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RNA molecules perform essential roles in cells, including 
regulating transcription, translation and molecular interac-
tions and performing catalysis1. Synthetic RNA molecules are 

gaining increasing interest for a variety of applications, including 
genome editing2, biosensing3 and vaccination4. Characterizing RNA 
secondary structure, the collection of base pairs present in the mol-
ecule, is typically necessary for understanding the function of natu-
ral RNA molecules and is of crucial importance for designing better 
synthetic molecules. Some of the most widely used packages use a 
physics-based approach5 that assigns thermodynamic values to a set 
of structural features (ViennaRNA6, NUPACK7 and RNAstructure8), 
with parameters traditionally characterized via optical melting 
experiments and then generalized by expert intuition9. However, 
a number of other approaches have also been developed that use 
statistical learning methods to derive parameters for structural 
features (RNAsoft10, CONTRAfold11, CycleFold12, LearnToFold13, 
MXfold14, SPOT-RNA15).

Secondary structure modeling packages are typically evalu-
ated by comparing single predicted structures to secondary 
structures of natural RNAs16. While important, this practice 
has limitations for accurately assessing packages, including bias 
toward structures more abundant in the most well-studied RNAs 
(transfer RNAs, ribosomal RNA and so on) and neglect of ener-
getic effects from these natural RNAs’ tertiary contacts or bind-
ing partners. Furthermore, scoring on single structures fails to 
assess the accuracy of ensemble-averaged RNA structural observ-
ables, such as base-pairing probabilities, affinities for proteins and 
ligand-dependent structural rearrangements, which are particularly 
relevant for the study and design of riboswitches17,18, ribozymes, 
pre-mRNA transcripts and therapeutics19 that occupy more than 
one structure as part of their functional cycles. Existing packages 
are, in theory, capable of predicting ensemble properties through 
so-called partition function calculations and, in practice, are used to 

guide RNA ensemble-based design, despite not being validated for  
these applications.

Data from high-throughput RNA structure experiments, such 
as high-throughput chemical mapping20–22 and RNA-MaP experi-
ments23,24, offer the opportunity to make incisive tests of secondary 
structure models with orders-of-magnitude more constructs than 
previously. Unlike datasets of single secondary structures, both of 
these experiments provide ensemble-averaged structural proper-
ties, which allow for directly evaluating the full ensemble calcula-
tion of secondary structure algorithms, obviating the need to also 
evaluate the further nontrivial inference of a most-likely structure 
from the calculated ensemble. Furthermore, experimental data on 
human-designed synthetic RNA libraries have the potential to miti-
gate effects of bias incurred in natural RNA datasets.

In this work, we evaluate the performance of commonly used 
packages capable of making thermodynamic predictions in two 
tasks for which large datasets of synthetic RNAs have been collected 
via the RNA design crowdsourcing platform Eterna25: (1) predict-
ing chemical reactivity data through calculating probabilities that 
nucleotides are unpaired, and (2) predicting relative stabilities of 
multiple structural states that underlie the functions of riboswitch 
molecules: a task that involves predicting affinities of both small 
molecules and proteins of interest. We find striking, consistent dif-
ferences in package performance across these quantitative tasks, 
with the packages CONTRAfold and RNASoft performing better 
than packages that are in wider use.

We hypothesized that these data, although shorter than many 
natural RNAs of interest and not designed to bear similarity to 
natural RNAs, might still sufficiently represent RNA thermody-
namics to allow for developing an improved algorithm. We tested 
this by developing a multitask-learning-based framework to train 
a thermodynamic model on these tasks concurrently with the task 
of single-structure prediction. The resulting multitask-trained 
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model, called EternaFold, did indeed demonstrate increased accu-
racy both on held-out data from Eterna as well as a collection of 31 
independent datasets gathered from other literature sources, which 
encompass viral genomes, mRNAs and other small synthetic RNAs, 
probed with distinct methods and under distinct solution and cel-
lular conditions. Compared to prior studies, this represents a very 
large collection of datasets used to evaluate RNA secondary struc-
ture algorithms.

Results
Evaluated packages. We initially evaluated commonly used sec-
ondary structure modeling packages in their ability to make 
thermodynamic predictions on two datasets of diverse synthetic 
molecules from Eterna: EternaBench-ChemMapping (n = 12,711) 
and EternaBench-Switch (n = 7,228). The packages ViennaRNA 
(v.1.8.5, 2.4.10), NUPACK (v.3.2.2), RNAstructure (v.6.2), RNAsoft 
(v.2.0) and CONTRAfold (v.1.0, 2.02) were analyzed across different 
package versions, parameter sets and modeling options where avail-
able (Supplementary Table 1). We also evaluated packages trained 
more recently through a varied set of statistical or deep learning 
methods (LearnToFold13, SPOT-RNA15, MXfold14, CycleFold12 and 
CROSS26), but these packages demonstrated poor performance on a 
subset of chemical mapping data (Extended Data Fig. 1a) and, due 
to their intensive runtimes, were omitted from further comparison.

Package ranking based on RNA chemical mapping predictions. 
Our first ensemble-based structure prediction task investigates the 
capability of these packages to predict chemical mapping reactivi-
ties. Chemical mapping is a widely used readout of RNA secondary 
structure20–22 and has served as a high-throughput structural read-
out for experiments performed in the Eterna massive open online 
laboratory25. A nucleotide’s reactivity in a chemical mapping experi-
ment depends on the availability of the nucleotide to be chemically 
modified, and hence provides an ensemble-averaged readout of the 
nucleotide’s deprotection from base pairing or other binding part-
ners27. We wished to investigate whether current secondary struc-
ture packages differed in their ability to recapitulate information 
about the ensembles of misfolded states that are captured in chemi-
cal mapping experiments.

To make this comparison, we used the Eterna ‘Cloud Labs’ for 
this purpose: 24 datasets of 38,846 player-designed constructs, 
ranging from 80 to 130 nucleotides in length (dataset statistics in 
Supplementary Table 2, participant information in Supplementary 
Table 3). These constructs were designed in iterative cycles on the 
Eterna platform (Fig. 1a). Participants launched ‘projects’, each of 
which contained one ‘target structure’, and posed a design challenge 
or tested a hypothesis about RNA structure (project information in 
Supplementary Table 4). The constructs designed in these laborato-
ries were periodically collected and mapped in vitro using selective 
2′-hydroxyl acylation analyzed by primer extension (SHAPE) and 
the multiplexed accessibility probing read out through sequencing 
(MAP-seq) chemical mapping protocol28. These data were returned 
to participants, and the results guided future laboratory develop-
ment and construct design29.

The community of Eterna participants collectively developed 
highly diverse sequence libraries across target structures ranging 
from 0 to 12 loops (a proxy for design complexity30), as assessed by 
analyzing the positional sequence entropy of collected constructs 
as grouped by project (Fig. 1b). Example project target structures, 
colored by the mean reactivity of the probed solutions, are shown in 
Fig. 1b (inset). Some projects sought to design intricate structures, 
for example, ‘The Nonesuch by rnjensen45’ and ‘Robot serial killer 
1’, while other participant projects focused more on better under-
standing experimental signals from particular structure motifs, for 
example, ‘SHAPE Profile U-U mismatch’, which consisted of a single 
stem and a U-U mismatch.

Figure 1a depicts an example heatmap of SHAPE data for 
Eterna-player-designed synthetic RNA molecules from the proj-
ect ‘Aires’ by participant wateronthemoon. Figure 1c depicts cal-
culated ensemble-averaged unpaired probabilities per nucleotide, 
P(unpaired), for five example package options, plotted in the same 
heatmap arrangement as the experimental data in Fig. 1a (see 
Extended Data Fig. 2 for heatmaps from all package options tested). 
In this subset of constructs, all packages are largely able to iden-
tify which regions are completely paired (P(unpaired) equal to 0, 
white) or unpaired (P(unpaired) equal to 1, black), but some pack-
ages predict P(unpaired) values between 0 and 1 that more accu-
rately reflect intermediate reactivity levels. Arrows (blue, green 
and magenta) indicate intermediate reactivity values that are cap-
tured by predictions from CONTRAfold and RNAsoft but not 
ViennaRNA, NUPACK and RNAstructure. We quantified similar-
ity between reactivity and P(unpaired) by calculating the Pearson 
correlation coefficient between the experimental reactivity values 
and P(unpaired) values (Methods). As an example, predictions from 
CONTRAfold 2 and RNAsoft BLstar for Cloud Lab round 1 (1,088 
constructs) demonstrate improved correlation of R = 0.718(2) and 
0.724(3) (respectively) over Vienna 2, RNAstructure and NUPACK 
(0.673(2), 0.671(2) and 0.667(2), respectively) (Supplementary 
Table 5). Noting that some projects had low sequence diversity, and 
to make the dataset a more manageable size for benchmarking while 
maintaining the same degree of sequence diversity, we filtered con-
structs to remove highly similar sequences (Methods and Extended 
Data Fig. 3). Clustering the resulting sequences per project (Fig. 1d) 
demonstrates that low-entropy projects were reduced in size. The 
final 24 EternaBench-CM datasets comprised 12,711 individual 
constructs.

We observed that CONTRAfold and RNAsoft generally predict 
that the constructs studied are more melted than the other pack-
ages predict at their default temperatures of 37 °C, even though the 
actual chemical mapping experiments were carried out at lower 
temperature (24 °C; Methods). Motivated by this observation, we 
wished to ascertain whether a simple change in temperature might 
account for differences in performance between packages. Because 
ViennaRNA, NUPACK and RNAstructure packages include param-
eters for both enthalpy and entropy, we calculated correlations 
across predictions from a range of temperatures (Extended Data 
Fig. 1b). We found that increasing the temperature from the default 
value of 37 °C used in these packages to 60 °C improved the cor-
relation to experimental data for ViennaRNA (R = 0.708(2)) and 
RNAstructure (R = 0.707(2)), but not NUPACK (R = 0.639(2)).  
We hence included each of these packages also at 60 °C as options 
to test.

We established a ranking of all package options for each data-
set (Fig. 1e, Supplementary Table 5 and representative heatmaps 
for all datasets in Extended Data Fig. 4) by computing the z-score 
for each package correlation in comparison to all packages tested, 
and averaging over all datasets (Fig. 1f). The top three package 
options were CONTRAfold 2, ViennaRNA at 60 °C and RNAsoft 
with ‘BLstar’ parameters. Using a Pearson correlation assumes a lin-
ear relationship between P(unpaired) and reactivity and relies on 
a two-state model with inherent limitations (Methods). We there-
fore also ranked all packages with a Spearman rank correlation 
coefficient and found a similar global overall ranking (Extended 
Data Fig. 1c). Overall package performance and the resulting rank-
ing was not strongly dependent on guanine-cytosine (GC) con-
tent, sequence length or total number of loops in the project target 
structure, which was investigated by calculating correlations and  
rankings when grouping constructs by project (Methods and 
Extended Data Fig. 1d).

Package ranking based on riboswitch affinity predictions. 
Our second ensemble-based structure prediction task involved  
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Players submit solutions, all of which are synthesized in high-throughput via MAP-seq experiments. Example reactivity data are depicted from the project 
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across all packages evaluated for each dataset. f, Final ranking is obtained by averaging the z-scores obtained across all datasets. Error bars represent 
95% confidence interval of the mean obtained over 1,000 iterations of bootstrapping over n = 24 independent experiments, which comprised 12,711 
independent constructs in total.
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predicting the relative populations of states occupied by riboswitch 
molecules. Riboswitches are RNA molecules that alter their structure 
on binding of an input ligand, which effects an output action such 
as regulating transcription, translation, splicing or the binding of a 
reporter molecule18,31,32. We compared these packages in their ability to 
predict the relative binding affinity of synthetic riboswitches to their 
output reporter, fluorescently tagged MS2 viral coat protein in the 
absence of input ligand, K−lig

MS2 (Methods and Extended Data Fig. 5a).  
As with the chemical mapping datasets, each riboswitch dataset was 
filtered to exclude highly similar sequences (Extended Data Fig. 3 
and Supplementary Table 6). These riboswitches came from two 
sources: the first consisted of 4,849 riboswitches (after filtering) 
designed by citizen scientists on Eterna33. The second consisted of 
2,509 riboswitches (after filtering) designed fully computationally 
using the RiboLogic package34, probed concomitantly with Eterna 
riboswitches. These riboswitches were designed using aptamers for 
three small molecules: flavin mononucleotide (FMN), theophylline 
and tryptophan.

Figure 2a depicts experimental values for logK−lig
MS2 for FMN 

riboswitches from the RiboLogic dataset versus predicted logK−lig
MS2 

values. Again, CONTRAfold and RNAsoft BLstar packages exhibit 
higher correlations to the experimental data (Pearson R = 0.50(2) 
and 0.51(2), respectively) than ViennaRNA, NUPACK and 
RNAstructure (R = 0.37(2), 0.34(2), 0.36(2), respectively). Example 
predictions for all package options tested are in Extended Data Fig. 6.  
We evaluated performance across 12 independent experimental 
datasets (Fig. 2b, Supplementary Table 7 and representative pre-
dictions in Extended Data Fig. 7), and obtained a ranking (Fig. 2c)  
similar to the ranking obtained from chemical mapping data. 
CONTRAfold 2, RNAsoft (model ‘BL, no dangles’, equivalent to 
BLstar but without dangles) and RNAstructure 60 °C were ranked 
as the top three out of the package options tested. The top ranking 
of CONTRAfold 2 matches the entirely independent ranking based 
on chemical mapping measurements of distinct RNA sequences 
described in the previous section. These riboswitches were designed 
using aptamers for three small molecules: FMN, theophylline and 
tryptophan. Calculating z-scores over each individual subset resulted 
in slightly differing rankings but consistently favored Contrafold 
methods (Extended Data Fig. 5b). Predicting MS2 binding affin-
ity in the presence of the riboswitch input ligand, K+lig

MS2, as well as 
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the activation ratio requires computing constrained-partition func-
tions, a capability limited to Vienna RNAfold, RNAstructure and 
CONTRAfold. Rankings for predicting K+lig

MS2 and activation ratio 
followed the same trends (Extended Data Fig. 5d,e and Methods).

EternaFold gives best-of-class performance in multiple tasks. 
We hypothesized that performance in both secondary structure 
prediction tasks above might be improved by incorporating these 
tasks in the process of training a secondary structure package. The 
RNAsoft10,35 and CONTRAfold11 packages, which performed well 
in both tasks (Table 1), both take advantage of the property that 
the gradient of the partition function with respect to any feature is 
related to the expected counts of that feature10, which can be read-
ily computed in dynamic programming scheme. We generalized 
this framework beyond maximizing the likelihood of one single 
structure to matching the experimentally determined probability of 
a particular structural motif in the ensemble through minimizing 

the root-mean-squared error to the logarithm of riboswitch affini-
ties for MS2 protein (Methods). We used the CONTRAfold code 
as a framework to explore multitask learning on RNA structural 
data, since it has previously been extended to train on chemical  
mapping data to maximize the expected likelihood of chemical 
mapping data36.

We tested training from three data types: secondary structures, 
chemical mapping reactivity and riboswitch affinities. We used the 
STRAND S-Processed dataset for secondary structures (n = 3,439), 
which was the same data used to train RNAsoft and CONTRAfold10. 
The chemical mapping training data (n = 2,603) came from Cloud 
Lab datasets used in previous model development36. We used ribo-
switches designed by the automated RiboLogic34 algorithm for ribo-
switch training data (n = 1,295). We trained models with a variety 
of combinations of data types to explore interactions in multitask 
training (Fig. 3a), used holdout sets to determine hyperparameter 
weights (Methods) and evaluated performance on separate test sets 
for single-structure prediction accuracy37, chemical mapping pre-
diction accuracy and riboswitch affinity prediction. To ensure a 
rigorous separation of training and test data, each test dataset was 
filtered for sequence similarity to all training data at 80% using a 
windowed Levenshtein metric (Methods). Marked sequence simi-
larity overlap between the S-Processed train and test sets motivated 
us to develop an orthogonal dataset for secondary structure predic-
tion testing based on the dataset ArchiveII38. Test sets for chemi-
cal mapping and riboswitch data came from completely different 
experimental rounds than those used in training to avoid learning 
experiment-specific biases.

Comparing performance across models trained with differ-
ent types of input data indicates some tradeoffs in performance. 
CONTRAfold 2 exhibited the highest accuracy, followed by ‘Model 
S’, trained only on single-structure prediction training data, exhib-
ited the highest accuracy on the separate single-structure predic-
tion test set (Fig. 3b, F-score = 0.56(0.22)). Incorporating other data 
types in model training resulted in F-scores worse than Model S 
on the ArchiveII-NR single-structure prediction test set but within 
error of CONTRAfold 2 (Fig. 3b). Model ‘SCRR’, trained on four 
data types (single-structure data, chemical mapping, riboswitch 
K−lig
MS2 and K+lig

MS2) exhibited the highest performance on separate test 
sets for chemical mapping (Fig. 3c) and riboswitch K−lig

MS2 prediction 
(Fig. 3d, data for all test sets in Supplementary Table 8). We termed 
this SCRR model ‘EternaFold’.

Independent tests confirm EternaFold performance. We 
wished to test whether EternaFold’s improvements in correlating 
P(unpaired) values to chemical mapping and protein-binding data 
generalized to improvement in predictions for datasets from other 
groups, experimental protocols and RNA molecules. We compiled 
3 datasets of chemical mapping data for molecules including viral 
genomes39–49 in cells and in virions, ribosomal RNAs44,50,51 both in 
cells and extracted from cells, synthetic mRNAs and RNA frag-
ments designed to improve protein expression and in vitro stabil-
ity19,52, and mRNAs probed in various subcellular compartments 
and extracted from human embryonic kidney 293 (HEK293) cells53 
(Fig. 4a and Supplementary Table 9). These datasets spanned struc-
ture probing methods different from those used in the Eterna Cloud 
Labs (SHAPE-CE, SHAPE-MaP, DMS-MaP-seq versus MAP-seq) as 
well as a variety of chemical modifications (DMS, icSHAPE, NAI). 
Most of these test molecules were much longer (thousands of nucle-
otides) than the 85-nucleotide RNAs used as the primary training 
data for EternaFold. Notably, six of these involved the SARS-CoV-2 
genome46–48, which came into prevalence after the development of the 
EternaFold model, and represented a test of new data. The following 
results are for P(unpaired) values calculated for overlapping win-
dows of size 900, but other window sizes and Levenshtein distance 
metrics gave qualitatively similar results (Extended Data Fig. 8).  

Table 1 | Ranking by z-score over 24 chemical mapping datasets 
(n = 12,711 constructs), 12 riboswitch datasets (n = 7,228 
constructs) and averaged over both dataset types

Package ChemMapping 
z-score mean 
(s.d.)

Riboswitch 
z-score mean 
(s.d.)

Both dataset 
types mean 
(s.d.)

CONTRAfold 2 1.14 (0.69) 1.03 (0.43) 1.09 (0.61)

Vienna 2, 60 °C 1.12 (0.29) 0.65 (0.34) 0.89 (0.38)

RNAsoft BL, no 
dangles

0.88 (0.34) 0.79 (0.57) 0.84 (0.43)

RNAstructure, 60 °C 0.71 (0.57) 0.86 (0.36) 0.78 (0.51)

RNAsoft BLstar 0.93 (0.36) 0.42 (0.67) 0.67 (0.53)

CONTRAfold 1 0.57 (0.99) 0.45 (0.65) 0.51 (0.88)

CONTRAfold 2, 
noncomplementary

0.15 (1.01) 0.66 (0.53) 0.40 (0.91)

Vienna 2, ‘RNASoft 
2007’ params

0.33 (0.45) 0.38 (0.37) 0.35 (0.42)

RNAsoft LAM-CG 0.87 (0.25) −0.37 (0.69) 0.25 (0.74)

Vienna 2, ‘Langdon 
2018’ params

0.13 (0.48) 0.26 (0.46) 0.20 (0.47)

RNAsoft 2007 0.89 (0.21) −0.54 (0.40) 0.17 (0.74)

RNAsoft NOM-CG 0.52 (0.30) −0.26 (0.66) 0.13 (0.58)

Vienna 2 −0.15 (0.47) 0.25 (0.30) 0.05 (0.46)

RNAstructure −0.55 (0.50) 0.43 (0.51) −0.06 (0.68)

RNAstructure, no 
coaxial stacking

−0.60 (0.55) 0.19 (0.51) −0.21 (0.65)

NUPACK 1999 −0.86 (0.30) −0.06 (0.33) −0.46 (0.49)

Vienna 1 −0.96 (0.56) −0.02 (0.79) −0.49 (0.78)

NUPACK 1995 −0.86 (0.31) −0.19 (0.33) −0.52 (0.45)

RNAsoft 1999 −0.27 (0.55) −0.98 (0.22) −0.63 (0.58)

RNAsoft 1999, no 
dangles

−0.27 (0.55) −0.99 (0.22) −0.63 (0.58)

Vienna 2, no dangles −0.24 (0.47) −1.48 (0.26) −0.86 (0.72)

NUPACK 1999, no 
dangles

−0.88 (0.47) −1.42 (0.36) −1.15 (0.50)

NUPACK 1995, no 
dangles

−0.88 (0.47) −1.44 (0.35) −1.16 (0.51)

NUPACK 1999, 60 °C −1.72 (0.89) −1.13 (0.41) −1.42 (0.81)

Standard deviation of z-score over datasets in parentheses. The top-performing package for each 
is in bold.
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We wished to ascertain that the sequences in these datasets did not 
overlap with sequences that EternaFold had been trained on, so we 
also filtered these data using a windowed Levenshtein distance met-
ric at a cutoff of 60% sequence similarity. This removed 37% of the 
originally collected sequences for a dataset size of 8,734 sequences 
(Supplementary Table 10).

For 15 out of 31 datasets across all categories, EternaFold exhib-
ited the highest correlation coefficient (with P < 0.05, determined 
by 95% overlapping confidence intervals; Methods), and had the 
highest average z-score (Fig. 4b and Table 2). For the other 16 data-
sets, EternaFold was tied with other packages for having the highest 
correlation. EternaFold showed significant improvement (P < 0.05) 
in datasets from varying sources including RNAs probed in cell  
(5 of 7 in cell datasets), extracted from cells (6 of 8), in virion  
(1 of 3), extracted from viral particles (1 of 2) and with other modi-
fiers, including DMS (2 of 5) and icSHAPE (8 of 11). EternaFold was 
the top-scoring package (P < 0.05) in five of the six datasets of new 
SARS-CoV-2 data.

We were curious as to whether the differences in packages arose 
from consistent accuracy differences across all regions of these 
RNAs or from a net balance of increased and decreased accuracies 
at specific subregions of the RNAs, which might reflect particular 

motifs that are handled better or worse by the different packages. 
We calculated correlations along the length of example constructs—
the Zika ILM genome probed in virion45 (Fig. 4c), HEK293 mRNA 
for gene RPS27A, extracted from chromatin and probed ex vivo53 
(Fig. 4d)—and observed that EternaFold correlations generally 
demonstrated a fixed improvement across compared packages 
across all regions, supporting a consistent accuracy improvement 
by this package.

We also tested the ability of EternaFold to predict the thermo-
dynamics of binding of human Pumilio proteins 1 and 2 in a data-
set of 1,405 constructs54. EternaFold showed no significant increase 
or decrease in predictive ability (P > 0.05) when compared to 
CONTRAfold or ViennaRNA 2 at 37 °C (Extended Data Fig. 9a and 
Supplementary Table 11).

Discussion
In this work, we have established EternaBench, benchmark datas-
ets and analysis methods for evaluating package accuracy for two 
modeling tasks important in RNA structural characterization and 
design. These include (1) predicting unpaired probabilities, as mea-
sured through chemical mapping experiments, and (2) predicting 
relative stabilities of different conformational states, as exhibited in 
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riboswitch systems. Unlike in single secondary structure prediction 
tasks, we demonstrate that both widely used and state-of-the-art 
machine-learning algorithms demonstrate a wide range in perfor-
mance on these tasks. We averaged both rankings to acquire a final 
ranking of the tested external packages in Table 1.

We discovered that CONTRAfold 2, which inferred thermody-
namic parameters by feature representation in datasets of natural 
RNA secondary structures, performed best in this ranking and  

performed significantly better than Vienna RNAfold, NUPACK and 
RNAstructure, packages with parameters derived from thermody-
namic experiments9. The results were particularly notable since the 
probed RNA molecules were designed for two distinct tasks (chemi-
cal mapping and riboswitch binding affinities), with no relationship 
between these two sets of sequences and no relationship between 
the synthetic sequences and natural sequences. We further investi-
gated whether combining these tasks in a multitask-learning frame-
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Table 2 | Average z-score for each external RNA class

Viral genomic RNA SARS-CoV-2 genomic 
RNA

mRNA Synthetic RNA Average across all 
datasets

Number of datasets 8 6 9 8 31

EternaFold 1.29 (0.21) 1.65 (0.12) 1.26 (0.43) 0.75 (0.50) 1.21 (0.47)

CONTRAfold 0.61 (0.17) 0.38 (0.09) −0.10 (0.56) 0.27 (0.13) 0.27 (0.41)

RNAsoft BLstar 0.34 (0.23) 0.54 (0.24) 0.23 (0.31) −0.07 (0.19) 0.24 (0.32)

RNAstructure, 60 °C 0.10 (0.27) −0.25 (0.20) 0.32 (0.36) 0.21 (0.07) 0.12 (0.32)

ViennaRNA 2, 60 °C 0.04 (0.26) −0.25 (0.22) 0.37 (0.25) 0.18 (0.03) 0.11 (0.30)

ViennaRNA 2 −1.19 (0.30) −1.00 (0.16) −0.97 (0.43) −0.65 (0.32) −0.95 (0.37)

RNAstructure −1.20 (0.26) −1.06 (0.16) −1.11 (0.34) −0.70 (0.38) −1.02 (0.35)

Standard deviation of z-scores in parentheses. The top-performing package for each is in bold.
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work could improve performance. We found that models trained 
on four types of data—single structures, chemical mapping data 
and riboswitch affinities for an output protein with and without 
an input ligand—showed improved performance in predictions for 
held-out subsets of EternaBench datasets as well as improvements 
in datasets involving virus RNA genomes and mRNAs collected by  
independent groups.

The improved performance of CONTRAfold and RNAsoft—two 
packages developed by maximum likelihood training approaches—
was not obvious prospectively. Statistically learned packages could 
incorporate bias toward common motifs in the RNA structures that 
they were trained on and might overstabilize motifs simply due to 
their increased frequency rather than actual thermodynamic sta-
bility. Indeed, methods developed with a variety of more recent 
methodological advances, including machine learning from chemi-
cal mapping datasets (CROSS), deep learning methods for second-
ary structure prediction (SPOT-RNA), extended parameter sets 
(CONTRAfold-noncomplementary, CycleFold, MXfold) or accel-
erated folding packages (LearnToFold), demonstrated diminished 
performance in the EternaBench tasks (Extended Data Fig. 1a). It 
was surprising that well-developed and more widely used packages 
such as ViennaRNA and RNAstructure gave worse performances 
than CONTRAfold and RNAsoft across all tasks, but that predic-
tions from ViennaRNA and RNAstructure at 60 °C showed notable 
improvement over the default of 37 °C. This observation might be 
rationalized by discrepancies in ionic conditions used to measure 
these packages’ thermodynamic parameters, and the in vitro and 
in vivo conditions tested here.

We used the EternaBench datasets to train a thermodynamic 
model via multitask learning on secondary structure prediction, 
chemical mapping signal likelihood maximization and minimiz-
ing error for riboswitch protein-binding prediction. The resulting 
model, termed EternaFold, performed best across 31 external data-
sets in four categories of natural and synthetic RNAs (Table 2) in a 
variety of cellular contexts, including RNAs probed in and extracted 
from cells and viral particles. It was not obvious that a model 
trained on datasets collected in vitro would demonstrate improve-
ment on the variety of contexts for which we collected datasets. 
Although many factors influence RNA structure in cells beyond 
thermodynamic base pairing55, this demonstrates that existing 
natural RNA datasets are indeed capable of discriminating between 
ensemble-averaged base-pairing predictions and that accurate pre-
diction of chemical mapping signal presents an ensemble-aware tar-
get for RNA secondary structure algorithm improvement.

The improvements from multitask training in EternaFold indi-
cated that the nearest-neighbor model encoded in CONTRAfold 
had sufficient representational capacity to gain improvement on 
the chemical mapping and riboswitch prediction tasks. A notable 
area of algorithm development and potential improvement is the 
systematic evaluation of structure prediction methods that incor-
porate structure mapping data8,55,56. We implemented data-driven 
folding in EternaFold and tested on a collection of 13 structured 
RNAs as well as three other independent datasets. We found that 
EternaFold-SHAPE resulted in the highest mean Mathews cor-
relation coefficient (MCC) over all these datasets (0.842), but 
this improvement was not statistically significant over several 
other algorithms in use for SHAPE-directed folding, such as 
SHAPEknots57 and the heuristic developed by Zarringhalam et al.58. 
implemented in ViennaRNA (mean MCCs of 0.820 and 0.830, 
respectively, Extended Data Fig. 9c and Supplementary Table 12), 
indicating potential for improvement. Another limitation of the 
resulting EternaFold algorithm is that it does not contain distinct 
terms for entropy, enthalpy and ionic concentrations. Future work 
creating temperature and salt-dependent models may benefit from 
analogous ensemble-aware fitting procedures collected at vary-
ing temperatures and ionic concentrations. Further improvements 

in modeling may arise from applying more sophisticated graph-59 
and language-based60 architectures to predicting RNA thermody-
namics. Further investigations will also be necessary to improve 
performance and aspects of the model that need to be expanded, 
which may include noncanonical pairs12, more sophisticated treat-
ment of junctions61, next-nearest-neighbor effects14 and chemically 
modified nucleotides62. Orthogonal 3D structure methods such as 
nuclear magnetic resonance spectroscopy63 and cryogenic-electron 
microscopy64 will likely be instrumental to these pursuits. Taken 
together, the datasets presented here serve as an important starting 
point for evaluating and improving future RNA structure prediction 
algorithms.
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Methods
The algorithms evaluated in this work model secondary structure in the following 
manner. Given a model Θ, which is composed of a set of structural features {θ}, the 
partition function of an RNA sequence x is computed as

Z(x|Θ) =
∑

s∈{S}

∑

k∈s

exp
(

−
ΔG (θk)

kBT

)

, (1)

where ΔG(θk) is the free energy contribution of structural feature k, kB is 
Boltzmann’s constant and T is temperature. Z represents a sum over the set of 
all possible structures {S} (ref. 65). From this expression, the probability of any 
particular structure s is defined as

P(s|x, Θ) = Z−1 ∑

k∈s

exp
(

−
ΔG (θk)

kBT

)

. (2)

Chemical mapping prediction theoretical basis. Structure prediction algorithms 
are able to estimate the ensemble-averaged probability that a nucleotide is paired 
or unpaired. Let P(i : j|x, Θ) be the probability of bases i and j being paired, given 
sequence x and model Θ. For simplifying notation, we continue with implicit x and 
Θ, that is, P (i : j|x, Θ) = P(i : j). This is computed as

P(i : j) =
∑

si:j∈{S}

P(si:j), (3)

where si:j denotes a structure containing the base pair i:j, and {S} is the full set of 
possible structures. These posterior probabilities are analytically calculated by all 
the algorithms tested here. The probability of any single base being unpaired can be 
computed as

P(i unpaired) = 1 −
∑

j
P(i : j). (4)

The relationship between the probability of a nucleotide being unpaired and 
its experimentally measured reactivity has served as a locus for efforts to improve 
structure prediction of RNA constructs incorporating chemical mapping data 
from those constructs, and several functional forms have been used to describe the 
relationship between unpaired probability and chemical mapping reactivity27,66,67. 
In this work, we use the linear Pearson correlation coefficient between unpaired 
probability and experimentally measured reactivity as a measure of model quality. 
In the following, we describe the simple model under which this linear assumption 
holds. We write the probability that nucleotide i (nti) is modified at time t as

P (nt i modified, time t) = 1 − e−kmod(i)t, (5)

where kmod(i) is the rate of modification for nucleotide i. The measured chemical 
modification signal is an ensemble population average, where the time exposure of 
the ensemble to the modifier has been limited to aim to achieve ‘single-hit kinetics’ 
with single-hit frequency, so that the degree of modification in experiment is 
proportional to the rate of modification68. In other words, because kmod(i)t ≪ 1, we 
can approximate

P (nt i modified, time t) ≈ kmod (i) t ∝ kmod(i). (6)

This expression assumes that each RNA molecule is not heavily modified, such 
that kmod(i) for each nucleotide is independent of the modification state of other 
nucleotides. If we assume that the timescale of chemical modification is much 
slower than the timescale of fluctuation between structural ensemble states, then 
we may write the overall modification rate for each nucleotide i as averaged over 
the equilibrated structure ensemble of the RNA,

kmod (i) =
∑

s∈{S}

P (s) kmod(i|s) (7)

If we consider a simplest two-state model for each nucleotide, with modification 
rate kpr if paired and a rate kunp if unpaired, then this reduces to

kmod (i) = kunpP (i unpaired) + kprP (i paired)

= kpr + (kunp − kpr)P (i unpaired) ,
(8)

which demonstrates that under this simple model, the modification rate is linear 
with respect to P(unpaired). The model above is limited in its assumption of 
two states and does not account for reactivity effects caused by sequence and 
local environment. For instance, Hoogsteen conformations in G–A and G–G 
mismatches expose the Watson–Crick faces of purine nucleobases, resulting in 
higher DMS reactivity69. A Spearman rank correlation (Extended Data Fig. 1c), 
which will be more dominated by relative rankings, results in a similar  
overall ranking.

Chemical mapping data. Chemical mapping data for the Eterna Cloud Lab 
experiments were downloaded from the RNA Mapping DataBase (RMDB)28 and 
processed with RDATKit (https://ribokit.github.io/RDATKit/). The RNA was 
probed with the MAP-seq protocol with a coloaded standard molecule (P4-P6-2HP 
RNA) to enable normalization, as described in ref. 70 measurements were carried 
out at ambient temperatures (24 °C) with 10 mM MgCl2 and 50 mM Na-HEPES, 
pH 8.0. Data were processed using MAPseeker71 with standard settings.

Within each chemical mapping dataset, CD-HIT-EST72 was used to filter 
sequences with greater than 80% redundancy (excluding a shared 3′ primer 
binding site). From each sequence cluster identified, the sequence with the highest 
signal-to-noise ratio from chemical mapping experiments was selected as the 
representative sequence. These datasets ranged in size from 605 (round 15) to 
3,378 constructs (round 23), with a median size of 1,577; after filtering, they ranged 
from 101 (round 12) to 1,088 (round 1), with a median size of 562 (Extended 
Data Fig. 3 and Supplementary Table 2). The filtered 24 datasets comprised 
12,711 individual constructs, and distributions of GC content, average sequence 
length and number of loops in the target structures were not significantly affected 
(Extended Data Fig. 3).

Nucleotides with reactivities less than or equal to zero or greater than the 95th 
percentile of the dataset were removed from analysis. Cloud Lab round 2 was 
filtered to exclude experiments that had FMN present, which pertained to Eterna 
Cloud Lab challenges to design riboswitches. Adenosine nucleotides preceded 
by six or more As were also removed due to evidence of anomalous reverse 
transcription effects in such stretches73. External chemical mapping datasets were 
obtained from the supplementary information from the papers and processed 
similarly (outliers, nucleotides in poly-A stretches removed).

Analyzing package performance by the Cloud Lab project. We wished to 
understand whether factors such as target structure complexity, GC content and 
sequence length influenced package predictions. We performed the same package 
ranking analysis, grouping constructs by their projects instead of by the 24 datasets. 
Because grouping constructs into projects sometimes resulted in a small number 
of nucleotides over which to calculate correlations, we omitted package predictions 
where the standard error of the calculated Pearson correlation was greater than 
0.05. This resulted in a total of 612 project groupings remaining, names and 
calculated metrics for which are contained in Supplementary Table 4.

We found weak correlation between the per-project z-score of the 
top-performing package, CONTRAfold 2 and GC content (Spearman R = 0.15), 
sequence length (0.07) and total loops in the target structure (R = 0.16). There were 
also weak correlations between the average Pearson correlation for all packages 
and GC content (Spearman R = 0.10), sequence length (R = −0.24) and total target 
structure loops (R = −0.01) (Extended Data Fig. 1d).

Riboswitch activity prediction theoretical basis. A thermodynamic framework 
discussed in greater detail in ref. 17 allows us to relate the observed binding affinity 
of an output molecule to the relative populations of a riboswitch molecule in 
different states. In the absence of input ligand, we may relate the probability that 
a riboswitch adopts a structural feature that can bind its output, P(out), to an 
experimentally measured binding affinity, K−lig

obs , via the relative ratios of both 
values to those of a reference state:

K−lig
obs
Kref
obs

=
Pref (out)
P (out) ≡ K−lig

MS2 . (9)

We selected the MS2 hairpin aptamer as a reference state whose probability 
of forming, Pref(out), can be estimated by the secondary structure algorithm. For 
each separate independent experimental dataset, Kref

obs is estimated as the strongest 
affinity measured (Extended Data Fig. 10a). We refer to the estimated ratio P

ref
(out)

P(out)  
as K−lig

MS2  in the main text, as the equilibrium constant of forming the MS2 hairpin 
as normalized to the reference state.

Although there may be error introduced in which experimental point is 
selected to be Kref

obs, relative error should be constant when comparing packages 
on the same dataset. To compare packages, we therefore report the correlation 
between log(K±lig

obs /Kref
obs) and log(K±lig

MS2 ), which excludes the effect of selection  
for Kref

obs.
In general, the probability of an RNA molecule forming any structure motif is 

computed as

P(motif|x, θ) =
∑

smotif∈{S}

P(smotif), (10)

where smotif denotes a structure containing that motif. Computing this probability 
requires a dynamic programming routine that is able to constrain the sampled 
structure space to only structures containing that motif to estimate a so-called 
‘constrained-partition function’. However, not all secondary structure algorithms 
have implemented constrained-partition function estimation. Because the 
MS2 aptamer is a hairpin, we can approximate its probability of forming as 
the probability of forming the final base pair of the MS2 hairpin aptamer, an 
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experimental observable that can be estimated by all the packages tested here. 
Thus, our prediction of interest is

K−lig
pred

Kref
pred

=
Pref (i : j)
P (i : j)

, (11)

where i and j are the nucleotides forming the terminal base pair in the MS2 aptamer 
stem. The value Pref(i:j) is accordingly computed as the probability of closing the 
base pair in the reference sequence. We confirmed that calculations using equations 
(9) and (11) agree for Vienna, RNAstructure and CONTRAfold packages.

Predicting protein-binding affinities with input ligand bound. The estimation 
of K+lig

fold  follows similarly to the above but accounts for increased thermodynamic 
weights for states that correctly display the aptamer of the input small molecule 
ligand. Therefore, it cannot be estimated via the simplified single base-pair 
calculation and must make use of constrained-partition functions (equation (10)).

Analogously to equation (9), we define K+lig
MS2  as

K+lig
MS2 =

K+lig
obs
Kref
obs

(12)

which is calculated as

K+lig
MS2 =

Z + bZlig

ZMS2 + bZlig,MS2
(13)

where Zlig is the constrained-partition function of the state including the ligand 
aptamer (calculated in each algorithm as described in the next section), ZMS2 is 
the partition function for the state including the MS2 aptamer and Zlig,MS2 is the 
partition function of the state including both ligand aptamer and MS2 aptamer. 
The constant b =

[ligand]
Kd,ligand

 is the Boltzmann weight of binding the ligand when the 
bulk concentration of the ligand is [ligand]. Values used for calculating b are in 
Supplementary Table 14. Representative predictions of K+lig

MS2  versus experimental 
K+lig
MS2  values are in Extended Data Fig. 10b.

Riboswitch data. Riboswitch data were downloaded from supplementary 
materials from refs. 33,34. In brief, measurements were carried out at 37 °C in 
100 mM Tris-HCl, pH 7.5, 80 mM KCl, 4 mM MgCl2, 0.1 mg ml−1 BSA, 1 mM DTT, 
0.01 mg ml−1 yeast tRNA, 0.01% Tween-20 and varying concentrations of small 
molecule ligand (FMN, theophylline, tryptophan) and MS2 coat protein. Datasets 
were filtered to include only constructs with more than 50 copies of the sequence 
represented in the RNA-MaP experiment, constructs that included the canonical 
MS2 and small molecule aptamers, and filtered using CD-HIT-EST72 to remove 
sequence redundancy over 80%. As per the CD-HIT-EST algorithm default, the 
longest sequence per cluster was maintained. If all sequences were the same length, 
the first sequence was used. After filtering, the riboswitch datasets comprised 7,228 
constructs in total. Scripts to replicate data processing from refs. 33,34. are included 
in the EternaBench software repository.

For all constructs as well as the reference MS2 hairpin construct, we 
performed Klig

MS2 estimations including a flanking hairpin included in the 
Illumina array experiments, described in ref. 33. As an example, the full reference 
MS2 hairpin construct, as well as the constraint used for estimating Kref

pred with 
constrained-partition-function-based estimation, is reproduced below. The 
MS2 hairpin construct is underlined and the nucleotides in the base used for 
base-pair-based prediction are bold.

Sequence: GGGUAUGUCGCAGAAACAUGAGGAUCACCCAUGUAACUG
CGACAUACCC

Structure:...............(((((x((xxxx)))))))...............
The riboswitches in EternaBench-Switch are controlled by the small molecules 

FMN, tryptophan or theophylline. Motifs, concentrations and intrinsic Kd values 
used for K+lig

MS2  prediction, taken from refs. 33,34, are provided in Supplementary 
Table 14.

EternaFold multitask learning. The CONTRAfold11 loss function optimizes the 
conditional log-likelihood of ground-truth structure s(i) given sequence x(i) over 
dataset D:

LCONTRAfold = LStruct(θ) =
∑

i∈D
logP(s(i)|x(i), {θ}). (14)

In CONTRAfold-SE36, the authors include a term to also use chemical  
mapping data to optimize structure prediction by maximizing the likelihood  
of observing the included chemical mapping dataset. The loss function then 
becomes

LCONTRAfold−SE = LStruct + wCMLCM,

LCM(θ,ϕ) =
∑

i∈D
log

∑

s
P(s, d|x, {θ},ϕ), (15)

where d are the chemical mapping datapoints from construct x. CONTRAfold-SE 
fits reactivity signals to gamma distributions for each nucleotide type (A, C, G, U) 
and whether the base is paired or unpaired, parameters for which are represented 
by ϕ.

We further included a term to minimize the mean squared error of predicted 
logK−lig

fold  and logK+lig
fold :

LMS2 = w−lig

[

logKexp
MS2(−lig) − logKpred

MS2(−lig)
]2

+w
+lig

[

logKexp
MS2(+lig) − logKpred

MS2(+lig)
]2

.
(16)

The full loss function for EternaFold is thus written as

LEternaFold = LStruct + LCM + LMS2. (17)

The hyperparameters wCM, w−lig, w+lig, corresponding to the relative 
weights placed on different data types, were selected through a grid search 
on the holdout sets STRAND-holdout, EternaBench-CM-holdout and 
EternaBench-Switch-holdout (data not shown). The final values used for training 
were wCM = 0.5, w−lig = 30, w

+lig = 30.

Dataset selection for training and testing EternaFold. Single-structure data. For 
training EternaFold, we used the S-Processed dataset37 train and holdout sets used 
previously in training CONTRAfold 2 and RNAsoft10, to keep the same datasets 
consistent with these algorithms. However, we found that the S-Processed test set 
had 68 and 52% redundancy to the S-Processed train and holdout sets, respectively, 
using CD-HIT-EST-2D. We therefore created a new secondary structure test set 
by filtering the more recent ArchiveII dataset38 for constructs with <80% sequence 
similarity to any sequence across all three data types used in EternaFold training. 
We also evaluated EternaFold performance on structure prediction for the 
S-Processed test set, and found qualitatively similar results to the ArchiveII-NR test 
set (Extended Data Fig. 9b, compare to Fig. 3b).

Cloud Lab chemical mapping data. We used rounds 3, 4, 5, 7, 10 and 11 as training 
and holdout data. This was to be consistent with the training data used in 
CONTRAfold-SE36, and to reserve rounds 0 and 1 as test rounds, given their large 
size and high signal-noise ratio. GC content, sequence length, total loops in the 
target structure and signal/noise ratio were equivalent across train, holdout and 
test rounds (Extended Data Fig. 3c).

Riboswitch data. We partitioned the RiboLogic dataset into our training, holdout 
and test sets due to the high signal-noise ratio and diversity of structures, 
subdividing the riboswitches so that each split contained identical fractions of 
FMN-, theophylline- and tryptophan-responsive riboswitches. This left the rest of 
the Eterna riboswitch rounds as test sets (Extended Data Fig. 3d).

Test dataset filtering. To filter test datasets based on sequence similarity to the 
EternaFold training data, we implemented a ‘windowed Levenshtein distance’. We 
calculated Levenshtein distance across sliding windows of the longer sequence that 
are the length of the shorter sequence. A sequence was counted as redundant at X% 
cutoff if any window had a Levenshtein edit distance smaller than (100-X)% the 
window size. Supplementary Table 10 contains test dataset sizes before and after 
filtering at a windowed Levenshtein distance cutoff of 80, 60 and 40%. As a point 
of comparison, uniformly distributed, randomly generated 50-mers, 100-mers and 
200-mers were calculated to have average Levenshtein distances of 42, 44 and  
45%, respectively.

Evaluating base pair probabilities for external datasets. For comparing 
P(unpaired) calculations to natural RNAs, many of which are thousands of 
nucleotides long, we compared several practices for calculating, which includes 
predicting base pair probabilities from overlapping windows, constraining the 
nucleotides under consideration using a beam search algorithm implemented in 
LinearPartition74, and conventional folding of the entire RNA. Windows of length 
300, 600, 900 and 1,200 with 25-nt overlap. Results from length 900 are shown  
in the main text, although results are similar for other window sizes  
(Extended Data Fig. 8a).

SHAPE-directed folding evaluation. We implemented SHAPE-directed folding in 
EternaFold in the following way: for an RNA sequence x with length L, let dj be the 
probing signal at nucleotide j in the sequence. The joint probability for structure s 
and the vector of reactivities d is given as

P (s, d|x;θ,ϕ) = P (s|x;θ)
L
∏

j=1
P
(

dj|xj, s;ϕ
)κ (18)

where θ represents the learned set of thermodynamic parameters and ϕ represents 
the parameters learned for eight gamma distributions defining the reactivities of 
A,C,G,U being paired or unpaired (Extended Data Fig. 9d), and κ is a parameter 
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specifying the relative weight of the evidence. Predicting a maximum likelihood 
structure given an observed reactivity vector d, is calculated as

sMLE = argmax
ŝ∈{S}

P(s, d|x;θ,ϕ). (19)

The maximum expected accuracy structure is calculated using the same 
SHAPE-weighted partition function and the expression

smea = argmax
ŝ

Es
[

Acc
(

ŝ, s∗
)]

(20)

where Acc (̂s, s∗) is the pseudo-accuracy measure described in detail in ref. 11 and s* 
is the (unknown) true structure.

When the EternaFold parameters were initially trained, κ was set to 1. To fit 
κ in the context of SHAPE-directed folding, we used the SHAPEknots training 
dataset and calculated the MCC. This dataset consists of 16 RNAs with known 3D 
structure and was used similarly to tune parameters in SHAPEknots57 and for the 
default settings of three formulas present in the ViennaRNA package. We refer to 
this model as EternaFold-SHAPE.

We compared EternaFold-SHAPE to SHAPEknots57, RNAstructure  
with structure probing (but not pseudoknots as in SHAPEknots), three  
algorithms implemented in ViennaRNA from Washietl66, Deigan50 and 
Zaringhalam58, as well as RNAstructure, ViennaRNA and EternaFold 
predictions without reactivity data. We also evaluated the algorithms on the 
SHAPEknots-TEST dataset, as well as datasets from Chen and Kappel that 
included DMS probing data for RNAs with secondary structures validated by 
other methods (Extended Data Fig. 9c, full dataset in Supplementary Table 12). 
In addition, 13 further RNA constructs were probed by SHAPE and DMS as 
described in the following section.

We calculated mean MCC across datasets and averaged these values. We 
found that EternaFold+SHAPE resulted in the highest mean MCC over test 
constructs of 0.842, but this was not statistically significant (evaluated as 
P < 0.05) over SHAPEknots (MCC = 0.818), EternaFold without SHAPE data 
(MCC = 0.814), ViennaRNA with the heuristic developed by Zarringhalam 
(MCC = 0.828), RNAstructure with SHAPE data (MCC = 0.803) or Vienna 
RNAfold 2 (MCC = 0.801). Statistical significance was evaluated using a two-sided 
t-test for related values. Supplementary Table 12 contains predicted SHAPE- or 
DMS-directed MFE structures for the dataset in all evaluated algorithms.

SHAPE and DMS probing by capillary electrophoresis of 13 structured RNAs 
for SHAPE-directed folding evaluation. DNA template preparation. DNA 
templates were designed to include the 20-nt T7 RNA polymerase promoter 
sequence followed by a sequence encoding the desired RNA flanked by two 
hairpins used to normalize the resulting signal70. Double-stranded templates were 
prepared by the extension of 60-nt DNA oligomers (Integrated DNA Technologies) 
with Phusion polymerase, using the following thermocycler protocol: denaturation 
for 30 s at 98 °C, 35 cycles of denaturation for 10 s at 98 °C, annealing for 30 s at 
60 to 64 °C, extension for 30 s at 72 °C, final extension for 10 min at 72 °C and 
cooling to 4 °C. DNA samples were purified with AMPure XP beads (Beckman 
Coulter), following the manufacturer’s instructions. Sample concentrations were 
estimated based on ultraviolet absorbance at 260 nm measured on Nanodrop 
spectrophotometer. Verification of template length was accomplished by 
electrophoresis of all samples and 10- and 20-bp ladder length standards (Thermo 
Scientific O’RangeRuler SM1313 and SM1323) in 4% agarose gels (containing 
0.5 mg ml−1 ethidium bromide) and 1× TBE (100 mM Tris, 83 mM boric acid, 1 mM 
disodium EDTA).

Preparation of RNA templates. In vitro transcription reactions were carried out in 
40 µl volumes with 10 pmol of DNA template, using the TranscriptAid T7 High 
Yield Transcription Kit (Thermo Fisher). Reactions were incubated for 3 h at 37 °C, 
followed by degradation of DNA template with 2 µl of DNase I at 37 °C for 30 min. 
RNA samples were purified using the Zymo RNA Clean and Concentrator-25 kit 
(Zymo Research). Concentrations were measured by absorbance at 260 nm on 
Nanodrop spectrophotometers.

SHAPE mapping. 1.2 pmol of purified RNA was added to 2 µl of 500 mM 
Na-HEPES buffer (pH 8.0) and denatured at 90 °C for 3 min. The reaction was 
then cooled down to room temperature over 10 min. Then 2 µl of 100 mM MgCl2 
was added, followed by incubation at 50 °C for 30 min. The sample was cooled 
down to room temperature over 20 min before addition of 5 µl of nuclease-free 
water (negative control) or 1-methyl-7-nitroisatoic anhydride (8.48 mg ml−1 of 
dimethylsulfoxide) followed by incubation at room temperature for 15 min and 
brought to a final volume of 20 µl with nuclease-free water. The SHAPE-RNA 
sample was further purified by incubating the sample with 5.0 µl of Na-MES, 
pH 6.0, 3.0 µl of 5 M NaCl, 1.5 µl of Oligo dT bead, 0.25 µl of 10 µM FAM-A20-Tail2 
and brought to a final volume of 10 µl with nuclease-free water. The reaction 
mixture was incubated at room temp for 15 min, pulled down by 96-post magnetic 
stand for 10 min, washed twice with 70% ethanol and allowed to dry, before adding 
2.5 µl of nuclease-free water.

DMS mapping. 5 µl of RNA stock in H2O containing 12.5 pmol of RNA was mixed 
with 5 µl of 1× TE (Ambion) and denatured by incubating at 95 °C for 2 min, and 
then cooling on ice for 1 min. Then 12.5 µl of 2× buffer (600 mM Na-cacodylate, 
pH 7.0 and 20 mM MgCl2) was added, and the RNA was incubated at 37 °C for 
30 min to fold. RNAs were modified by adding 2.5 µl of DMS (1.7 M in 100% 
ethanol); for no-modification controls, 2.5 µl of 100% ethanol was added instead. 
Reactions were incubated at 37 °C for 6 min, and then quenched with 25 µl of 
2-mercaptoethanol.

Preparing samples for capillary electrophoresis. Compementary DNA (cDNA) was 
prepared from in-line probing and SHAPE-RNA samples as follows (note that 
above procedures leave RNA bound to FAM-A20-Tail2 reverse-transcription 
primers that are in turn bound to Oligo dT beads). Next, 2.5 µl of purified RNA 
was added to a reaction mixture containing 1× First Strand buffer (Thermo 
Fisher), 5 mM dithiothreitol (DTT), 0.8 mM dNTPs, 0.2 µl of SS-III RTase (Thermo 
Fisher) to a final volume of 5.0 µl. The reaction was incubated at 48 °C for 40 min, 
and stopped with 5 µl of 0.4 M sodium hydroxide. The reaction was then incubated 
at 90 °C for 3 min, cooled on ice for 3 min and neutralized with 2 µl of quench mix 
(2 m of 5 M sodium chloride, 3 ml of 3 M sodium acetate, 2 ml of 2 M hydrochloric 
acid). For four cDNA reference ladders, each of four ddNTPs (GE Healthcare 
27-2045-01) with a ddNTP:dNTP ratio of 1.25 (0.1:0.08 mM) was used in the 
reverse-transcription reaction.

cDNA was pulled down on a 96-post magnetic stand and washed twice 
with 100 μl of 70% ethanol. To elute the bound cDNA, the magnetic beads 
were resuspended in 10.0625 μl of ROX350 (Thermo Fisher Scientific 401735)/
Hi-Di (0.0625 μl of ROX350 ladder in 10 μl of Hi-Di formamide) and incubated 
at room temperature for 20 min. The cDNA was further diluted by 1/3 and 
1/10 in ROX350/Hi-Di and samples loaded onto capillary electrophoresis 
sequencers (ABI-3730) on capillary electrophoresis services rendered by ELIM 
Biopharmaceuticals. Capillary electrophoresis data were analyzed using the 
HiTRACE v.2.0 package (https://github.com/ribokit/HiTRACE), following the 
recommended steps for sequence assignment, peak fitting, background subtraction 
of the no-modification control, correction for signal attenuation and reactivity 
profile normalization.

Error and significance estimation. We estimated confidence intervals on reported 
Pearson correlation values by bootstrapping the datapoints under consideration 
and reporting the 2.5th and 97.5th percentile over 1,000 rounds of bootstrapping. 
Reported standard error values are estimated by calculating the standard deviation 
across bootstrapping rounds. We inferred significance in differences between 
package correlations by analyzing overlap between 95% confidence interval 
estimates75,76. All code to reproduce significance analyses is included in the 
EternaBench repository.

Package predictions. All base-pairing probability calculations and 
constrained-partition function calculations were performed using standardized 
system calls through Python wrappers developed in Arnie (www.github.com/
DasLab/arnie). Example command-line calls for each package option evaluated are 
provided in Supplementary Table 1. Datasets were processed with Pandas (https://
github.com/pandas-dev/pandas) and visualized with Seaborn (https://seaborn.
pydata.org/).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All datasets used here for evaluation are available at https://www.github.com/
eternagame/EternaBench. The original Cloud Lab datasets are available at the 
RNA Mapping Database28 under accession IDs ETERNA_R00_0000 (round 00), 
ETERNA_R69_0000 (round 01), ETERNA_R70_0000 (round 02), ETERNA_
R71_0000 (round 03), ETERNA_R72_0000 (round 04), ETERNA_R73_0000 
(round 05), ETERNA_R74_0000 (round 06), ETERNA_R75_0000 (round 07), 
ETERNA_R76_0000 (round 08), ETERNA_R77_0002 (round 09), ETERNA_
R78_0001 (round 10), ETERNA_R79_0001 (round 11), ETERNA_R80_0001 
(round 12), ETERNA_R81_0001 (round 13), ETERNA_R82_0001 (round 14), 
ETERNA_R83_0003 (round 15), ETERNA_R84_0000 (round 16), ETERNA_
R85_0000 (round 17), ETERNA_R86_0000 (round 18), ETERNA_R87_0001 
(round 19), ETERNA_R89_0000 (round 20), ETERNA_R91_0000 (round 21), 
ETERNA_R92_0000 (round 22) and ETERNA_R94_0000 (round 23). A list of 
RMDB accession IDs or URLs corresponding to the data used for benchmarking 
SHAPE-guided folding is in Supplementary Table 12. Source data are provided with 
this paper.

Code availability
The datasets used here for evaluation, as well as scripts and Python notebooks for 
reproducing the filtered datasets and the chemical mapping and riboswitch affinity 
calculations described here, are available at https://www.github.com/eternagame/
EternaBench. The code for training EternaFold is available  
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at https://www.github.com/eternagame/EternaFold. A server to run EternaFold is 
available at https://eternafold.eternagame.org/. The EternaFold code is  
derived from the CONTRAfold-SE36 codebase, which is derived from the 
CONTRAfold11 codebase.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Extended analysis of package rankings based on Eterna Cloud lab chemical mapping data. a) Pearson correlation of all package 
options tested on Cloud Lab Round 1, which was also a holdout test set for EternaFold training studies. Mean ± SEM of Pearson correlation calculated via 
bootstrapping, n = 1088 independent constructs. b) ViennaRNA 2, NUPACK 1999, and RNAstructure show maximum Pearson correlation to chemical 
mapping data at 60 °C, 40 °C, and 60 °C respectively for Eterna Cloud Lab Round 1. Mean ± SEM of Pearson correlation calculated via bootstrapping, 
n = 1088 independent constructs. c) Ranking across Cloud lab dataset rounds using Spearman rank correlation (compare to Fig. 1e, f). Error bars represent 
95% confidence interval of the mean obtained over 1000 iterations of bootstrapping over 24 independent experiments, n = 12,711 independent constructs 
total. d) (Top) Mean Pearson correlations, calculated over each project (as opposed to each dataset), compared to sequence metrics of the Cloud 
Lab projects. The strongest correlation to mean correlation was Signal/Noise ratio. (Bottom) Z-score of CONTRAfold-2, calculated over each project, 
compared to sequence metrics of the Cloud Lab projects.
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Extended Data Fig. 2 | Example chemical mapping predictions from all package options tested. Example heatmaps of all package options tested for the 
‘Aires’ project (compare to Fig. 1c).
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Extended Data Fig. 3 | Summary statistics for EternaBench datasets before and after performing CD-HIT filtering. a) Distributions of sequence 
properties for chemical mapping data (n = 38,846 before filtering and n = 12,711 independent constructs after filtering, collected across 24 experiments), 
and B) riboswitch constructs (n = 19,016 independent constructs and n = 7,228 independent constructs after filtering, collected in 12 experiments). 
Dataset statistics of EternaBench train and test experimental rounds for (c) Chemical Mapping (Train set: n = 3,476 independent constructs collected 
over 6 experiments. Test set: n = 1,492 independent constructs collected over 18 experiments) and (d) Riboswitch data (Train set: n = 2,508 independent 
constructs collected over 3 experiments. Test set: n = 4,018 independent constructs collected over 9 experiments). Center dot, median; box limits,  
upper and lower quartiles; whiskers, 1.5x interquartile range. For all subplots: center dot, median; box limits, upper and lower quartiles; whiskers,  
1.5x interquartile range.
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Extended Data Fig. 4 | Overview of all Cloud Labs data. Example reactivity and p(unpaired) heatmaps from example packages for all 24 Cloud Lab 
rounds. Data have been filtered to exclude nucleotides with reactivity equal to zero or less.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Extended analysis of package rankings based on riboswitch activity predictions. a) Example set of states for a riboswitch that 
toggles binding of the fluorescent MS2 protein as an output, controlled by binding the small molecule FMN. The equilibrium constant for forming the 
MS2 aptamer in the absence of ligand, K−lig

MS2, is estimated using the probability of forming the closing base pair for all packages. b) Riboswitch Z-scores 
stratified by input ligand type. Error bars represent standard error on Z-score as calculated by bootstrapping from 6402, 440, and 386 constructs 
collected over 8, 2, and 2 experiments, respectively. c) Overall ranking K−lig

MS2 calculations using the calculated Spearman correlation (no linear assumption, 
compare to Fig. 2b). Evaulating the Pearson Correlation of package calculations for (d) K+lig

MS2 as well as (e) riboswitch Activation Ratio results in a similar 
ranking. In C, D, E, error bars represent 95% confidence interval of the mean obtained over 1000 iterations of bootstrapping across datasets, n = 7,228 
independent constructs collected over 12 experiments.
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Extended Data Fig. 6 | Example riboswitch predictions from all package options tested. Scatterplots for all options tested for Ribologic dataset. Black 
solid line indicates line of best fit.
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Extended Data Fig. 7 | Example riboswitch predictions across all datasets. Scatterplots for representative packages on all riboswitch datasets. Black solid 
line indicates line of best fit.
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Extended Data Fig. 8 | Effect of window size and Levenshtein distance filtering for independent chemical mapping test set. a) Calculating p(unpaired) 
using varying sliding windows of size 300, 600, and 1200 does not change the overall ranking obtained across datasets, compare to Fig. 4b, which was 
calculated for window size 900 (n = 31 datasets for all). Package ranking is also consistent for a redundancy cutoff of 40% b) (n = 16 datasets included 
after filtering based on 40% cutoff by windowed Levenshtein distance). Error bars in A and B represent 95% confidence interval for the mean Z-score as 
calculated by bootstrapping across respective number of datasets for each.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Extended data corresponding to EternaFold development and test set evaluation. a) Comparing Vienna, CONTRAfold, and 
EternaFold predictions in predicting free energy of PUM binding. i) Replication of ddG_exp for both PUM WT and mutant binding from (Becker, 2019). 
The same calculation in Vienna 2 at 37 °C shows lower Root-mean-squared error (RMSE) (ii), but higher RMSE at 60 °C (iii). CONTRAfold 2 shows no 
improvement over Vienna at 37 °C (iv), but EternaFold shows modest improvement over both (v). b) Package performance for the S-Processed test set is 
qualitatively similar to results on the ArchiveII-NR test set (cf. Figure 3b). Error bars represent 95% confidence interval of the mean calculated with 1000 
iterations of bootstrapping over n = 6 independent datasets, which contain 974 independent constructs total. c) Evaluating SHAPE- and DMS- directed 
folding. Error bars represent 95% confidence interval of the mean calculated with 1000 iterations of bootstrapping over n = 5 independent datasets of 
RNAs with known secondary structures,, which contain 47 constructs total. d) Potentials learned from EternaFold training and used in SHAPE-directed 
structure prediction.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Extended data corresponding to predicting riboswitch affinity in the presence of small molecule ligands. a) log K−lig
MS2 and 

log K+lig
MS2 values of riboswitches included in filtered datasets. Black starred datapoint indicates reference value used for Krefobs. b) Estimates for the RiboLogic 

FMN dataset for log K+lig
MS2 in all package options able to make estimates with constrained-partition functions.
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Data analysis Mapseeker v2.0 (https://github.com/eternagame/MAPseeker) was used to process RNA MAP-seq "Cloud Lab" datasets. 
HiTrace was used to process "DeepChemicalProfiling" datasets. Requirement: MATLAB 2011a. 
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All datasets used here for evaluation are available at https://www.github.com/eternagame/EternaBench. The original cloud lab datasets are available at the RNA 
Mapping Database28 under accession IDs ETERNA_R00_0000 (Round 00), ETERNA_R69_0000 (Round 01), ETERNA_R70_0000 (Round 02), ETERNA_R71_0000 
(Round 03), ETERNA_R72_0000 (Round 04), ETERNA_R73_0000 (Round 05), ETERNA_R74_0000 (Round 06), ETERNA_R75_0000 (Round 07), ETERNA_R76_0000 
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(Round 13), ETERNA_R82_0001 (Round 14), ETERNA_R83_0003 (Round 15), ETERNA_R84_0000 (Round 16), ETERNA_R85_0000 (Round 17), ETERNA_R86_0000 
(Round 18), ETERNA_R87_0001 (Round 19), ETERNA_R89_0000 (Round 20), ETERNA_R91_0000 (Round 21), ETERNA_R92_0000 (Round 22), ETERNA_R94_0000 
(Round 23). 
The riboswitch raw datasets are downloadable from the supporting information of Andreasson et al. PNAS (2022), at https://www.pnas.org/doi/10.1073/
pnas.2112979119. 
The "Deep Chemical Profiling" SHAPE and DMS test sets are available for download at https://github.com/DasLab/DeepChemicalProfiling. 
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datasets and chemical mapping datasets of natural RNAs, were taken from literature and therefore the sample size not determined.

Data exclusions Chemical mapping data was processed to remove nucleotides with reactivity over the 98th percentile of reactivity values, also called 
"Winsorization". 
Constructs probed in the context of small molecules were removed from the Cloud Lab datasets in order to only compare chemical mapping 
data in the context of standard buffer conditions. 
Nucleotides in stretches of polyA > 6 were also removed due to demonstrated reduced signal from polyA stretches.

Replication The algorithm rankings obtained in this work were evaluated over 24 independent structure mapping and 12 riboswitch datasets, as well as 
over more than 20 datasets collected from independent groups. Algorithm rankings replicated over all these contexts. 
Experimental replications were performed for the first cloud lab dataset, and the Deep Chemical Profiling data. This work did not include 
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groups.
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