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Death by TNF: a road to inflammation
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Abstract

Tumour necrosis factor (TNF) is a central cytokine in inflammatory 
reactions, and biologics that neutralize TNF are among the most 
successful drugs for the treatment of chronic inflammatory and 
autoimmune pathologies. In recent years, it became clear that 
TNF drives inflammatory responses not only directly by inducing 
inflammatory gene expression but also indirectly by inducing cell death, 
instigating inflammatory immune reactions and disease development. 
Hence, inhibitors of cell death are being considered as a new therapy for 
TNF-dependent inflammatory diseases.

Sections

Introduction

A short history of TNF

Induction of cell death by TNF

TNF-induced cell death in 
pathogen defence

TNF-induced cell death in 
inflammatory disease

Perspective: cell death-
blocking drugs

1Center for Inflammation Research, VIB, Ghent, Belgium. 2Department of Biomedical Molecular Biology, Ghent 
University, Ghent, Belgium.  e-mail: geert.vanloo@irc.vib-ugent.be; mathieu.bertrand@irc.vib-ugent.be

http://www.nature.com/nri
https://doi.org/10.1038/s41577-022-00792-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41577-022-00792-3&domain=pdf
http://orcid.org/0000-0002-8427-4775
http://orcid.org/0000-0001-9000-0626
mailto:geert.vanloo@irc.vib-ugent.be
mailto:mathieu.bertrand@irc.vib-ugent.be


Nature Reviews Immunology | Volume 23 | May 2023 | 289–303 290

Review article

response in cells, and is usually suppressed unless certain cell death 
checkpoints are overridden. On the one hand, cell death-driven inflam-
mation serves as a backup mechanism in microbial infection to ensure 
optimal antimicrobial responses when inflammatory gene activation 
has been hijacked by the pathogen. On the other hand, environmental 
factors and/or genetic predispositions can alter the tight regulation of 
the cell death processes, leading to unwanted or exacerbated inflam-
matory responses that may underlie various inflammatory diseases. 
Accumulating evidence suggests that blocking cell death can reverse 
the inflammatory pathology state in various mouse models of acute and 
chronic inflammatory diseases (reviewed in1). Improving our under-
standing of the interplay between the various cell death modalities, 
their mode of execution, the molecular checkpoints that control them, 
and the physiological and pathological conditions that turn them off is 
therefore needed to identify new therapeutic targets. Moreover, such 
knowledge will help to define the disorders in which pharmacological 
cell death inhibitors may provide therapeutic advantage.

The inflammatory cytokine tumour necrosis factor (TNF) is central 
in orchestrating the inflammatory immune response. Hence, TNF-
neutralizing therapies have been highly successful for the treatment 
of chronic inflammatory and autoimmune pathologies (Box 1). This 
Review briefly recalls the history and discovery of TNF as a target for 
therapy, and then focuses on more recent findings demonstrating that 
TNF indirectly promotes inflammation by inducing cell death. Con-
sequently, direct inhibition of cell death is now being considered as a 
new therapeutic strategy for the treatment of TNF-mediated diseases, 
especially to treat patients who are non-responders or show adverse 
effects to anti-TNF treatment.

A short history of TNF
TNF was identified as a serum factor that could induce the haemor-
rhagic necrosis of tumours in patients following acute bacterial infec-
tions2 (Fig. 1). This anticancer activity had already been exploited nearly 
a century before by the New York surgeon William Coley, who described 
the treatment of patients with cancer with bacterial extracts termed 
‘Coley’s mixed toxins’3,4. Later, lipopolysaccharide (LPS) was isolated 
from bacterial extracts and shown to induce some tumour regression in 
experimental cancer studies in mice5. Carswell et al. later demonstrated 
that it was in fact not the LPS itself that killed the cancer cells but a 
necrotizing factor produced by the host macrophages in response to 
LPS. Hence, the necrotizing factor was named ‘tumour necrosis factor’ 
or ‘TNF’2. In the years after, the genes encoding the human and mouse 
TNF and TNF receptors were purified, sequenced and cloned6–13, and 
experimental studies with recombinant TNF were initiated to validate 
its antitumour potential for cancer treatment (reviewed in14). However, 
the hope that TNF would be a powerful anticancer drug soon faded 
when it became clear that administration of the recombinant cytokine 
induces severe endotoxic shock. Indeed, and independently of these 
cancer studies, TNF was found to be identical to a previously identi-
fied protein named ‘cachectin’, which was responsible for endotoxin-
induced wasting disease (cachexia) in mice15 (Fig. 1). These findings 
also clearly demonstrated that TNF is a pleiotropic cytokine that must 
be tightly regulated.

Induction of cell death by TNF
The clinical success of anti-TNF biologics in treating inflammatory 
disorders has been attributed to their effectiveness in blocking TNF 
from binding to its cognate receptors TNF receptor 1 (TNFR1) and 
TNFR2. It was long thought that this blockade reduces inflammation 

Introduction
Cell death is increasingly recognized as a major driver of inflammatory 
disease. Compared with apoptosis, which is generally considered to be 
immunologically silent, lytic forms of cell death, such as necroptosis, 
pyroptosis and apoptosis-driven secondary necrosis, release intracel-
lular factors, known as damage-associated molecular patterns, that 
activate immune receptors and induce inflammatory responses. In 
addition, the inflammatory signalling cascade may originate from 
and/or be amplified by loss of barrier function caused by epithelial cell 
death and the subsequent sensing of pathogen-associated molecular 
patterns from microorganisms that have breached the epithelial bar-
rier. Therefore, cell demise, in its multiple modalities, acts as an initia-
tor or amplifier of inflammation. Death is, however, not the default 

Box 1

Anti-TNF biologics are among 
the most successful drugs in 
history
Following the discovery that tumour necrosis factor (TNF) has 
strong proinflammatory activities, attention turned to the develop
ment of biologics that neutralize TNF’s activity for the treatment of 
inflammatory diseases. This turned out to be highly successful.

TNF was the first cytokine to be validated as a therapeutic  
target for rheumatoid arthritis. TNF inhibition using a neutralizing 
antibody was shown to block the synthesis of several other 
important proinflammatory cytokines in cell cultures and mice, 
which led to the pivotal concept that TNF is at the apex of an 
inflammatory cascade of cytokines in rheumatoid arthritis195–197. 
Soon after, a small-scale clinical study using anti-TNF antibodies 
was initiated in patients with rheumatoid arthritis, and demon
strated marked clinical improvement in most patients198. Subsequent 
clinical trials confirmed high efficacy of TNF neutralization in the 
treatment of rheumatoid arthritis199–201, which paved the way for 
testing use of TNF inhibitors in other inflammatory autoimmune 
diseases.

Five distinct antibody- or receptor-based TNF-neutralizing 
drugs have been approved over the years for treating rheumatoid 
arthritis, psoriatic arthritis, juvenile idiopathic arthritis, ankylosing 
spondylitis, psoriasis, Crohn’s disease and ulcerative colitis 
(reviewed in202). The chimeric antibody infliximab (sold under the 
brand name Remicade) and the TNF receptor 2 (TNFR2)–Fc fusion 
protein etanercept (Enbrel) were the first two TNF biologics to 
be approved, in 1998, followed by the first fully human antibody, 
adalimumab (Humira), in 2002. Certolizumab pegol (Cimzia), a 
pegylated Fab fragment, was approved in 2008, and another fully 
human antibody, golimumab (Simponi), was approved in 2009 
(reviewed in203). From 2015 on, several of these TNF inhibitors had 
lost their market exclusivities, allowing biosimilar alternatives to 
enter the market. Together, these TNF-neutralizing therapies are 
among the most successful protein-based drugs in history, with 
global sales estimated at US $30 billion annually.
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by preventing TNFR1 from activating the mitogen-activated protein 
kinase (MAPK) pathway and the canonical nuclear factor-κB (NF-κB) 
pathway, which would otherwise collectively lead to the transcriptional 
upregulation of proinflammatory genes that underlie the inflammatory 
pathology (Fig. 2). While this initial belief is probably true, it is now clear 
that binding of TNF to TNFR1 also indirectly promotes and exacerbates 
inflammation by inducing cell death, in the form of apoptosis, necrop-
tosis or pyroptosis. Indeed, dying cells release intracellular constituents 
that induce proinflammatory gene expression in neighbouring cells. In 
addition, epithelial cell death (in the skin or the intestine) may affect 
barrier integrity, inducing microbial tissue infiltration and inflamma-
tion (Fig. 2). Hence, genetic targeting of cell death was shown to reverse 
the inflammatory phenotype in various mouse models of TNF-induced 
inflammatory diseases (see later). Consequently, drugs that inhibit 
cell death, such as inhibitors of receptor-interacting serine/threonine 
protein kinase 1 (RIPK1), are currently under investigation as alternative 
therapies for TNF-driven human diseases (reviewed in1,16,17).

Death is not the default response of cells to TNF. Protectives brakes, 
or cell death checkpoints, normally actively repress TNF cytotoxicity 
to protect the organism from its potential detrimental consequences. 
Thus, while TNFR1 has the ability to trigger cell death, this response pro-
ceeds only when one of the cell death checkpoints is inactivated (Fig. 3). 
The survival versus death outcome of TNFR1 activation depends on the 
assembly of two distinct, but successive, protein complexes (Fig. 3) 
(reviewed in18,19). The membrane-bound complex I forms within sec-
onds of TNF sensing, and predominantly leads to inflammatory gene 
activation. Assembly of complex I starts with the binding of RIPK1 
and TNFR1-associated death domain protein (TRADD) to the cyto-
solic portion of the receptor, allowing the subsequent recruitment of 
TNFR-associated factor 2 (TRAF2) and of the ubiquitin ligases cellular 
inhibitor of apoptosis protein 1 (cIAP1), cIAP2 and the linear ubiquitin 
chain assembly complex (LUBAC; which is composed of HOIL1, HOIP 
and SHARPIN). Together, these E3 ligases generate a dense network 
of ubiquitin chains that permits further recruitment of the kinases 
that activate the MAPK signalling pathway and the canonical NF-κB 
signalling pathway. More precisely, the K63-linked ubiquitin chains 
generated by cIAP1 and cIAP2 act as binding stations for the adaptor 
proteins TGFβ-activated kinase 1-binding protein 2 (TAB2) and TAB3, 
which recruit the upstream kinase TGFβ-activated kinase 1 (TAK1) for 
MAPK signalling. In addition, the M1-linked (linear) ubiquitin chains 
generated by LUBAC are recognized by the adaptor protein NF-κB 
essential modulator (NEMO), which brings the kinases inhibitor of 
NF-κB kinase-α (IKKα), IKKβ, TANK-binding kinase 1 (TBK1) and IKKε to 
the receptor complex. The close proximity of TAK1 and IKKα and IKKβ 
on the hybrid K63/M1-linked ubiquitin chains then permits activation 
of IKKα–IKKβ by TAK1, and the subsequent IKKα–IKKβ-dependent 
activation of the canonical NF-κB pathway (reviewed in18,19) (Fig. 3). The 
ubiquitin network associated with complex I is negatively regulated by 
a subset of deubiquitylases, including A20, CYLD and OTULIN, which 
destabilize the signalling complex and restrict signalling to MAPKs 
and NF-κB (reviewed in20).

How TNFR1 signalling further evolves to induce cell death is less 
clear, but it requires the assembly of a secondary cytosolic complex, 
termed ‘complex II’, which originates from the binding of FAS-associated 
death domain-containing protein (FADD) to the receptor-dissociated 
complex I components TRADD and/or RIPK1 (ref.21). Complex II func-
tions as a cytosolic platform for the binding and activation of caspase 8, 
which can process downstream effector caspases to induce apopto-
sis, or instead cleave gasdermin D (GSDMD) to trigger pyroptosis, as 

recently reported22–24. Complex II can further be defined as complex IIa 
or complex IIb to differentiate the complex that spontaneously assem-
bles upon TNF sensing from the one that additionally forms upon RIPK1 
enzymatic activation25,26 (Fig. 3). So far, two cell death checkpoints have 
been found to inhibit apoptosis induction by these death complexes. 
The first one (‘IKK checkpoint’) occurs at the level of the receptor, within 
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Fig. 1 | Timeline of key events in the history of TNF and TNF-induced cell 
death. IKK, inhibitor of nuclear factor-κB kinase; MLKL, mixed lineage kinase 
domain-like protein; NF-κB, nuclear factor-κB; RA, rheumatoid arthritis; RIPK, 
receptor-interacting serine/threonine protein kinase; TNF, tumour necrosis 
factor; TNFR, tumour necrosis factor receptor.
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complex I, and consists of the phosphorylation-dependent inactivation 
of RIPK1 by IKKα–IKKβ and TBK1–IKKε, thereby preventing complex IIb 
assembly and subsequent RIPK1 kinase activity-dependent apoptosis 
induction27–29 (Fig. 3). The fact that single inhibition of IKKα–IKKβ or 
TBK1–IKKε complexes suffices to switch the TNF response from survival 
to RIPK1 kinase activity-dependent apoptosis and the observation that 
the combined inactivation of these kinases further increases RIPK1 
cytotoxicity suggest that IKKα–IKKβ and TBK1–IKKε inhibit distinct 
pools of RIPK1 in TNFR1 complex I. S25 of RIPK1 was identified as a sub-
strate of IKKα–IKKβ, TBK1–IKKε and protein phosphatase 1 regulatory 
subunit 3G (PPP1R3G)27,28,30, and mimicking phosphorylation on that 
residue was demonstrated to inhibit RIPK1 activity and cytotoxicity31. 
However, preventing S25 phosphorylation of RIPK1 is not sufficient 
to activate RIPK1 by TNF, indicating that IKKα–IKKβ and TBK1–IKKε 
additionally regulate RIPK1 cytotoxicity independently of S25, pos-
sibly by phosphorylating RIPK1 on other residues or, alternatively, 
by phosphorylating other targets. The second cell death checkpoint 
(‘NF-κB checkpoint’) occurs downstream in the pathway, in the nucleus, 
and relies on the NF-κB-dependent transcriptional and translational 

upregulation of prosurvival proteins, such as FLICE-like inhibitory 
protein (FLIP; also known as CFLAR), which counteract caspase 8 acti-
vation in complex IIa and protect the cells from RIPK1 kinase activity-
independent apoptosis25,32. Since IKKα and IKKβ are upstream kinases in 
the canonical NF-κB pathway, they control two successive checkpoints 
downstream of TNFR1, which respectively protect the cells from RIPK1 
kinase activity-dependent apoptosis (IKK checkpoint) and RIPK1 kinase 
activity-independent apoptosis (NF-κB checkpoint) (Fig. 3). By contrast, 
TBK1 and IKKε repress RIPK1 activation only in complex I, and their inac-
tivation consequently only switches the TNF response from survival to 
RIPK1 kinase activity-dependent cell death, without disturbing NF-κB28.

Activation of the kinases that control the two aforementioned 
cell death checkpoints is highly dependent on the ubiquitin network 
associated with complex I. Consequently, conditions that affect ubiqui-
tylation of complex I, such as inhibition of cIAP1, cIAP2 and LUBAC33–40, 
and also mutations in the RIPK1 ubiquitin acceptor site K377 (K376 in 
mouse RIPK1)41–43 or deficiencies of A20 and OTULIN44–49, indirectly 
perturb these cell death checkpoints and activate TNF cytotoxicity. 
Of note, the inhibitory effect of ubiquitin on RIPK1 death signalling 
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Fig. 2 | Inflammatory signalling by TNFR1. a, Binding of tumour necrosis 
factor (TNF) to TNF receptor 1 (TNFR1) directly promotes inflammation by 
activating the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase 
(MAPK) signalling pathways, which collectively lead to the transcriptional 
upregulation of genes encoding proinflammatory mediators, such as cytokines 
and chemokines. b, TNFR1 activation also indirectly promotes inflammation 
by triggering cell death. Lytic forms of cell death, such as apoptosis-driven 

secondary necrosis, pyroptosis and necroptosis, release damage-associated 
molecular patterns (DAMPs) that activate proinflammatory gene expression  
in bystander cells. In addition, the inflammatory response may originate from 
and/or be amplified by loss of barrier function caused by epithelial cell death 
(lytic and non-lytic) and the subsequent sensing of pathogen-associated 
molecular patterns (PAMPs) from microorganisms that have breached the 
epithelial barrier. PRR, pattern recognition receptor.
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Fig. 3 | Signalling by TNFR1 and overview of the three characterized cell death 
checkpoints in the TNFR1 pathway. a, Sensing of tumour necrosis factor (TNF) 
by TNF receptor 1 (TNFR1) leads to the formation of a primary membrane-bound 
receptor signalling complex (complex I) that activates the mitogen-activated 
protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, leading 
to proinflammatory gene expression. A secondary, potentially cytotoxic, cytosolic 
complex (complex II) originates from the dissociation of complex I components 
from the receptor, and from their association with FAS-associated death domain-
containing protein (FADD) and caspase 8. Three cell death checkpoints actively 
repress TNF cytotoxicity. First, the inhibitor of nuclear factor-κB kinase (IKK) 
checkpoint consists of the inhibition of receptor-interacting serine/threonine 
protein kinase 1 (RIPK1) kinase activity through phosphorylation mediated by 
complexes of IKKα and IKKβ and TANK-binding kinase 1 (TBK1) and IKKε. Second, 
the NF-κB checkpoint, which consists of the NF-κB-dependent transcriptional 
upregulation of prosurvival genes (including the gene encoding FLICE-like 
inhibitory protein (FLIP)). Third, the caspase 8 checkpoint, which consists of RIPK1 

inactivation by caspase 8-mediated cleavage. b, Inhibition of the IKK checkpoint 
leads to activation of RIPK1 in complex I, and the subsequent kinase-dependent 
assembly of complex IIb, which drives apoptosis or pyroptosis depending on 
the cellular context. Of note, conditions that affect proper IKKα–IKKβ activation 
will additionally inactivate the NF-κB checkpoint. c, Conditions leading to 
inactivation of the NF-κB checkpoint, such as the in vitro use of the translation 
inhibitor cycloheximide, activate complex IIa and result in RIPK1 kinase activity-
independent apoptosis. d, Inhibition of the caspase 8 checkpoint induces RIPK1 
cytotoxicity by the kinase-dependent assembly of complex IIb and the necrosome. 
TNF sensing in caspase 8-inhibited conditions will result only in necroptosis 
induction. Additional checkpoints may exist. cIAP, cellular inhibitor of apoptosis 
protein; GSDMD, gasdermin D; LUBAC, linear ubiquitin chain assembly complex; 
NAP1, NAK-associated protein 1; NEMO, NF-κB essential modulator; TAB, TGFβ-
activated kinase 1-binding protein; TAK1, TGFβ-activated kinase 1; TANK, TRAF 
family member-associated NF-κB activator; TRADD, TNFR1-associated death 
domain protein; TRAF2, TNFR-associated factor 2; Ub, ubiquitin.
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can be dissociated from its role in inducing NF-κB-mediated gene 
transcription18,41. Interestingly, although the two described cell death 
checkpoints are in place to restrain caspase 8 processing, a non-lethal 
pool of caspase 8 is still activated by TNF sensing, and functions as a 
third checkpoint in the pathway (the ‘caspase 8 checkpoint’), which 
prevents RIPK1 kinase activity-dependent apoptosis and necroptosis by 
cleaving RIPK1 (refs.50–54) (Fig. 3). What restrains this pool of activated 
caspase 8 from inducing cell death is currently unclear, but suggests the 
existence of additional protective mechanisms. Accordingly, inactiva-
tion of caspase 8 switches the TNF response to RIPK1 kinase activity-
dependent necroptosis, which additionally requires recruitment of 
the kinase RIPK3 and of the potential pore-forming pseudo-kinase 
mixed lineage kinase domain-like protein (MLKL) to complex II, now 
called the ‘necrosome’. Association between RIPK3 and RIPK1 occurs 
via their RIP homotypic interaction motifs, and appears to be sufficient 
to activate RIPK3 within the necrosome. The phosphorylation of MLKL 
by RIPK3 then induces a conformational change in MLKL resulting in 
its oligomerization and translocation from the cytosol to the plasma 
membrane, where it induces cell death via unknown mechanisms. The 
enzymatic activity of RIPK1 is dispensable for complex I and complex IIa 
assembly, but is required for the formation of complex IIb and the 
necrosome. Depending on the cellular context, the catalytic activity of 
RIPK1 can therefore promote apoptosis, caspase 8-mediated pyroptosis 
or necroptosis downstream of TNFR1 (refs.19,23) (Fig. 3).

All three cell death checkpoints described so far were shown to 
be essential to prevent TNF-dependent embryonic lethality or severe 
inflammatory pathology in mice. Moreover, mutations that affect these 
checkpoints have been identified as the cause of autoinflammatory dis-
eases in humans, further providing clinical relevance of these cell death 
checkpoints (see later). Of note, additional molecular mechanisms 
restraining TNF cytotoxicity have been reported, including the phospho-
rylation of RIPK1 by the MAPK-activated kinase MK2 (refs.55–57) or by the  
kinase Unc-51-like autophagy activating kinase 1 (ULK1)58, as well as  
the poly(ADP-ribosyl)ation of complex II by tankyrase 1 (ref.59). In con-
trast to the three cell death checkpoints described above, inactivation 
of these additional protective mechanisms does not switch the TNFR1 
response from survival to death. It increases TNF cytotoxicity only in 
conditions of a previously compromised checkpoint, indicating that 
they do not regulate the most critical brake in the pathway but rather 
control additional layers of regulation, limiting the extent of cell death.

TNF-induced cell death in pathogen defence
Host–pathogen interactions are a major selective pressure acting on 
both organisms. While the host must adapt to survive infection by 
pathogens, pathogens must in turn develop mechanisms to avoid elimi-
nation by the host’s immune defences. This continuous pressure selects 
for multiple, layered and interconnected defence mechanisms in the 
host. Similarly, the pathogen has developed sophisticated strategies 
to evade host immunity by hijacking inflammatory signalling pathways 
or by blocking other antimicrobial defence mechanisms. The different 
TNFR1 cell death checkpoints appear to have evolved as a response 
of the host to this microbial hijacking. Indeed, TNF signalling aims to 
establish an inflammatory response, primarily by promoting inflam-
matory gene activation by the MAPK and NF-κB signalling pathways. 
Remarkably, the kinases that activate these signalling pathways are also 
the ones putting a break on TNF cytotoxicity. Consequently, when the 
pathogen tries to suppress inflammatory gene activation in the host 
by delivering virulence or effector factors that affect proper activa-
tion of these kinases, the cell will switch its response to induce cell 

death, thereby activating an alternative pathway to alert the immune 
system though the release of damage-associated molecular patterns. 
This is nicely illustrated in the context of infection by the mamma-
lian pathogenic species of the Gram-negative genus Yersinia, which 
injects an acyltransferase, named ‘YopJ/P’, capable of inhibiting the 
catalytic activity of TAK1, IKKα and IKKβ in an attempt to escape host 
defences by preventing MAPK- and NF-κB-dependent expression of 
proinflammatory mediators60–63. As a consequence of this hijacking, 
RIPK1 is no longer blocked by MK2 and IKKα–IKKβ phosphorylation, 
and TNFR1-mediated and Toll-like receptor 4-mediated RIPK1 kinase 
activity-dependent and caspase 8-dependent apoptosis and/or pyrop-
tosis are induced, releasing damage-associated molecular patterns to 
promote optimal antibacterial immunity22,23,31,56,64–66.

Cell death, in its multiple forms, is thus recognized as a host 
defence mechanism for the elimination of pathogens, stripping them 
of their replication niche and simultaneously alerting the immune 
system to kick in. As a consequence, microorganisms have developed 
multiple strategies to interfere with the different cell death pathways to 
avoid their eradication by the host (reviewed in67). However, host cells 
have, in turn, developed strategies to also cope with this by activating 
backup mechanisms. In this context, the TNFR1 cell death checkpoint 
that controls RIPK1 cleavage by caspase 8 appears to have evolved to 
ensure activation of necroptosis as a backup cell death mode when the 
apoptotic pathway is blocked by pathogenic caspase 8 inhibitors, such 
as the poxvirus-encoded serpin CrmA68 or the viral FLICE-inhibitory 
protein (vFLIP) identified in herpesviruses and in the human poxvirus 
Molluscum contagiosum virus69,70. As a response, several pathogens 
also express proteins that specifically target necroptosis by inhibiting 
RIPK1, RIPK3, MLKL or the effects downstream of MLKL67.

Cell death by TNF is, however, not always a beneficial response for 
the host. At least in some specific context, excessive activation of TNF-
mediated cell death is indeed reported to drive, rather than prevent, 
microorganism pathogenicity and lethality, as seen upon infection 
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
Mycobacterium tuberculosis and Bacillus anthracis71–74.

TNF-induced cell death in inflammatory disease
Although TNF-induced cell death can help to mount proper immune 
responses during microbial infection, it can also turn into a highly 
detrimental process at the origin of various (sterile) inflammatory 
diseases when aberrantly induced as a result of environmental factors 
and/or genetic mutations. It is now clear that TNF contributes to the 
pathogenesis of inflammatory disease not only by inducing expres-
sion of inflammatory mediators but also by triggering cell death. For 
instance, TNF induces a lethal septic shock in mice that is caused by 
RIPK1 kinase activity-dependent cell death, as genetic or pharmacolo
gical inhibition of RIPK1 enzymatic activity fully protects the mice from  
the cytokine storm, hypothermia and morbidity induced by TNF75–77. 
In this model, the triggering event was first believed to be necroptosis, 
but later studies suggested additional contribution of RIPK1 kinase 
activity-dependent apoptosis and pyroptosis. Indeed, caspase 8 het-
erozygosity was reported to partially rescue hypothermia, and GSDMD 
loss was reported to limit lethality23,78. The reason why TNF induces 
RIPK1 kinase activity-dependent cell death in vivo while most cells 
do not succumb to single TNF stimulation in vitro is not fully under-
stood, but indicates that the in vivo inflammatory context somehow 
affects RIPK1 cell death checkpoints. It is tempting to speculate that 
the cytotoxicity originates from the co-sensing of multiple cytokines, 
which are provided by the inflammatory context. Indeed, a subclass 

http://www.nature.com/nri


Nature Reviews Immunology | Volume 23 | May 2023 | 289–303 295

Review article

of TNF family ligands, which includes CD40, TNF-like weak inducer of 
apoptosis (TWEAK) and lymphotoxin-β, activates the non-canonical 
NF-κB pathway upon binding of the ligands to their cognate receptors. 
Activation of this pathway involves the ligand-dependent degradation 
of a pool of TRAF2–TRAF3 and cIAP1–cIAP2, resulting in stabilization of  
NF-κB-inducing kinase (NIK), and finally in the activation of IKKα by 
NIK-mediated phosphorylation79. While single stimulation of cells 
with TNF or one of these additional ligands is mostly not toxic to cells, 
their combination may instead result in TNFR1-induced RIPK1 kinase 
activity-dependent and RIPK1 kinase activity-independent apoptosis 
or pyroptosis due to partial cIAP1 and cIAP2 degradation, affecting 
proper ubiquitylation of complex I, which consequently indirectly 
inactivates two of the aforementioned cell death checkpoints in the 
TNFR1 pathway55,80. In line with this idea, it is interesting to note that 
TWEAK and CD40L are upregulated in inflammatory bowel disease 
(IBD) and rheumatoid arthritis81,82, two TNF-driven human diseases 
for which RIPK1 inhibitors may be promising.

Of note, binding of TNF to TNFR2 also activates the non-canonical 
NF-κB pathway. Consequently, co-sensing of TNF by TNFR1 and TNFR2 
also has the potential to switch the TNFR1 response from survival 
to RIPK1 kinase activity-dependent death. It is therefore possible 
that part of the discrepancy between the in vitro cytotoxic response 
and the in vivo cytotoxic response to TNF originates from difference  
in TNFR2 expression levels, or in the expression of membrane-bound 
TNF versus soluble TNF, as the latter is relatively poor at activating 
TNFR2. In addition to ligands of the TNF family, the co-sensing of TNF 
and interferon-γ was also recently reported to induce RIPK1 kinase 
activity-dependent cell death (apoptosis, pyroptosis and necroptosis) 
by activating the JAK–STAT1–IRF1 axis71. However, it remains unclear 
whether, and how, activation of this pathway affects the known cell 
death checkpoints downstream of TNFR1. Interestingly, the combina-
tion of neutralizing antibodies to TNF and interferon-γ was shown to 
protect mice from death during SARS-CoV-2 infection71, which may sup-
port the reported causative role of pyroptosis in hyperinflammation 
during severe COVID-19 (refs.83–85).

Mutations that either directly or indirectly inactivate some of the 
cell death checkpoints within the TNFR1 pathway are also sufficient 
to cause mouse and human inflammatory diseases, as highlighted by 
some examples in the non-exhaustive list of studies mentioned below 
(Tables 1 and 2). The in vivo inflammatory consequence of inactivating 
the caspase 8 checkpoint that prevents RIPK1-dependent cytotoxicity 
was initially revealed by genetic studies in mice that lack caspase 8 or 
FADD. Genetic full-body deletion of Casp8 or Fadd in mice results in 
embryonic lethality86,87, which can be rescued to birth by deletion of 
Ripk1 and to adulthood by deletion of Ripk3 or Mlkl88–91. Also, specific 
deletion of Casp8 or Fadd in the intestinal epithelium leads to the 
development of a severe intestinal pathology that is TNF dependent 
and rescued by RIPK3 or MLKL deficiency or by inhibition of RIPK1 
kinase activity, providing evidence that intestinal inflammation results 
from necroptosis of FADD- or caspase 8-deficient intestinal epithe-
lial cells (IECs)24,92–94. High levels of RIPK3 and increased necroptosis 
could be confirmed in the intestine of patients with Crohn’s disease93, 
and mutations in CASP8 have been identified in patients who develop 
autoimmune lymphoproliferative syndrome and also in patients with 
severe forms of very early onset IBD95,96. In IBD, aberrant cell death leads 
to impairment of the epithelial barrier and invasion of the underly-
ing tissues by the microbiota, promoting inflammation. Deficiency  
of the adaptor protein myeloid differentiation primary response pro-
tein 88 (MyD88) and antibiotic treatment were shown to prevent colon 

inflammation in IEC-specific FADD-deficient mice, demonstrating 
that bacterially mediated Toll-like receptor activation by intestinal 
bacteria is essential for disease pathogenesis92. Follow-up studies in 
mice revealed that FADD prevents intestinal inflammation not only 
by inhibiting necroptosis but also by inhibiting caspase 8–GSDMD-
mediated pyroptosis of epithelial cells24. How FADD simultaneously 
promotes and inhibits caspase 8 to respectively inhibit necroptosis but 
promote pyroptosis is currently unclear. Inducible deletion of Casp8 in 
the endothelium of 6-week-old mice causes fatal haemorrhagic lesions 
exclusively within the small intestine driven by microbial commensals 
and TNF. This phenotype is prevented in mice that lack MLKL, confirm-
ing that the haemorrhage is caused by unrestrained necroptosis in 
the small intestine97. Deficiency of FADD or caspase 8 in keratinocytes 
causes keratinocyte necroptosis and severe skin inflammation in mice, 
which is prevented by RIPK3 loss and is partly dependent on TNF94,98,99. 
Since RIPK3 also contributes to TNF-induced caspase 8 activation100, 
additional studies in MLKL-deficient mice will be required to formally 
demonstrate that keratinocyte necroptosis drives the inflammatory 
skin phenotype in these mice. Keratinocyte-specific RIPK1 deficiency 
also causes keratinocyte necroptosis and skin inflammation, which 
is only partially rescued in a TNFR1-deficient background, but is 
completely prevented by Ripk3 or Mlkl deficiency101,102. As genetic 
targeting of RIPK1 kinase activity does not lead to any overt pheno-
type, these results identify RIPK1 scaffold function as an inhibitor of  
RIPK3–MLKL-dependent necroptosis in keratinocytes.

More recent studies specifically targeted the caspase 8 checkpoint 
by the generation of mice expressing a caspase 8 cleavage-resistant 
variant of RIPK1 (Ripk1D325A). The mutation induces embryonic lethality 
in mice, which is prevented by loss of RIPK1 kinase activity, loss of TNFR1 
or loss of both MLKL (or RIPK3) and FADD (or caspase 8), but not by loss 
of MLKL or RIPK3 alone, confirming combined induction of apoptosis 
and necroptosis51,52,54. Importantly, patients with pathogenic mutations 
in RIPK1 that prevent caspase 8 cleavage were also identified, and were 
shown to experience early-onset autoinflammatory disease, so-called 
cleavage-resistant RIPK1-induced autoinflammatory syndrome, which 
is caused by hypersensitivity of patients’ cells to RIPK1 activation, 
apoptosis and necroptosis52,53,103.

By serving as anchoring sites for the kinases IKKα, IKKβ, IKKε and 
TBK1, the ubiquitin chains conjugated to TNFR1 complex I by cIAP1, 
cIAP2 and LUBAC indirectly control the two checkpoints that counter-
act caspase 8-dependent cell death, either in an RIPK1 kinase activity-
dependent manner or in an RIPK1 kinase activity-independent manner 
(Fig. 3). Consequently, mutations that affect proper regulation of 
ubiquitin signalling can trigger aberrant TNF-mediated cell death and 
result in inflammatory disorders (reviewed in104,105). This is, for instance, 
the case upon deletion of cIAP1 and cIAP2, which results in embryonic 
lethality caused by TNFR1 signalling35. Further studies demonstrated 
that deletion of cIAP1 and cIAP2 in adult mice causes inflammation and 
lethality by the release of a brake on caspase 8-dependent cell death106. 
Deficiency in ubiquitin ligase X-linked inhibitor of apoptosis protein 
(XIAP) is the cause of X-linked lymphoproliferative syndrome 2, a severe 
inflammatory disease107. With use of gene-targeted mice, XIAP was 
shown to prevent TNF- and RIPK3-dependent cell death by regulating 
ubiquitylation of RIPK1, which might explain the hyperinflammation 
in patients with X-linked lymphoproliferative syndrome 2 (refs.108–110).

The notion that linear ubiquitin chains protect against cell death-
driven inflammation is supported by the phenotypes of LUBAC- and 
OTULIN-deficient mice. Mutation in Sharpin, in so-called Cpdm mice, 
causes chronic proliferative dermatitis characterized by inflammatory 
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Table 1 | A selection of studies in mouse models demonstrating that inflammation results from unrestrained cell death

Genotype Phenotype Expected inactivated CDC Rescue background Refs.

Casp8−/− Embryonic lethality Caspase 8 checkpoint Ripk3−/−

Mlkl−/−

88,89,91

Casp8IEC-KO Severe intestinal pathology; enterocyte necroptosis Ripk3−/−

Mlkl−/−

Tnfr1IEC-KO (colon)
Ripk1D138N/D138N

24,93,94

Cdh5–CreERT2 
Casp8fl/fl

Fatal necroptotic haemorrhage in the small intestine Mlkl−/−

Tnf−/−

LPS-Rs administration

97

Casp8E-KO Severe skin inflammation; keratinocyte necroptosis Ripk3−/−

Tnf−/− (partial rescue)

94,98

Fadd−/− Embryonic lethality Caspase 8 checkpoint Ripk1−/−

Mlkl−/−

90,91

FaddIEC-KO Severe intestinal pathology; enterocyte necroptosis and 
pyroptosis

Ripk3−/−

Mlkl−/− (colon)
Tnf−/− (colon)
Tnfr1IEC-KO (colon)
Ripk1D138N/D138N

Mlkl−/−Gsdmd−/−

24,92

FaddE-KO Severe skin inflammation; keratinocyte necroptosis Ripk3−/−

Tnf−/− (partial rescue)
Tnfr1−/− (partial rescue)

99

Ripk1D325A/D325A Embryonic lethality Caspase 8 checkpoint Tnfr1−/−

Ripk3−/−Casp8−/−

Mlkl−/−Fadd−/−

Ripk3−/−Fadd−/−

Ripk1D138N/D138N

51,52,54

Ciap2−/−Ciap1−/− Embryonic lethality IKK checkpoint
NF-κB checkpoint

Tnfr1−/−

Mlkl−/−Casp8−/−

35,106

CreERT2Ciap1−/− Ciap2fl/fl Lethal upon tamoxifen injection Tnfr1−/−

Ripk3−/−Casp8−/−

106

Xiap1−/− Ileal inflammation Unknown Tnf−/−

Tnfr1−/−

Tnfr2−/−

Ripk3−/−

109

Sharpincpdm/cpdm Chronic proliferative dermatitis (inflammatory skin lesions, 
multi-organ inflammation)

IKK checkpoint Tnf−/−

Ripk1K45A/K45A

Tnfr1−/−

Ripk3−/−Casp8+/−

Tnfr1E-KO (skin)
FaddE-KORipk3−/− (skin)
TraddE-KORipk3−/− (skin)
Mlkl−/−Casp8−/− (skin)

38,39,77,112–115

Hoip−/− Embryonic lethality IKK checkpoint
NF-κB checkpoint

Tnfr1−/− (partial rescue)
Mlkl−/−Casp8−/−

38,40

HoipE-KO Severe skin inflammation; keratinocyte necroptosis Tnfr1−/− (partial rescue)
Mlkl−/−Casp8−/−

Tnfr1−/−Mlkl−/−

37

Hoil1−/− Embryonic lethality IKK checkpoint
NF-κB checkpoint

Tnfr1−/− (partial rescue)
Mlkl−/−Casp8−/−

Ripk3−/−Casp8−/− (partial)
Ripk3−/−Casp8−/−Ripk1−/−

38

Hoil1E-KO Severe skin inflammation; keratinocyte necroptosis Tnfr1−/− (partial rescue)
Ripk3−/−Casp8−/−

37
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Genotype Phenotype Expected inactivated CDC Rescue background Refs.

OtulinC129A

OtulinL272P

Embryonic lethality IKK checkpoint
NF-κB checkpoint

Tnfr1−/− (partial rescue)
Ripk3−/−Casp8−/−

Ripk1D138N/D138N  
(partial rescue)

49,117

OtulinE-KO Severe skin inflammation; keratinocyte necroptosis Tnfr1−/−

Tnfr1E-KO

Ripk1D138N/D138N

Ripk3−/− (partial rescue)
Mlkl−/− (partial rescue)
Ripk3−/−Fadd−/−

Fadd/MlklE-KO

117,118

Ikbkg−/− Embryonic lethality IKK checkpoint
NF-κB checkpoint

– 142

IkbkgE-KO Severe skin inflammation; keratinocyte cell death Tnfr1−/− 146

IkbkgIEC-KO Severe intestinal pathology; enterocyte apoptosis Tnfr1−/−

Tnfr1E-KO

FaddIEC-KORipk3−/−

Ripk3−/− (partial rescue)
Ripk1D138N/D138N

153,154

Ikkb−/− Embryonic lethality IKK checkpoint
NF-κB checkpoint

– 140

IkkbE-KO Severe skin inflammation; keratinocyte cell death Tnfr1−/−

Tnfr1E-KO

Ripk3−/− (partial rescue)
Ripk3E-KO (partial rescue)
Mlkl−/− (partial rescue)
FaddE-KORipk3−/−

Ripk1D138N/D138N

150,151

Ikka−/−Ikkb−/− Embryonic lethality IKK checkpoint
NF-κB checkpoint

– 141

Ikka/IkkbIEC-KO Severe intestinal pathology; enterocyte apoptosis 153

Ripk1K376R/K376R Embryonic lethality IKK checkpoint Mlkl−/−Fadd−/−

Ripk3−/−Fadd−/−

Ripk3−/−Casp8−/−

Tnfr1−/− (partial rescue)
Tnfr1−/−Ripk3−/−

42,43

Tbk1−/− Embryonic lethality (C57BL/6 background) IKK checkpoint Ripk1D138N/+

Ripk1D138N/D138N

Ripk3−/− (partial rescue)

29,155

Viable (129 background), spontaneous inflammation in 
multiple tissues

156

Rela+/− Cutaneous ulceration from TNF exposure; severe dextran 
sodium sulfate-induced colitis

NF-κB checkpoint Anti-TNF antibodies 152

Cflar−/− Embryonic lethality NF-κB checkpoint Ripk3−/−Fadd−/− 158,159

CflarIEC-KO Severe intestinal pathology; enterocyte death Tnfr1−/− (partial rescue) 94,160,161

CreERT2CflarE-KO Severe skin inflammation; keratinocyte apoptosis Anti-TNF antibodies (partial 
rescue)

94,162

Ripk1IEC-KO Severe intestinal pathology; enterocyte apoptosis NF-κB checkpoint
Unknown checkpoint

Tnfr1−/− (partial rescue)
Casp8−/− (colon)
FaddIEC-KO (partial rescue)
FaddIEC-KO Ripk3−/−

101,166

Ripk1E-KO Severe skin inflammation; keratinocyte necroptosis Tnfr1−/− (partial rescue)
Ripk3−/−

Mlkl−/−

101,102

Cflar, gene encoding FLICE-like inhibitory protein (FLIP); CDC, cell death checkpoint; CreERT2, tamoxifen-inducible Cre expression; E-KO, epidermis-specific knockout; IEC-KO, intestinal 
epithelial cell-specific knockout; Ikbkg, gene encoding nuclear factor-κB essential modulator (NEMO); IKK, inhibitor of nuclear factor-κB kinase; LPS-Rs, lipopolysaccharide from Rhodobacter 
sphaeroides, which acts as an inhibitor of Toll-like receptor 4 signalling; NF-κB, nuclear factor-κB; TNF, tumour necrosis factor.

Table 1 (continued) | A selection of studies in mouse models demonstrating that inflammation results from unrestrained  
cell death
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skin lesions, multi-organ inflammation and immune system dysregu-
lation, which is fully caused by TNF-mediated RIPK1 kinase activity-
dependent cell death39,77,111–115. Cpdm mice lacking RIPK3 or MLKL show 
a delayed onset of the dermatitis and only a partial amelioration of the 
multi-organ pathology, indicating a contribution of necroptosis to 
the phenotype. However, epidermal deletion of FADD together with 
deficiency in RIPK3 completely prevented keratinocyte death and 
skin inflammation, demonstrating that FADD-mediated apoptosis 
of keratinocytes is the driver of skin inflammation in Cpdm mice39,115. 
Importantly, genetic ablation of MyD88 or depletion of the microbiota 
by antibiotics rescued the skin inflammation in Cpdm mice, demonstrat-
ing that the death of keratinocytes affects barrier integrity and induces 
inflammatory skin disease through the sensing of pathogen-associated 
molecular patterns from microorganisms that have breached the bar-
rier116. Mutations in Hoip (also known as Rnf31) or Hoil1 (also known as 
Rbck1) lead to embryonic lethality in mice which is partially dependent 
on TNFR1 and RIPK1 enzymatic activity but is prevented by co-deletion 
of Casp8 or Mlkl, but not Ripk3 (refs.38,40). Also knock-in mice that express 
catalytically inactive OTULIN (C129A) or a hypomorphic L272P mutation 
die at midgestation as a result of cell death mediated by TNFR1 and RIPK1 
kinase activity, and these mice can be rescued by the combined loss of 
caspase 8 and RIPK3 expression49,117. Studies in tissue-specific LUBAC- 
and OTULIN-deficient mice further confirmed TNF- and RIPK1 kinase 
activity-mediated cell death as a driver of inflammatory pathology37,117,118. 
Homozygous loss-of-function mutations in HOIP, HOIL1 and OTULIN 
have been identified in humans. These mutations are rare and cause a 

neonatal potentially fatal multi-organ autoinflammatory condition119–125. 
Most patients with OTULIN-related autoinflammatory syndrome (ORAS; 
also known as otulipenia) are successfully treated with TNF-blocking 
agents, identifying TNF as the main driver of the autoinflammatory 
condition122–124. Recently, two new compound heterozygous variants in 
OTULIN were identified in a patient who developed a fulminant atypical 
late-onset ORAS, which differs clinically from classical ORAS, but is also 
triggered by perturbed TNF signalling126.

The role of M1-linked ubiquitylation in preventing cell death 
driven-inflammation is further demonstrated by mutations affecting 
the protein A20. The anti-inflammatory properties of A20 are com-
monly attributed to its ability to suppress inflammatory NF-κB signal-
ling, but gene-targeting studies in mice have demonstrated that A20 
primarily suppresses inflammation by preventing cell death45,47,48,127–133. 
In the TNFR1 pathway, A20 represses RIPK1 kinase activity-dependent 
and RIPK1 kinase activity-independent cell death induction by binding 
and stabilizing the M1-linked ubiquitin chains associated with TNFR1 
complex I (refs.44,45,48,134). Single-nucleotide polymorphisms in TNFAIP3, 
the gene encoding A20, have been linked to many inflammatory and 
autoimmune diseases135,136. Importantly, rare heterozygous loss-of-
function variants have been shown to cause a severe autoinflamma-
tory syndrome, named ‘HA20’ (haploinsufficiency of A20)137,138, which 
can be treated in most patients with cytokine inhibitors, including 
infliximab137,138. Patients with carboxy-terminal deletions in NEMO, 
which impair interactions with A20, also develop an autoinflammatory 
phenotype that resembles HA20 (refs.139).

Table 2 | Autoinflammatory diseases caused by mutations in genes encoding essential TNF signalling proteins

Gene symbol Protein name Disease mechanism Patient phenotype OMIM entry Refs.

CASP8 Caspase 8 Homozygous, loss of function Autoimmune lymphoproliferative syndrome; very early  
onset IBD

607271 95,96

IKBKG NEMO Loss of function Incontinentia pigmenti in heterozygous females (lethal in 
males); immunodeficiency; EDA-ID

308300 147

IKBKG NEMO Carboxy-terminal deletions in NEMO Inflammatory skin and intestinal disease; ectodermal 
dysplasia with anhidrosis and immunodeficiency

NA 139

IKBKG NEMO NEMO lacking the domain encoded by exon 5 Severe autoinflammatory syndrome; NDAS 301081 148,149

OTULIN OTULIN Homozygous, loss of function Early-onset recurrent fever; neutrophilic dermatitis/
panniculitis, joint swelling; ORAS

617099 122–125

OTULIN OTULIN Compound heterozygous variants Atypical late-onset ORAS NA 126

RBCK1 HOIL1 Homozygous, loss of function Severe multi-organ autoinflammation, immunodeficiency, 
invasive bacterial infections, muscular amylopectinosis

615895 120

RELA RelA Haploinsufficiency Fever, abdominal pain, mucocutaneous lesions 618287 152

RIPK1 RIPK1 Homozygous, loss of function Recurrent infections, early-onset IBD, progressive 
polyarthritis, immunodeficiency

618108 168,169

RIPK1 RIPK1 Heterozygous mutation of the RIPK1 
caspase 8 cleavage site

Early-onset periodic fever syndrome and lymphadenopathy; 
CRIA

618852 52,53,103

RNF31 HOIP Homozygous, loss of function Severe multi-organ autoinflammation, immunodeficiency NA 119,121

TBK1 TBK1 Homozygous, loss of function Chronic and systemic autoinflammation NA 157

TNFAIP3 A20 Haploinsufficiency Early-onset severe multiorgan autoinflammatory syndrome; 
HA20

616744 137,138

XIAP XIAP Loss of function Pathogen-associated hyperinflammation, fever, severe IBD; 
XLP2

300635 107

Details of the genetic disorders can be found in OMIM. CRIA, cleavage-resistant receptor-interacting serine/threonine protein kinase 1 (RIPK1)-induced autoinflammatory syndrome; EDA-ID, 
anhidrotic ectodermal dysplasia with immune deficiency; HA20, haploinsufficiency of A20; IBD, inflammatory bowel disease; NA, not available; ORAS, OTULIN-related autoinflammatory 
syndrome; NDAS, nuclear factor-κB essential modulator (NEMO) deleted exon 5–autoinflammatory syndrome; TBK1, TANK-binding kinase 1; XIAP, X-linked inhibitor of apoptosis protein;  
XLP2, X-linked lymphoproliferative syndrome 2.
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Binding of NEMO to the M1-linked ubiquitin chains associated 
with complex I permits the recruitment and activation of the kinases 
IKKα, IKKβ, IKKε and TBK1 to TNFR1 complex I. While these kinases 
prevent RIPK1 kinase activity-dependent apoptosis and pyroptosis by 
phosphorylating RIPK1, IKKα–IKKβ additionally repress RIPK1 kinase 
activity-independent apoptosis through the NF-κB-dependent expres-
sion of prosurvival molecules, including FLIP (Fig. 3). Disruption of 
the genes encoding NEMO (Ikbkg), IKKα (Ikka; also known as Chuk) 
and/or IKKβ (Ikkb; also known as Ikbkb) in mice results in early lethal-
ity with massive cellular death in several organs, such as the liver, 
the skin and, in the case of mice lacking IKKα and IKKβ, the nervous 
system140–145. Moreover, specific loss of NEMO in keratinocytes causes 
severe and lethal skin inflammation in mice that requires TNF146. In 
humans, NEMO deficiency causes embryonic lethality in males and 
incontinentia pigmenti in heterozygous females, a genetic disease 
characterized by development of skin lesions among other symp-
toms147. Also patients with NEMO deleted exon 5–autoinflammatory 
syndrome have recently been described. In contrast to patients with 
loss-of-function NEMO mutations who exhibit immunodeficiency, 
patients with the NEMO spliced mutant develop a severe autoinflamma-
tory disease involving uveitis, panniculitis and hepatitis148,149. TNF also 
causes skin inflammation in mice with epidermis-specific knockout of 
Ikkb or both Rela and Rel (which encode NF-κB subunits) by inducing 
RIPK1 kinase activity-dependent necroptosis of keratinocytes150,151. In 
humans, a heterozygous mutation in RELA, causing RelA haploinsuf-
ficiency, induces chronic mucocutaneous ulceration, which can be 
suppressed by anti-TNF therapy152. Fibroblasts from such patients have 
impaired NF-κB activation and exhibit increased cell death in response 
to TNF. Similarly, Rela heterozygous mice show impaired NF-κB acti-
vation, develop cutaneous ulceration from TNF exposure and exhibit 
severe gastrointestinal inflammation upon exposure to dextran sodium 
sulfate, which is suppressed by TNF inhibition152. NEMO deficiency in 
IECs triggers intestinal pathology caused by TNF-induced apoptosis153. 
Inhibition of RIPK1 kinase activity or combined deficiency of FADD 
and RIPK3 prevents IEC death and colitis development in these mice, 
suggesting that RIPK1 inhibitors could be useful for the treatment of 
colitis in patients with NEMO mutations and possibly in IBD154. However, 
it remains puzzling that inactivation of the kinase activity of RIPK1 is 
sufficient to fully prevent pathology in these mice. Indeed, with a defect 

in NF-κB activation, the IECs should still be sensitized to RIPK1 kinase 
activity-independent apoptosis.

According to the specific role of TBK1 in repressing RIPK1 kinase 
activity in the TNFR1 pathway, biallelic loss of Tbk1 is embryonic lethal, 
and viability is rescued by TNF deficiency or by complementation with 
kinase-inactive RIPK1 (refs.28,29,155). Interestingly, loss of Tbk1 in mice 
with a 129 genetic background was reported to be viable, but was shown 
to cause inflammation in multiple tissues156. Transferring this allele 
onto the C57BL/6 background, however, also resulted in embryonic 
lethality156. In agreement, biallelic loss-of-function mutations in TBK1 
cause an early-onset autoinflammatory syndrome in humans that was 
shown to depend on TNF and RIPK1 kinase activity-dependent cell 
death. Hence, autoinflammation in these patients is suppressed with 
anti-TNF therapy157.

FLIP plays a central role in NF-κB-dependent cell survival, as shown 
by the phenotypes of FLIP-deficient mice. Genetic deletion of Cflar 
(which encodes FLIP) results in embryonic lethality, due to a defect in 
the vascular development of the yolk sac158, and combined deletion  
of Fadd and Ripk3 is required for prevention of the lethal phenotype of  
FLIP-deficient mice159. IEC-specific FLIP-deficient mice develop severe 
colitis due to IEC apoptosis and necroptosis, which can be suppressed 
by loss of TNFR1 or by treatment with neutralizing anti-TNF antibod-
ies94,160,161. Postnatal deletion of Cflar in keratinocytes induces severe 
skin inflammation in mice due to TNF-dependent keratinocyte apop-
tosis94,162. Interestingly, loss of FLIP expression in skin epidermis could 
be shown in patients with different skin diseases associated with  
epidermal cell apoptosis162.

Finally, full-body Ripk1 ablation causes postnatal lethality which 
is rescued by caspase 8 and RIPK3 deficiency, demonstrating a key 
function for RIPK1 in inhibiting cell death and subsequent inflamma-
tion163–165. RIPK1 deficiency in IECs in mice induces a severe pathology 
caused by TNF-mediated IEC apoptosis101,166. Whereas RIPK1 contributes 
to the NF-κB-dependent checkpoint by serving as a ubiquitylated sub-
strate for NEMO recruitment, in vitro studies suggest a more prominent 
anti-apoptotic role of RIPK1 through another, and yet to be discovered, 
additional cell death checkpoint in the TNF pathway167. In agreement, 
patients with RIPK1 deficiency experience inflammatory diseases, 
including IBD168,169.

Perspective: cell death-blocking drugs
Although experimental studies in mice genetically altered to lack 
(or express mutant versions of) essential proteins of the apoptotic, 
necroptotic and pyroptotic apparatus have provided formal proof of 
the concept that aberrant cell death could instigate inflammatory dis-
ease development, functional validation using specific inhibitors will 
be required to establish the importance of proinflammatory cell death 
for the pathogenesis of human diseases. RIPK1 and RIPK3 inhibitors, as 
well as GSDMD inhibitors, are currently under investigation as potential 
therapies for human inflammatory diseases. Such inhibitors may become 
an alternative treatment for patients with autoimmune diseases, espe-
cially for those patients who do not respond to or show adverse effects 
of anti-TNF treatment. Indeed, one third of patients with rheumatoid 
arthritis will discontinue treatment with an anti-TNF drug in the first year 
of therapy, mostly because of inefficacy or adverse events170, and similar 
efficacy profiles have been shown in patients with IBD and psoriasis171,172.

RIPK1 has a unique hydrophobic pocket that allosterically regulates 
its kinase activity, which enabled the development of small-molecule 
kinase inhibitors that dock into that pocket173,174. Some of these RIPK1-
targeting compounds have entered clinical trials for the treatment 

Glossary

Necroptosis
A programmed form of necrosis whose 
execution relies on the activation of 
receptor-interacting serine/threonine 
protein kinase 3 (RIPK3) and subsequent 
phosphorylation of mixed lineage 
kinase domain-like protein (MLKL) 
by RIPK3, ultimately leading to the 
translocation of phosphorylated MLKL 
to the plasma membrane, where it either 
directly or indirectly causes plasma 
membrane rupture.

Pyroptosis
A highly inflammatory form of 
programmed necrosis, usually caused 

by microbial infection, that relies on 
the proteolytic activation of the pore-
forming molecule gasdermin D by 
caspase 1 and caspase 11 (or caspase 8). 
It is classically activated downstream 
of the inflammasome pathways 
and is associated with the release of 
biologically active IL-1β and IL-18.

Secondary necrosis
A lytic, or necrotic, form of cell death 
that occurs when apoptotic cells are 
not efficiently removed by efferocytosis. 
It involves proteolytic activation of the 
pore-forming molecule gasdermin E by 
the effector caspase 3.
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of inflammatory disorders, such as ulcerative colitis, psoriasis and  
rheumatoid arthritis (reviewed in16). Also blood–brain barrier- 
permeant RIPK1 inhibitors have entered clinical trials for the treatment 
of neurodegenerative diseases including amyotrophic lateral sclerosis,  
Alzheimer disease and multiple sclerosis (reviewed in17). However, the 
first results from two such trials using the RIPK1 inhibitor GSK2982772 
did not show clinical efficacy in a small group of patients with ulcera-
tive colitis or rheumatoid arthritis175,176. One explanation for this could 
be the lack of proper patient stratification, highlighting the need to 
stratify patients on the basis of detection of specific markers. In this 
respect, antibodies targeting RIPK1 phosphorylation at S166 and phos-
phorylated MLKL may become useful. However, the requirement of 
RIPK1 enzymatic activity for TNF-induced cell death may also be dif-
ferent between mice and humans, raising the important question of 
the exact function of RIPK1 kinase activity, as no lethal substrate apart 
from RIPK1 has been identified so far. RIPK3 kinase inhibitors are also 
being considered for the treatment of inflammatory diseases, but so 
far no such inhibitors have been selected for therapeutic development, 
mainly because of the surprising observation that such compounds may 
assemble a caspase 8–FADD–RIPK1 complex that induces apoptotic  
cell death177.

As described earlier herein, TNF can trigger caspase 8-dependent 
GSDMD cleavage22–24. Since the discovery of GSDMD as a central media-
tor of pyroptosis178,179, GSDMD inhibition has been proposed as a novel 
therapeutic strategy to prevent inflammatory pathology in different 
diseases (reviewed in180). Disulfiram (Antabuse), a US Food and Drug 
Administration (FDA)-approved drug used to treat alcohol addiction, 
was shown to inhibit pyroptosis and inflammatory cytokine secretion 
in human and mouse cells, and in mouse models of LPS-induced septic 
shock181 and multiple sclerosis182. Necrosulfonamide was shown to be 
efficacious in sepsis183, and dimethyl fumarate was reported to suppress 
pathology in mouse models of familial Mediterranean fever, sepsis and 
multiple sclerosis184. All three currently available GSDMD inhibitors 
(disulfiram, necrosulfonamide and dimethyl fumarate) covalently 
modify reactive cysteines and hence are not specific, and specific 
small-molecular inhibitors of GSDMD will need to be discovered. As 
secondary necrosis–pyroptosis can also be induced via caspase 3-medi-
ated cleavage of GSDME185,186, and via caspase 8-induced cleavage of 
GSDMC187, other GSDM inhibitors need to be considered.

Future research should also investigate whether ninjurin 1 inhibi-
tion could be beneficial in suppressing TNF-mediated inflammation. 
Indeed, a recent study revealed that plasma membrane rupture, a com-
mon feature of pyroptotic and necroptotic cell death, but also happen-
ing during secondary necrosis of apoptotic cells that are not engulfed 
and removed in a timely manner, is actively regulated and mediated 
by ninjurin 1 (ref.188). Proof-of-principle studies have already demon-
strated that an antibody targeting the amino-terminal extracellular 
region of ninjurin 1, which is shown to be critical for its cytotoxicity, 
impairs plasma membrane rupture in pyroptotic macrophages188.

Finally, preclinical studies in mice have also made clear that the 
different cell death signalling pathways do not operate in isolation but 
are highly interconnected whereby intervention in one module may 
be unable to confer protection but instead may engage a backup cell 
death pathway. This intimate crosstalk between cell death pathways 
may ultimately compromise the use of single inhibitory drugs and may 
require multiple agents to simultaneously inhibit multiple cell death 
modules or to target central signalling hubs.

Published online: 15 November 2022
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