of concept for a model of light reflectance of plastics floating on natural waters. Marine 
pollution bulletin 135, 1145–1157 (2018).

	32.	 Garaba, S. P., Acuña-Ruz, T. & Mattar, C. B. Hyperspectral longwave infrared reflectance spectra of naturally dried algae, 
anthropogenic plastics, sands and shells. Earth System Science Data 12, 2665–2678 (2020).

	33.	 Knaeps, E. et al. Hyperspectral-reflectance dataset of dry, wet and submerged marine litter. Earth System Science Data 13, 713–730, 
https://doi.org/10.5194/ESSD-13-713-2021 (2021).

	34.	 de Vries, R. V., Garaba, S. P. & Royer, S.-J. Hyperspectral reflectance of pristine, ocean weathered and biofouled plastics from dry to 
wet and submerged state. Earth System Science Data Discussions 2023, 1–29 (2023).

	35.	 Leone, G. et al. Hyperspectral reflectance dataset of pristine, weathered and biofouled plastics. Earth System Science Data Discussions 
2022, 1–24 (2022).

	36.	 Garaba, S. P. et al. Concentration, anisotropic and apparent colour effects on optical reflectance properties of virgin and ocean-
harvested plastics. Journal of Hazardous Materials 406, 124290 (2021).

	37.	 Biermann, L., Clewley, D., Martinez-Vicente, V. & Topouzelis, K. finding plastic patches in coastal Waters using optical Satellite 
Data. Scientific RepoRtS | 10, https://doi.org/10.1038/s41598-020-62298-z (2020).

	38.	 Investigating Detection of Floating Plastic Litter from Space Using Sentinel-2 Imagery https://doi.org/10.3390/rs12162648 (2020).
	39.	 Basu, B., Sannigrahi, S., Basu, A. S. & Pilla, F. remote sensing Development of Novel Classification Algorithms for Detection of 

Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery. https://doi.org/10.3390/
rs13081598 (2021).

	40.	 Kako, S., Morita, S. & Taneda, T. Estimation of plastic marine debris volumes on beaches using unmanned aerial vehicles and image 
processing based on deep learning. Marine Pollution Bulletin 155, 111127 (2020).

	41.	 Topouzelis, K., Papakonstantinou, A. & Garaba, S. P. Detection of floating plastics from satellite and unmanned aerial systems 
(plastic litter project 2018). International Journal of Applied Earth Observation and Geoinformation 79, 175–183 (2019).

	42.	 MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data https://doi.org/10.1371/journal.
pone.0262247.g001 (2022).

	43.	 Olyaei, M., Ebtehaj, A. & Hong, J. Optical Detection of Marine Debris using Deep Knockoff. IEEE Trans. on Geosci. and Remote Sens. 
Accepted (2022).

	44.	 Garaba, S. P. & Park, Y.-J. Riverine litter monitoring from multispectral fine pixel satellite images. Environmental Advances 15, 
100451 (2024).

	45.	 Jakovljevic, G., Govedarica, M. & Alvarez-Taboada, F. A deep learning model for automatic plastic mapping using unmanned aerial 
vehicle (uav) data. Remote Sensing 12, 1515 (2020).

https://doi.org/10.1038/s41597-024-03974-x
https://www.giz.de/en/worldwide/93799.html
https://doi.org/10.5194/ESSD-13-713-2021
https://doi.org/10.1038/s41598-020-62298-z
https://doi.org/10.3390/rs12162648
https://doi.org/10.3390/rs13081598
https://doi.org/10.3390/rs13081598
https://doi.org/10.1371/journal.pone.0262247.g001
https://doi.org/10.1371/journal.pone.0262247.g001


1 2Scientific Data |         (2024) 11:1253  | https://doi.org/10.1038/s41597-024-03974-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	46.	 Maharjan, N. et al. Detection of river plastic using uav sensor data and deep learning. Remote Sensing 14, 3049 (2022).
	47.	 Van Lieshout, C., van Oeveren, K., van Emmerik, T. & Postma, E. Automated river plastic monitoring using deep learning and 

cameras. Earth and space science 7, e2019EA000960 (2020).
	48.	 Tharani, M. et al. Trash detection on water channels. In Neural Information Processing: 28th International Conference, ICONIP 2021, 

Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part I 28, 379–389 (Springer, 2021).
	49.	 Topouzelis, K., Papageorgiou, D., Karagaitanakis, A., Papakonstantinou, A. & Ballesteros, M. A. Plastic litter project 2019: Exploring 

the detection of floating plastic litter using drones and sentinel 2 satellite images. In IGARSS 2020-2020 IEEE International 
Geoscience and Remote Sensing Symposium, 6329–6332 (IEEE, 2020).

	50.	 Papageorgiou, D., Topouzelis, K., Suaria, G., Aliani, S. & Corradi, P. Sentinel-2 detection of floating marine litter targets with partial 
spectral unmixing and spectral comparison with other floating materials (plastic litter project 2021). Remote Sensing 14, 5997 
(2022).

	51.	 Waqas, M. et al. Marine plastic pollution detection and identification by using remote sensing-meta analysis. Marine Pollution 
Bulletin 197, 115746 (2023).

	52.	 Hu, C. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: Challenges and 
potentials. Remote Sensing of Environment 259, 112414, https://doi.org/10.1016/J.RSE.2021.112414 (2021).

	53.	 Hu, C. Remote detection of marine debris using sentinel-2 imagery: A cautious note on spectral interpretations. Marine Pollution 
Bulletin 183, 114082 (2022).

	54.	 Moshtaghi, M., Knaeps, E., Sterckx, S., Garaba, S. & Meire, D. Spectral reflectance of marine macroplastics in the vnir and swir 
measured in a controlled environment. Scientific Reports 11, 5436 (2021).

	55.	 Garaba, S. P. & Dierssen, H. M. Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore 
and virgin plastics. Earth System Science Data 12, 77–86, https://doi.org/10.5194/ESSD-12-77-2020 (2020).

	56.	 Jain, S. K. & Singh, V. P.Water resources systems planning and management (Elsevier, 2003).
	57.	 Ekercin, S. Water quality retrievals from high resolution ikonos multispectral imagery: A case study in istanbul, turkey. Water, Air, 

and Soil Pollution 183, 239–251 (2007).
	58.	 Thiemann, S. & Kaufmann, H. Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and 

multitemporal approach for the mecklenburg lake district, germany. Remote sensing of Environment 81, 228–237 (2002).
	59.	 Gholizadeh, M. H., Melesse, A. M. & Reddi, L. A comprehensive review on water quality parameters estimation using remote 

sensing techniques. Sensors 16, 1298 (2016).
	60.	 Olyaei, M. & Ebtehaj, A. Uncovering plastic litter spectral signatures: A comparative study of hyperspectral band selection 

algorithms. Remote Sensing 16, 172 (2023).
	61.	 Kutser, T. et al. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically 

complex waters. Remote Sensing 8, 497 (2016).
	62.	 Nicolas, J.-M., Deschamps, P.-Y. & Frouin, R. Spectral reflectance of oceanic whitecaps in the visible and near infrared: Aircraft 

measurements over open ocean. Geophysical research letters 28, 4445–4448 (2001).
	63.	 Kokhanovsky, A. Spectral reflectance of whitecaps. Journal of Geophysical Research: Oceans109 (2004).
	64.	 Bartlett, D., Gurganus, E. & Whitlock, C. Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean 

aerosols (1982).
	65.	 Dierssen, H. M. Hyperspectral measurements, parameterizations, and atmospheric correction of whitecaps and foam from visible 

to shortwave infrared for ocean color remote sensing. Frontiers in Earth Science 7, 14 (2019).
	66.	 Doxaran, D., Froidefond, J.-M. & Castaing, P. Remote-sensing reflectance of turbid sediment-dominated waters. reduction of 

sediment type variations and changing illumination conditions effects by use of reflectance ratios. Applied Optics 42, 2623–2634 
(2003).

	67.	 Ritchie, J. C., Schiebe, F. R. & McHenry, J. R. Remote sensing of suspended sediments in surface waters. Photogrammetric Engineering 
and Remote Sensing 42, 1539–1545 (1976).

	68.	 Yang, C.-Y. & Julien, P. Y. The ratio of measured to total sediment discharge. International Journal of Sediment Research 34, 262–269 
(2019).

	69.	 Dorrell, R. M. & Hogg, A. J. Length and time scales of response of sediment suspensions to changing flow conditions. Journal of 
Hydraulic Engineering 138, 430–439 (2012).

	70.	 Knaeps, E. et al. A swir based algorithm to retrieve total suspended matter in extremely turbid waters. Remote Sensing of Environment 
168, 66–79 (2015).

	71.	 Otsu, N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics 9, 62–66 
(1979).

	72.	 Arifin, A. Z. & Asano, A. Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern recognition 
letters 27, 1515–1521 (2006).

	73.	 Kaur, A. & Kranthi, B. Comparison between ycbcr color space and cielab color space for skin color segmentation. International 
Journal of Applied Information Systems 3, 30–33 (2012).

	74.	 Nie, F., Wang, Y., Pan, M., Peng, G. & Zhang, P. Two-dimensional extension of variance-based thresholding for image segmentation. 
Multidimensional systems and signal processing 24, 485–501 (2013).

	75.	 Sezgin, M. & Sankur, BL Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic 
imaging 13, 146–168 (2004).

	76.	 Güneş, A., Kalkan, H. & Durmuş, E. Optimizing the color-to-grayscale conversion for image classification. Signal, Image and Video 
Processing 10, 853–860 (2016).

	77.	 Olyaei, M., Ebtehaj, A. & Ellis, C. R. A hyperspectral reflectance database of plastic debris for river ecosystems https://doi.
org/10.5281/zenodo.13377060 (2024).

	78.	 Urquhart, E. A. & Schaeffer, B. A. Envisat meris and sentinel-3 olci satellite lake biophysical water quality flag dataset for the 
contiguous united states. Data in brief 28, 104826 (2020).

	79.	 Hatchell, D. Analytical spectral devices, inc.(asd) technical guide (1999).
	80.	 Kruse, F. A. et al. The spectral image processing system (sips)—interactive visualization and analysis of imaging spectrometer data. 

Remote sensing of environment 44, 145–163 (1993).
	81.	 Knaeps, E. et al. The seaswir dataset. Earth System Science Data 10, 1439–1449 (2018).
	82.	 Chen, T. et al. Xgboost: extreme gradient boosting. R package version 0.4-2 1, 1–4 (2015).
	83.	 Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on 

knowledge discovery and data mining, 785–794 (2016).

Acknowledgements
The funding support from the Legislative-Citizen Commission on Minnesota Resources (LCCMR, M.L.2021 
E812RSM) is greatly acknowledged. Partial support from NASA’s Remote Sensing Theory program 
(RST, 80NSSC20K1717) is also appreciated.

https://doi.org/10.1038/s41597-024-03974-x
https://doi.org/10.1016/J.RSE.2021.112414
https://doi.org/10.5194/ESSD-12-77-2020
https://doi.org/10.5281/zenodo.13377060
https://doi.org/10.5281/zenodo.13377060


13Scientific Data |         (2024) 11:1253  | https://doi.org/10.1038/s41597-024-03974-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Author contributions
M.O. designed the study, collected the specimens, managed and analyzed the data files, and wrote the manuscript. 
A.E. designed the study and edited the manuscript. C.E. designed and built the data acquisition system.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.O.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, 
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative  
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted  
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03974-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/

	A Hyperspectral Reflectance Database of Plastic Debris with Different Fractional Abundance in River Systems

	Background & Summary

	Methods

	Spectral acquisition system. 
	Flume and water flow characteristics. 
	Plastic specimens. 
	Labeling DSLR images. 

	Data Records

	Plastic fraction signatures. 
	Sediment signatures. 
	Foam signatures. 

	Technical Validation

	Cross comparisons and assessments. 
	Cross validation using machine learning. 

	Usage Notes

	Acknowledgements

	Fig. 1 (a) The ASD FieldSpec-4 spectroradiometer along with the DSLR camera, (b) Illumination system and the reference panel showing that the walls were painted black, (c) Sediment feeder placement in the flume, (d) floating plastic debris in a turbid flo
	Fig. 2 Floating plastic specimens in different settings (Single virgin, Mix virgin, and Weathered) against various background conditions (Normal, Turbid, and Foamy).
	Fig. 3 Examples of image segmentation approach using color thresholding for (a) green PET bottle, (b) red and yellow polypropylene rope, and (c) red LDPE cups.
	Fig. 4 (a) Histogram of foam fractions, based on thresholding the grayscale imageries, with foamy pixels exhibiting intensities greater than 160.
	Fig. 5 Mean reflectance and 75% confidence bound of plastic litter spectra in the clear water along with box plot of plastic fractions for (a) PET, (b) HDPE, (c) LDPE, (d) PP, (e) EPSF, (f) Mixed, and (g) Weathered specimens.
	Fig. 6 Heatmap illustrating the Spectral Angle Mapper (SAM) scores between the measured spectra for all 21 debris subgroups, comprising seven plastic types and three background water conditions including clear (C), turbid (T), and foamy (F).
	Fig. 7 Mean of plastic litter spectra at different levels of sediment concentrations (i.
	Fig. 8 Comparison of spectra for (a) clear versus turbid waters with varying sediment levels and (b) clear versus foamy water.
	Fig. 9 Mean and 75% confidence bound of plastic litter spectra in the foamy (solid line) and clear water (dashed line) for (a) PP and (b) EPSF.
	Fig. 10 Comparison of the mean spectra of plastic litter in clear water with analogous dry spectra from33 and36 shown with dashed lines and asterisks, for (a) PET, (b) HDPE, (c) LDPE, and (d) PP.
	Fig. 11 Confusion matrix for classification of single virgin plastics using XGBoost decision tree for a test data set as explained in the text.
	Table 1 Number of measurements categorized by different plastic types and background waters, with percentages indicated in parentheses followed by the mean value of plastic fraction.
	Table 2 Description of attributes used in the NETCDF library.




