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As of 29 February 2020 there were 79,394 confirmed cases 
and 2,838 deaths from COVID-19 in mainland China. Of these, 
48,557 cases and 2,169 deaths occurred in the epicenter, 
Wuhan. A key public health priority during the emergence 
of a novel pathogen is estimating clinical severity, which 
requires properly adjusting for the case ascertainment rate 
and the delay between symptoms onset and death. Using 
public and published information, we estimate that the over-
all symptomatic case fatality risk (the probability of dying 
after developing symptoms) of COVID-19 in Wuhan was 
1.4% (0.9–2.1%), which is substantially lower than both the 
corresponding crude or naïve confirmed case fatality risk 
(2,169/48,557 = 4.5%) and the approximator1 of deaths/
deaths + recoveries (2,169/2,169 + 17,572 = 11%) as of 29 
February 2020. Compared to those aged 30–59 years, those 
aged below 30 and above 59 years were 0.6 (0.3–1.1) and 5.1 
(4.2–6.1) times more likely to die after developing symptoms. 
The risk of symptomatic infection increased with age (for 
example, at ~4% per year among adults aged 30–60 years).

On 9 January 2020, the novel coronavirus SARS-CoV-2 was offi-
cially identified as the cause of the COVID-19 outbreak in Wuhan, 
China. One of the most critical clinical and public health questions 
during the emergence of a completely novel pathogen, especially 
one that could cause a global pandemic, pertains to the spectrum 
of illness presentation or severity profile. For the patient and clini-
cian, this affects triage and diagnostic decision-making, especially 
in settings without ready access to laboratory testing or when surge 
capacity has been exceeded. It also influences therapeutic choice 
and prognostic expectations. For managers of health services, it 
is important for rapid forward planning in terms of procurement 
of supplies, readiness of human resources to staff beds at different 
intensities of care and generally ensuring the sustainability of the 
health system through the peak and duration of the epidemic.

At the population level, determining the shape and size of the 
‘clinical iceberg’2,3, both above and below the observed threshold 
(in turn determined by symptomatology, care-seeking behavior and 
clinical access), is key to understanding the transmission dynamics 
and interpreting epidemic trajectories. Specifically, delineating the 
proportion of infections that are clinically unobserved under dif-
ferent circumstances is critical to refining model parameterization. 
In turn, estimates of both the observed and unobserved infections 
are essential for informing the development and evaluation of pub-
lic health strategies, which need to be traded off against economic, 
social and personal freedom costs. For example, drastic social dis-
tancing and mobility restrictions, such as school closures and travel 
advisories/bans, should only be considered if an accurate estimation 

of case fatality risk warrants these interventions, which seriously 
disrupt social and economic stability.

For a completely novel pathogen, especially one with a high (say, 
>2) basic reproductive number (the expected number of secondary 
cases generated by a primary case in a completely susceptible popu-
lation) relative to other recently emergent and seasonal directly 
transmissible respiratory pathogens4, assuming homogeneous mix-
ing and mass action dynamics, the majority of the population will 
be infected eventually unless drastic public health interventions are 
applied over prolonged periods and/or vaccines become available 
sufficiently quickly. Even under more realistic assumptions about 
mixing informed by observed clustering of infections within house-
holds and the increasingly apparent role of superspreading events 
(for example, the Diamond Princess cruise ship, Chinese prisons and 
the church in Daegu, South Korea)5,6, at least one-quarter to one-
half of the population will very likely become infected, absent dras-
tic control measures or a vaccine. Therefore, the number of severe 
outcomes or deaths in the population is most strongly dependent 
on how ill an infected person is likely to become, and this question 
should be the focus of attention.

We therefore extended our previously published transmis-
sion dynamics model4, updated with real-time input data and 
enriched with additional new data sources, to infer a preliminary 
set of clinical severity estimates that could guide clinical and public 
health decision-making as the epidemic continues to spread glob-
ally. Estimation of true case numbers—necessary to determine the 
severity per case—is challenging in the setting of an overwhelmed 
healthcare system that cannot ascertain cases effectively. Therefore, 
as in our prior work4, our approach has been to use a range of pub-
licly available and recently published data sources (numbered 1 to 8 
below) to build a picture of the full number of cases and deaths by 
age group. Briefly, because the healthcare structure has been over-
whelmed in Wuhan and milder cases were unlikely to have been 
tested, we used the prevalence of infection in travelers (both on 
commercial flights before 19 January and on charter flights from 29 
January to 4 February) to estimate the true prevalence of infection 
in Wuhan; we also used the Wuhan case numbers from only the first 
425 cases to estimate the growth rate of the epidemic (assuming that 
the ascertainment proportion was constant between 10 December 
2019 and 3 January 2020) (Fig. 1).

Specifically, we inferred the epidemiologic parameters listed 
in Extended Data Fig. 1 by fitting an age-structured transmission 
model to the following data:

	1.	 The epidemic curve of confirmed cases of COVID-19 in Wu-
han with no epidemiologic links to Huanan Seafood Wholesale 
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Market (which was postulated to be the index zoonotic source 
of the COVID-19 epidemic) between 10 December 2019 and 3 
January 2020 (Fig. 1 and Supplementary Table 1)7.

	2.	 The number of confirmed cases who departed from the Wuhan 
international airport to cities outside mainland China via air 
travel on each day between 25 December 2019 and 19 January 
2020 (Fig. 1 and Supplementary Table 2)4.

	3.	 The number of expatriates and visitors who returned to their 
countries from Wuhan on charter flights between 29 January 
and 4 February 2020 and the proportion of passengers on each 
flight who had laboratory-confirmed infection with COVID-19 
(by polymerase chain reaction with reverse transcription, RT-
PCR) on arrival (Fig. 1 and Supplementary Table 3).

	4.	 The age distribution of all confirmed cases of COVID-19 in 
Wuhan as of 11 February 20208 (Supplementary Table 4).

	5.	 The age distribution of all death cases of COVID-19 in main-
land China as of 11 February 20208 (Supplementary Table 5).

	6.	 The cumulative number of deaths among confirmed cases of 
COVID-19 infection in Wuhan as of 25 February 20209 (Sup-
plementary Table 6).

	7.	 The time between onset and death or the time between admis-
sion and death for 41 death cases of COVID-19 in Wuhan10–12 
(Supplementary Table 7).

	8.	 The time between the onset dates (that is, serial intervals) of 43 
infector–infectee pairs (Supplementary Table 8).

The clinical severity of infectious diseases is typically measured 
in terms of infection fatality risk (IFR), symptomatic case fatality 

risk (sCFR) and hospitalization fatality risk (HFR). The case defini-
tions underlying these severity measures are as follows:

	1.	 IFR defines a case as a person who would, if tested, be count-
ed as infected and rendered (at least temporarily) immune, as 
usually demonstrated by seroconversion or other immune re-
sponse13. Such cases may or may not be symptomatic.

	2.	 sCFR defines a case as someone who is infected and shows cer-
tain symptoms.

	3.	 HFR defines a case as someone who is infected and hospital-
ized. It is typically assumed in such estimates that the hospitali-
zation is for treatment rather than isolation purposes.

Figure 2 summarizes our estimates of age-specific sCFRs and 
susceptibility to symptomatic infection. Both parameters increase 
substantially with age. If the probability of developing symptoms 
after infection, Psym, is 0.5, the sCFR values are 0.3% (0.1–0.7%), 
0.5% (0.3–0.8%) and 2.6% (1.7–3.9%) for those aged <30 years, 
30–59 years and >59 years, respectively. The overall sCFR is 1.4% 
(0.9–2.1%). Compared to those aged 30–59 years, those aged <30 
years and >59 years are 0.16 (0.15–0.17) and 2.0 (1.95–2.08) times 
more susceptible to symptomatic infection. Our estimates of sCFRs 
would be lower if Psym were higher than the baseline value of 0.5; for 
example, the overall sCFR is 1.3% (0.8–2.3%) and 1.2% (0.7–1.9%) 
if Psym is 0.75 and 0.95, respectively. Our estimates of age-specific 
susceptibility are not sensitive to Psym.

Figure 3 summarizes our estimates of the key epidemiologic 
parameters of COVID-19 in Wuhan. In the baseline scenario 
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Fig. 1 | Data used in the inference. a, The daily number of confirmed cases in Wuhan (with no epidemiologic links to Huanan Seafood Wholesale Market, 
i.e., cases due to human-to-human (H2H) transmission) between 1 December 2019 and 3 January 2020 (blue), the daily number of cases exported 
from Wuhan to cities outside mainland China via air travel between 25 December 2019 and 19 January 2020 (orange) and the proportion of expatriates 
on charter flights between 29 January and 4 February 2020 who were laboratory-confirmed to be infected (green). The numbers of passengers and 
confirmed cases who returned to their countries from Wuhan on chartered flights are provided in Supplementary Table 3. Bars indicate the 95% 
confidence intervals (CIs) of the proportion. b, The daily number of deaths in Wuhan reported between 1 December 2019 and 28 February 2020.
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(Psym = 0.5), the basic reproductive number is 1.94 (1.83–2.06). The 
mean serial interval is 7.0 (5.8–8.1) days, with a standard devia-
tion of 4.5 (3.5–5.5) days. The mean time from onset to death is 20 
(17–24) days, with a standard deviation of 10 (7–14) days. The epi-
demic doubling time (the time it takes for daily incidence to double) 
was 5.2 (4.6–6.1) days before Wuhan was quarantined and public 
health interventions implemented within Wuhan reduced transmis-
sibility by 48% (24–71%). We estimate that only 1.8% (0.9–3.3%) of 
symptomatic cases that occurred between 10 December 2019 and 3 
January 2020 were ascertained. Figure 3 suggests that our estimates 
of the basic reproductive number, mean generation time and inter-
vention effectiveness would be slightly lower if Psym were higher than 
the baseline value of 0.5, whereas our estimates of the other param-
eters are largely insensitive to Psym.

There is a clear and considerable age dependency in symp-
tomatic infection (susceptibility) and outcome (fatality) risks, by 
multiple folds in each case. Given that we have parameterized the 
model using death rates inferred from projected case numbers 
(from traveler data) and observed death numbers in Wuhan, the 
precise fatality risk estimates may not be generalizable to those out-
side the original epicenter, especially during subsequent phases of 
the epidemic. The experience gained from managing those initial 
patients and the increasing availability of newer, and potentially bet-
ter, treatment modalities to more patients would presumably lead 
to fewer deaths, all else being equal. Public health control measures 
widely imposed in China since the Wuhan alert have also kept case  

numbers down elsewhere, so that their health systems are not nearly 
as overwhelmed beyond surge capacity, thus again perhaps lead-
ing to better outcomes6,8. Indeed, so far, the death-to-case ratio in 
Wuhan has been consistently much higher than that among all the 
other mainland Chinese cities (Extended Data Fig. 2). Given the 
intensive efforts of case finding and the sharp drop in community 
transmission of COVID-19 in Chinese cities outside Hubei over the 
past few weeks, the ascertainment rates in these cities were prob-
ably very high. As such, we postulate that confirmed case fatality 
risk in these cities should be in some ways comparable to our sCFR 
estimates for Wuhan, which attempt to account for under-ascertain-
ment of cases in Wuhan. Nonetheless, crude case fatality risks esti-
mated from cities outside Wuhan should be, and are, lower than our 
sCFR estimates for Wuhan, because the former do not account for 
the delay between onset and death (thus being artefactually lower) 
and because healthcare outside Hubei is less overwhelmed (thus 
allowing a truly lower CFR). Indeed, as of 29 February 2020, the 
crude case fatality risk in areas outside Hubei was 0.85%, which is 
~23–41% lower than our sCFR estimates of 1.2–1.4% for Wuhan9.

Considering the risk estimates in context, Extended Data Fig. 3 
compares infection, case and hospitalization fatality risks for pan-
demic influenza in 1918 and 2009, SARS and MERS. SARS causes 
moderate to severe disease requiring hospitalization, so the infec-
tion fatality risk and case fatality risk are essentially the same as 
the hospitalization fatality risk. The hospitalization fatality risk for 
MERS is well documented, although the shape and depth of the 
clinical iceberg remains less well defined. In contrast, because (1) 
the majority of COVID-19 infections do not cause severe disease8 
and (2) hospitals in Wuhan have been overwhelmed, presumably 
having led to prioritized admission of more serious cases, the sCFR 
will be substantially lower than the HFR. However, despite a lower 
sCFR, COVID-19 is likely to infect many more (given emerging 
evidence of presymptomatic transmission14,15 and growing evi-
dence of extensive community spread in numerous countries16), 
thus ultimately causing many more deaths than SARS and MERS. 
Compared with the 1918 and 2009 influenza pandemics, our esti-
mates are intermediate but substantially higher than 2009, which 
was generally regarded as a low-severity pandemic. We find that 
sCFR is highest in the oldest age group. Unlike any previously 
reported pandemic or seasonal influenza, we find that risk of 
symptomatic infection also increases with age, although this may 
be in part due to preferential ascertainment of older and thus more 
severe cases. One largely unknown factor at present is the num-
ber of asymptomatic, undiagnosed infections. These do not enter 
our estimates of sCFR, but if such asymptomatic or clinically very 
mild cases existed and were not detected, the infection fatality risk 
would be lower than sCFR. Further clarifying this requires new 
data sources that are not yet available, specifically including age-
stratified serologic studies.

Our inferences were based on a variety of sources, and have a 
number of caveats that are highlighted below, but considering the 
totality of the findings they nevertheless indicate that COVID-19 
transmission is difficult to control. With a basic reproductive num-
ber of around two, we might expect at least half of the population 
to be infected, even with aggressive use of community mitigation 
measures. Perhaps the most important target of mitigation mea-
sures would be to ‘flatten out’ the epidemic curve, reducing the peak 
demand on healthcare services and buying time for better treatment 
pathways to be developed. In due course, but almost certainly after 
the first global wave of infections, vaccines may also be available to 
protect against infection or severe disease. Although our estimates 
of sCFR are concerning, these could be reduced if effective antivi-
rals were identified and widely adopted for the treatment of severe 
cases. Timely data from clinical trials of remdesivir, lopinavir/rito-
navir and other potential chemotherapies, as well as supportive care 
modalities, would be extremely informative.
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Fig. 2 | Estimates of age-specific sCFR and susceptibility to symptomatic 
infection for COVID-19 in Wuhan. a, Estimates of age-specific sCFRs 
assuming Psym is 0.50 (red), 0.75 (green) and 0.95 (blue). b, Estimates of 
relative susceptibility to symptomatic infection by age assuming Psym is 
0.50 (red), 0.75 (green) and 0.95 (blue). The markers in both panels show 
the posterior means and the bars show 95% credible intervals (CrIs).
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Several important caveats are worth mentioning, as follows. 
First, and most importantly, our modeled estimates have necessarily 
relied on numerous strong assumptions, given the paucity of defini-
tive data elements such as serosurveys, serial viral shedding studies, 
robust ascertainment of sufficient transmission chains and incom-
plete testing of travelers and returnees from Wuhan, all of which 
need to be underpinned by systematic unbiased sampling of the 
underlying population and by important age and other sub-groups.

Our estimates of sCFR are inevitably affected by under-ascer-
tainment of cases and deaths of COVID-19. On the one hand, over-
stretched and overwhelmed healthcare surge capacity in Wuhan could 
result in sCFRs that are higher than they would be in a less stressed 
healthcare setting, as presumably the sicker patients would have been 
prioritized for admission while leaving the milder cases untested and 
thus unconfirmed. Our prevalence estimates relying on travelers are 
based on those well enough to travel, so may slightly underestimate 
prevalence in Wuhan by not including those who are already in a seri-
ous condition and perhaps hospitalized. We have accounted for the 
possibility that travelers may underestimate the prevalence of infec-
tion in Wuhan17 by using our best estimate, from a separate analysis, 
of the probability of detection for international travelers (38% (22–
64%))17. On the other hand, the numerator of the number of deaths 
could also have been undercounted, although much less likely com-
pared to enumerating the denominator, for the same surge capacity 
reason or due to imperfect test sensitivity, especially during the first 
month of the outbreak18. If deaths in Wuhan were under-ascertained, 
this would bias our severity estimates downward.

Another caveat concerns one of our key inputs—the infection 
prevalence among returnees airlifted out of Wuhan on charter 
flights. Their point prevalence might well be lower than that among 
local residents, because of a generally more advantaged socio-
economic background, and the sensitivity for detecting infected  

individuals among them might not be 100%, as assumed. As such, 
this would be a lower bound of the cross-sectional disease preva-
lence. If this were the case, then we would have overestimated the 
reduction in transmissibility conferred by public health interven-
tions in Wuhan and overestimated the severity. Based on only 
publicly available data, there is necessarily substantial uncertainty 
in our estimates of the effectiveness of intra-Wuhan public health 
interventions in reducing transmissibility. Calculating the instanta-
neous reproductive number from a set of line lists that are updated 
daily would be the most reliable method for detecting changes in 
transmissibility associated with interventions.

There has been refinement of case definitions at both national 
and provincial levels, such as excluding RT-PCR-test-positive 
asymptomatics (perhaps, in fact, very mildly symptomatics) from 
being labeled an officially ‘confirmed’ case19 or including test-naïve 
clinically diagnosed cases with clear epidemiologic links as ‘con-
firmed’20. Although these should not affect our estimation given our 
data sources from the earlier phase of the epidemic, such changes 
in the reporting criteria may influence the interpretation of future 
data. Finally, given that Wuhan is no longer the only (albeit the first) 
location with sustained local spread, it would be important to assess 
and take into account the experience from elsewhere, both domesti-
cally in mainland China and overseas. These secondary epicenters, 
having learned from the early phase of the Wuhan epidemic, might 
have had a systematically different epidemiology and response that 
could impact the parameters estimated here21–31.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
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contributions and competing interests; and statements of data and 
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Methods
We made the following assumptions in the model:

	1.	 The population of Wuhan is stratified into m = 9 age groups: 0–9, 10–19, 
20–29, 30–39, 40–49, 50–59, 60–69, 70–79 and >79. The relative susceptibil-
ity to infection of age group i is αi with respect to those aged 30–39 years (that 
is, α4 = 1). The sCFR of age group i is sCFRi.

	2.	 The probability density function (pdf) of the incubation period, fincubation, is 
gamma, with a mean of 6.5 days and standard deviation of 2.6 days32.

	3.	 The pdf of the time between onset and death, fonset-to-death, is gamma. We in-
ferred the values of the mean and standard deviation of fonset-to-death (Extended 
Data Fig. 1).

	4.	 The pdf of the generation time, fGT, is gamma and the same as that of the se-
rial interval. We inferred the values of the mean and standard deviation of fGT 
(Extended Data Fig. 1).

	5.	 The infection-symptomatic probability (Psym; the proportion of infections that 
progress to develop symptoms) is the same for all age groups. We assume 
Psym = 0.50 in the baseline scenario and 0.75 and 0.95 in alternate scenarios.

	6.	 The sensitivity of detecting symptomatic cases exported from mainland 
China is Pdet = 38% (22%–64%) for cities that reported case importation 
between 25 December 2019 and 19 January 2020 (Supplementary Table 2)17.

	7.	 Inbound and outbound mobility in Wuhan had been reduced by ~90% for 
mainland Chinese cities (https://qianxi.baidu.com/) and 99% for interna-
tional cities since Wuhan was quarantined on 23 January 2020.

	8.	 The diagnostic test for the charter flight passengers is 100% sensitive and 
100% specific for detecting COVID-19 infections.

	9.	 Recent phylogenetic analyses suggest that the most recent common ancestor 
of the sequenced COVID-19 genomes emerged between 23 October and 16 
December 2019 (http://virological.org/t/clock-and-tmrca-based-on-27-ge-
nomes/347; accessed 12 Feb 2020). As such, we assume that the epidemic in 
Wuhan was seeded by a single zoonotic event that generated z0 infections on 
15 November 2019. We inferred the value of z0 (Extended Data Fig. 1).

	10.	 Public health interventions in Wuhan reduced local transmissibility by φ0. We 
inferred the value of φ0 (Extended Data Fig. 1).

	11.	 Given that the epidemic curve in Wuhan was weeks ahead of that in other 
mainland Chinese cities, we ignored the effect of case importation at Wuhan.

These assumptions were reflected in the following susceptible–infected–
recovered (SIR) model for simulating the COVID-19 epidemic in Wuhan, where 
Si(t), and Ri(t) are the number of susceptible and recovered individuals in age 
group i at time t, and I(t, τ) is the number of infected individuals in age group i at 
time t who were infected at time t − τ:

dSiðtÞ
dt

¼ �αiSi tð Þπ tð Þ þ Ni tð Þ
N tð Þ LinboundðtÞ �

Si tð Þ
N tð Þ Loutbound tð Þ

∂Iiðt; τÞ
∂t

þ ∂Iiðt; τÞ
∂τ

¼ �fGTðτÞIi t; τð Þ � Ii t; τð Þ
N tð Þ Loutbound tð Þ

Ii t; 0ð Þ ¼ αiSi tð Þπ tð Þ

dRiðtÞ
dt

¼
Z t

0
fGTðτÞIi t; τð Þdτ � Ri tð Þ

N tð Þ Loutbound tð Þ

Ni tð Þ ¼ Si tð Þ þ
Z t

0
Ii t; τð Þdτ þ Ri tð Þ; N tð Þ ¼

Xm

i¼1

Ni tð Þ

π tð Þ ¼ β 1� φ tð Þð Þ
N tð Þ

Xm

i¼1

Z t

0
Ii t; τð Þdτ

φ tð Þ ¼ 0 before 23 January 2020
φ0 otherwise

�

Loutbound tð Þ ¼ LW;I tð Þ þ LW;CðtÞ

The next-generation matrix for this SIR model is

βTG

N

α1N1 � � � α1N1

..

. . .
. ..

.

αmNm � � � αmNm

2
64

3
75

where TG is the mean generation time. The basic reproductive number R0 is the 
largest eigenvalue of this matrix, which is βTG

N

Pm
i¼1 αiNi

I
. The incidence rates of 

infection, onset and death for age group i at time t are calculated as follows:

Ai;infectionðtÞ ¼ αiSi tð Þπ tð Þ

Ai;onsetðtÞ ¼ Psym
Zt

0

Ai;infectionðuÞfincubation t � uð Þdu

Ai;deathðtÞ ¼ sCFRi

Zt

0

Ai;onsetðuÞfonset�to�death t � uð Þdu

The number of new cases (onset) and the cumulative number of cases in 
age group i on day d are ωd;i ¼

R d
d�1Ai;onsetðtÞdt

I
 and Ωd;i ¼

R d
0Ai;onsetðtÞdt

I, respectively. The cumulative number of death cases in age group i up to 
time t is Di tð Þ ¼

R t
0Ai;deathðuÞdu

I
. Let ωd ¼

Pm
i¼1 ωd;i

I
, Ωd ¼

Pm
i¼1 Ωd;i

I
 and 

DðtÞ ¼
Pm

i¼1 DiðtÞ
I

 be the summation of the number of new cases, the cumulative 
number of cases and the cumulative number of deaths across all age groups up 
to time t, respectively. Similarly, IðtÞ ¼

Pm
i¼1

R t
0Ii t; τð Þdτ

I
 is the total number of 

infected individuals at time t.
We inferred the parameters listed in Extended Data Fig. 1 assuming that the 

remaining parameters are fixed at the values shown in Extended Data Fig. 4. We 
use θ to denote the set of parameters that are subject to inference (Extended Data 
Fig. 1). The likelihood function is a product of several components associated with 
the data in Supplementary Tables 1–8:

L θð Þ ¼
Y8

k¼1

Lk θð Þ

The formulation of each component was as follows:

	1.	 The number of observed international case exportations on each day is 
assumed to be an imperfect Poisson observation of the number of infected 
travelers leaving Wuhan on that day who had or would develop symptoms. 
Let xd be the observed number of such international case exportations on day 
d between 25 December 2019 (Ds,1) and 19 January 2020 (De,1) based on the 
data in Supplementary Table 2. We assume that travel behavior is not affected 
by disease and hence such case exportation occurs according to a non-ho-
mogeneous process with rate λ tð Þ ¼ Psym

LW;I tð Þ
N tð Þ IðtÞ:

I

 Let Pdet be the probability 
that an infected traveler who has or will develop symptoms is detected in the 
destination country. The expected number of detected case exportations on 
day d is λd ¼ Pdet

R d
d�1λ uð Þdu

I
 and hence xd ≈ Poisson(λd). As such, the likeli-

hood function associated with the data in Supplementary Table 2 is

L1 θð Þ ¼
Z 1

0

YDe;1

d¼Ds;1

e�λd λxdd
xd !

g Pdetð ÞdPdet

where g is the posterior distribution of Pdet from a separate study that had a 
mean of 38% and a 95% credible interval of 22–64%17.

	2.	 Let yd be the observed number of confirmed cases of COVID-19 in Wuhan 
with no epidemiologic links to Huanan Seafood Wholesale Market (which 
is presumed to be the index zoonotic source of the COVID-19 epidemic) on 
day d between 10 December 2019 (Ds,2) and 3 January 2020 (De,2) based on 
the data in Supplementary Table 17. These cases are assumed to be a Poisson 
observation of the true number of newly symptomatic cases on that day, with 
ascertainment rate ε, which remained fixed over this time period. As such, as-
suming yd ≈ Poisson(εωd), the likelihood function for the data in Supplemen-
tary Table 1 is

L2 θð Þ ¼
YDe;2

d¼Ds;2

e�εωd εωdð Þyd
yd !

	3.	 We consider the test results of entry screening among expatriates and visitors 
on returning to their countries from Wuhan on charter flights between 29 
January 2020 (Ds,3) and 4 February 2020 (De,3). Let mall

d
I

 be the number of such 
passengers on day d who were tested regardless of symptoms (for example, 
Japan, Germany, South Korea and so on; Supplementary Table 3) and msym

d
I

 be 
the number of such passengers on day d who were probably tested only if they 
showed symptoms (for example, United States, United Kingdom, Thailand, 
Australia and so on; Supplementary Table 3). Let ualld

I
 and usymd

I
 be the respec-

tive observed number of passengers who were confirmed to be infected based 
on the data in Supplementary Table 3. The prevalence of infection and symp-
toms among travelers are assumed to reflect a representative binomial sample 
of the same quantities in the Wuhan population on their day of departure. The 
likelihood function associated with the data in Supplementary Table 3 is

L3 θð Þ ¼
QDe;3

d¼Ds;3

mall
d

ualld

 
q
ualld
d 1� qdð Þmall

d �ualld msym
d

usymd

 
ðPsymqdÞu

sym
d 1� Psymqd
� msym

d �usymd

where qd = I(d)/N(d) is the proportion of individuals who were infected on 
day d.
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	4.	 We assume that all deaths from COVID-19 infection in Wuhan were con-
firmed. Let G be the cumulative number of death cases in Wuhan as of 25 
February 2020 (time T). We assume G ≈ Poisson(D(T)) and hence the likeli-
hood function associated with this data is

L4 θð Þ ¼ e�DðTÞDðTÞG
G!

	5.	 We assume that the age distribution of confirmed cases is a multinomial sam-
pling process from the age distribution of true cases. Let ci be the observed 
number of confirmed cases in age group i in Wuhan based on the data in Sup-
plementary Table 4. The likelihood function for the data in Supplementary 
Table 4 is

L5 θð Þ ¼ c1 þ c2 þ c3ð Þ!
c1!c2!c3!

Ym

i¼1

ΩT;i

ΩT

 ci

	6.	 We assume that the age distribution of confirmed deaths is a multinomial 
sampling process from the age distribution of true deaths. Given that most 
COVID-19 deaths were Wuhan-related, we assume that the age distribution 
of confirmed deaths for Wuhan is the same as that for mainland China8. Let 
bi be the observed number of death cases in age group i in Wuhan based on 
the data in Supplementary Table 5. The likelihood function for the data in 
Supplementary Table 5 is

L6 θð Þ ¼ b1 þ b2 þ b3ð Þ!
b1!b2!b3!

Ym

i¼1

DiðTÞ
DðTÞ

 bj

	7.	 With regard to the data in Supplementary Table 7, let A be the set of death 
cases whose onset dates are known, and B the set comprising the remaining 
cases. Let vj be the observed time delay between onset and death for the jth 
case in A and let vLj

I
 be the observed time between hospital admission and 

death (which serves as a lower bound for the delay between onset and death) 
for the jth case in B. The likelihood function for the data in Supplementary 
Table 7 is

L7 θð Þ ¼
Y

j2A
fonset�death vjjθ

� Y

j2B
1� Fonset�death vLj jθ

  

where fonset–death and Fonset–death are the pdf and cumulative density function (cdf) 
of the time between onset and death (assumed to be gamma-distributed with 
mean μD and standard deviation σD).

	8.	 With regard to the data in Supplementary Table 8, let A be the set of infector–
infectee pairs for whom the serial interval (time elapsed between their onset 
dates) is known and B the set comprising the remaining pairs for whom only 
the ranges of their serial intervals are known. Let sj be the observed value of 
the serial interval for the jth pair in A, and sLj ; s

U
j

� �

I

 be the observed range of 
the serial interval for the jth pair in B. For some infector–infectee pairs, the 
travel history and onset dates of the infector impose a lower bound on the 
serial interval (Supplementary Table 8). Let s*j  be such a lower bound for the 
jth pair. The likelihood function for the data in Supplementary Table 8 is

L8 θð Þ ¼
Y

j2A

fSI sjjθ
� 

1� FSI s*j jθ
 

Y

j2B

FSI sUj jθ
 

� FSI sLj jθ
 

1� FSI s*j jθ
 

where fSI and FSI are the pdf and cdf of the serial interval. We assume that the 
serial interval and the generation time have the same pdf.

We estimated the model parameters θ using Markov chain Monte Carlo 
methods with Gibbs sampling and non-informative flat priors. Point  
estimates and statistical uncertainty are presented using posterior means  
and 95% CrIs, respectively.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
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Extended Data Fig. 1 | Model parameters that were subject to statistical inference. Epidemiologic parameters fitted in the model.
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Extended Data Fig. 2 | The ratio of no. of deaths to confirmed cases (crude confirmed case-fatality ratio) in Wuhan and in cities of mainland China other 
than Wuhan. Blue line shows the ratio of the number of deaths to the number of confirmed cases in Wuhan and the red line shows the ratio locations 
within mainland China outside Wuhan.
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Extended Data Fig. 3 | A summary of severity estimates among pandemic influenza strains and coronaviruses with pandemic potential in the past. 
Severity estimates of SARS (2002-3), MERS (2014-), 1918 influenza pandemic (1918-20) and 2009 influenza pandemic (2009-10).
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Extended Data Fig. 4 | Model parameters that were assumed to be constant. Assumed constants in the model.
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