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Nonlinear nanomechanical resonators 
approaching the quantum ground state

C. Samanta1, S. L. De Bonis1, C. B. Møller1, R. Tormo-Queralt    1, W. Yang    1, 
C. Urgell1, B. Stamenic2, B. Thibeault2, Y. Jin3, D. A. Czaplewski    4, F. Pistolesi5  
& A. Bachtold    1 

It is an open question whether mechanical resonators can be made nonlinear 
with vibrations approaching the quantum ground state. This requires the 
engineering of a mechanical nonlinearity far beyond what has been realized 
so far. Here we discover a mechanism to boost the Duffing nonlinearity 
by coupling the vibrations of a nanotube resonator to single-electron 
tunnelling and by operating the system in the ultrastrong-coupling regime. 
We find that thermal vibrations become highly nonlinear when lowering the 
temperature. The average vibration amplitude at the lowest temperature 
is 13 times the zero-point motion, with approximately 42% of the thermal 
energy stored in the anharmonic part of the potential. Our work may enable 
the realization of mechanical Schrödinger cat states, mechanical qubits and 
quantum simulators emulating the electron–phonon coupling.

Mechanical resonators are perfect linear systems in experiments carried 
out in the quantum regime. Such devices enable the quantum squeezing 
of mechanical motion1–3, quantum backaction-evading measurements4–6 
and entanglement between mechanical resonators7,8. Achieving non-
linear vibrations in resonators cooled to the quantum ground state 
would offer novel prospects for the quantum control of their motion. 
These include the development of mechanical qubits9,10 and mechani-
cal Schrödinger cat states11. Creating strong nonlinearities near the 
quantum ground state, with the displacement fluctuations given by 
the zero-point motion xzp, has so far been out of reach in all mechanical 
systems explored thus far. Various mechanical resonators have been 
experimentally cooled to the ground state (Fig. 1, blue stars); however, 
they become only appreciably nonlinear for vibration amplitudes xnl 
that are 106 times larger than xzp. Small resonators based on nanoscale 
objects feature comparatively large zero-point motion. Carbon nano-
tubes are the narrowest resonators with diameters typically between 
1 and 3 nm, whereas graphene and semiconductor monolayers are the 
thinnest membranes, as they are atomically thin. Levitated particles can 
also be small when they are trapped by a focused laser beam. Despite 
the large zero-point motion of all these nanoscale resonators, nonlinear 
effects appear for xnl/xzp ranging from 103 to 105 (Fig. 1).

The emergence of nonlinearities for large displacements is related 
to the weak Duffing (or Kerr) constant γ, which enters the restoring 
force as F = −mω2

mx − γx3, where m is the mechanical eigenmode mass 
and ωm is the resonance frequency. The origin of nonlinearities in 
mechanical resonators is often related to the nonlinear dependence 
of stress on the displacement field of the mode12,13. Nonlinearities can 
be engineered using a force field gradient or a two-level system. 
Although mechanical systems have been operated in large field gradi-
ents14,15 and strongly coupled to two-level systems16–23, it has not been 
possible to substantially increase mechanical nonlinearities. The non-
linearity of levitated particles arises from the focused laser beam and 
is difficult to further enhance. Due to the weak Duffing constant,  
thermal fluctuations become nonlinear at high temperatures far away 
from the quantum regime. This occurs at room temperature for  
levitated particles24 and even higher temperatures for mechanical 
resonators25,26.

Here we demonstrate a new mechanism to boost the vibration 
nonlinearity by coupling a mechanical resonator to single-electron 
tunnelling (SET) through a quantum dot in a non-resonant manner. 
The nature of this coupling creates an increasingly larger vibration 
nonlinearity on lowering the temperature. Thermal vibrations become 
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vibration zero-point motion. In the adiabatic limit, when the electron 
fluctuation rate is faster than the bare mechanical frequency (Γe > ωo

m), 
the fluctuations result in the nonlinear restoring force given by

Feff = −[mωo
m
2 − 1

4x2zp

(ℏg)2

kBT
] x − 1

48x4zp
(ℏg)4

(kBT)
3 x

3 (1)

for Γe < kBT and x ≪ 2kBT/ℏg and when the electronic two-level system 
is degenerate (Fig. 2b and Supplementary Equation (31)). A striking 
aspect of the nonlinearity is its temperature dependence, since the 
nonlinear Duffing constant substantially increases when reducing the 
temperature. The vibration potential can even become purely quartic 
in displacement, since the linear part of the restoring force vanishes28 
at a low temperature when 2kBT = ℏg2/ωo

m . This can be realized for 
mechanical systems not in their motional ground state (kBT > ℏωo

m) 
by operating the system in the ultrastrong-coupling regime when 

g > √2ωo
m. Equation (1) also indicates that the measurement of a large 

decrease in ωm at a low temperature is a direct indication of strong 
nonlinearity. A large number of experiments have been carried out 
where mechanical vibrations are coupled to SET29–37, but the decrease 
in ωm has always been modest.

Carbon nanotube electromechanical resonators (Fig. 2a) are 
uniquely suited for demonstrating a strong vibration nonlinearity. Its 
ultralow mass gives rise to a large coupling g, which is directly propor-

tional to xzp = √ℏ/2ωo
mm. Moreover, high-quality quantum dots can 

be defined along the nanotube by two p–n tunnel junctions that are 
controlled by electrostatic means. Figure 2c shows a conductance trace 
featuring regular peaks associated with SET through the system.  
The average dot occupation increases by one electron over the gate 
voltage range where a conductance peak is observed. A voltage smaller 
than kBT/e is applied to measure the conductance.

highly nonlinear at subkelvin temperatures when the average dis-
placement amplitude decreases to xnl ≃ 13 × xzp, with about 42% of the 
thermal energy stored in the anharmonic part of the potential. Having 
the nonlinear part of the restoring force comparable with its linear part 
is extreme for mechanical resonators27. This is even more remarkable 
considering that the thermal vibration amplitude is so close to the 
zero-point motion.

The device consists of a quantum dot embedded in a vibrating 
nanotube (Fig. 2a). The nanotube is a small-bandgap semiconductor 
whose electrochemical potential can be tuned by an underlying gate 
electrode. The quantum dot is formed using the gate to electrostatically 
create a p–n tunnel junction at both ends of the suspended nanotube. 
The quantum dot is operated in the incoherent SET regime, where it 
behaves as a degenerate two-level system fluctuating between two 
states with N and N + 1 electrons. The vibrations are coupled to the 
electrons in the quantum dot via capacitive coupling between the 
nanotube and gate electrode. The coupling is described by the Hamil-
tonian H = −ℏgnx/xzp, where g is the electromechanical coupling, n = 0, 1 
is the additional electron number in the quantum dot and xzp is the 
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Fig. 1 | Vibration amplitude xnl for which nonlinearities emerge divided by the 
zero-point motion xzp as a function of the mass of the mechanical eigenmode 
for a large range of different vibrational systems. Different colours correspond 
to different types of vibrational system. The stars correspond to systems that 
have been experimentally cooled to the quantum ground state. Supplementary 
Fig. 11 indicates the reference for each system. When both displacement and 
frequency fluctuations are negligible, the effect of Duffing nonlinearity is sizable 

when xnl/xzp > (βm2ω2
mΓm/ℏγ)

1/2
, where β ≃ 3.1 is a constant; ωm, the resonance 

frequency; Γm, the mechanical linewidth; and γ, the Duffing constant12.
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Fig. 2 | SET-based nonlinearity. a, Schematic of the nanotube vibrating at ωm.  
A quantum dot (highlighted in red) is formed along the suspended nanotube; the 
total electron tunnelling rate to the two leads is Γe. b, Origin of the SET-based 
nonlinearity. The two linear force–displacement curves (shown in black) 
correspond to the dot filled with either N or N + 1 electrons; the slope is given by 
the spring constant mωo

m
2 and the two curves are separated by Δx = 2(g/ωo

m)xzp 
caused by the force created by one electron tunnelling onto the quantum dot. 
The force felt by the vibrations is an average of the two black forces weighted by 
the Fermi–Dirac distribution when Γe > ωo

m. The resulting force (red) is nonlinear 

for vibration displacements smaller than ∼ kBT
ℏg

xzp; the reduced slope at zero 

vibration displacement indicates the decrease in ωm. c, Gate voltage dependence 
of conductance G of device I at T = 6 K.
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A large dip in ωm is observed when setting the system on a conduct-
ance peak (Fig. 3a–c) where the electronic two-level system is degener-
ate. This is consistent with the vibration potential becoming strongly 
anharmonic. The decrease in ωm is enhanced at lower temperatures 
(Fig. 3d), indicating that the high-temperature harmonic potential 
smoothly evolves into an increasingly anharmonic potential. These 
data are well reproduced by the universal function predicted for ωm, 
which depends only on the ratio ϵP/kBT (Supplementary Equation (44)); 
here ϵP = 2ℏg2/ωo

m. In our analysis, we set the temperature of thermal 
vibrations equal to the temperature of electrons involved in SET, as 
measured in our previous work34; the temperature is measured from 
the width of the gate voltage of the conductance peaks (Methods and 
Extended Data Fig. 3). A similar decrease in ωm was observed in two 
other devices (Supplementary Section IIE).

These measurements reveal that the system is deep in the 
ultrastrong-coupling regime. The universal temperature dependence 
of ωm enables us to quantify g with accuracy. The largest coupling 
obtained from measurements at different conductance peaks is 
g/2π = 0.50 ± 0.04 GHz (Fig. 4a, black dots), corresponding to 
g/ωo

m  = 17 ± 1. The coupling is consistent with the estimation 
g/2π = 0.55 ± 0.18 GHz obtained from independent measurements  

(Fig. 4a, purple line) using g = e(C′g/CΣ)Vd.c.
g /√2mℏωo

m , where m is 

quantified from driven spectral response measurements and the spatial 
derivative of the dot-gate capacitance C′g and total capacitance CΣ of 
the quantum dot are obtained from electron transport measurements. 
Figure 4a–c shows that the device is operated in the ultrastrong-coupling 
regime (g > ωo

m) and the adiabatic limit (Γe > ωo
m), which are necessary 

conditions to realize strong vibration anharmonicity. Although it is 
not directly relevant for this particular implementation, the quantum 

cooperativity 4g2/ΓeΓth is above unity over the measured temperature 
range, where Γth is the thermal decoherence rate.

We now turn our attention to the driven nonlinear resonant 
response of the mechanical mode (Fig. 5a,b). The spectral peak is 
asymmetric for vibration amplitudes as low as x ≃ 40 × xzp. We do not 
observe the usual hysteresis in the nonlinear response when the driv-
ing frequency is swept back and forth. Moreover, the nonlinear reso-
nator has a decreasing responsivity for an increasing drive (Fig. 5c).  
These data agree with a model that takes into account the strong non-
linearity and thermal fluctuations. The prediction (Fig. 5a,c (red) and 
Supplementary Fig. 4) is the result of a simultaneous fit over a full set 
of spectra with different drive amplitudes but with a common set of 
parameters. The model fully captures the atypical behaviours observed 
when transitioning from the linear to the nonlinear regime at larger 
drives. The lack of hysteresis is explained by the low amplitude of driven 
vibrations compared with the thermal displacement amplitude, an 
unusual regime for driven nonlinear response measurements27. The 
behaviour of the responsivity arises from the thermal fluctuations 
that modify the spectral response of the driven nonlinear resonator27. 
From the comparison between data and model, we determine the cou-
pling g/2π = 0.65 ± 0.22 GHz. We obtain g/2π = 0.76 ± 0.20 GHz from 
the quadratic dependence of the resonant frequency on the driven 
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Fig. 3 | Enhanced mechanical vibration nonlinearity at low temperature.  
a,b, Conductance (a) and mechanical resonance frequency (b) as a function of 
gate voltage Vd.c.

g  at 300 mK. By counting the number of observed conductance 
peaks from the nanotube energy gap, we estimate N = 22. The red dashed  
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m. c, Driven mechanical response measured at 6 K (ref. 40).  
d, Temperature dependence of the resonance frequency. The red solid line is the 
predicted universal function. The ωdip/ωo

m reduction is expected to be about 0.75 
when the potential is quartic; in this case, although the linear part of Feff is zero, 
the nonlinear part of Feff combined with thermal vibrations substantially 
renormalizes ωm. The confidence-interval error bars in b and d arise primarily 
from the standard deviation in ωm quantified from different driven spectral 
response measurements.
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vibrational amplitude for Duffing resonators (Fig. 5b), which remains 
approximately valid in the presence of thermal fluctuations provided 
that the driven vibration amplitude is sufficiently small. These two 
values of g are consistent with the first two estimates.

The vibrations become strongly nonlinear at a low temperature 
for vibrations approaching the quantum ground state. Figure 5d shows 
the fraction of thermal energy stored in the nonlinear part of the vibra-
tion potential 𝒰𝒰NL = [⟨Ueff(x)⟩ −mω2

m⟨x2⟩/2]/⟨Ueff(x)⟩ , where Ueff(x) is 
the total effective vibration potential created by the coupling. The 
fraction is directly estimated from the measured decrease in ωm using 
the theory predictions of the coupled system (Supplementary Section 
IF). The effect of this nonlinearity on the vibrations becomes increas-
ingly important as the temperature is decreased, since a larger fraction 
of the thermal energy is stored in the nonlinear part of the potential 
(Fig. 5d). The fraction 𝒰𝒰NL becomes approximately 42% at the lowest 
measured temperature where the average amplitude of thermal vibra-
tions is xth ≃ 13 × xzp. The large nonlinearity is accompanied by an 
enhanced damping at a low temperature (Supplementary Section IIB). 
The damping may be suppressed by electrostatically transforming the 
embedded single quantum dot into a double quantum dot33 where 

electron tunnelling happens coherently between two dots. This 
approach preserves both strong mechanical nonlinearities measured 
in this work10 and high mechanical quality factors34,38.

We have demonstrated a mechanism to create a strong mechanical 
nonlinearity by coupling a mechanical resonator and a two-level system 
in the ultrastrong-coupling regime. Mechanical resonators endowed 
with a sizable nonlinearity in the quantum regime enable numerous 
applications. Novel qubits may be engineered where the information 
is stored in the mechanical vibrations; such mechanical qubits are 
expected to inherit the long coherence time of mechanical vibrations 
and may be used for manipulating quantum information9,10. Mechanical 
‘Schrödinger cat’ states—non-classical superpositions of mechanical 
coherent states—can also be formed11 with enhanced quantum sensing 
capabilities in the detection of force and mass. Coupling mechanical 
vibrations to yet more quantum dots in a linear array may realize an 
analogue quantum simulator of small-sized quantum materials39. 
Such a simulator could explore the rich physics of strongly correlated 
systems where the electron–electron repulsion is competing with the 
electron–phonon interaction.
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Methods
Central theoretical results
We highlight the main theoretical results that emerge from the coupling 
of a nanomechanical resonator coupled to a quantum dot operated in 
the incoherent SET regime. When the vibrations are slow with respect 
to the typical electron tunnelling rate, one finds that the effective 
force reads as

Feff(x) = −mωo
m

2x + FefF(ϵ − Fex), (2)

where m is the eigenmode mass, ωo
m is the bare resonance frequency, 

Fe = ℏg/xzp is the variation in the force acting on the mechanical system 
when the number of electrons in the dot varies by one unit, ϵ is the 
electron energy level and fF is the Fermi–Dirac function. One can define 
a resonance frequency from the quadratic term of the effective  
vibration potential obtained by the integration of Feff. It reads 
ωQ = ωo

m(1 − ϵP/4kBT)
1/2, where ϵP = 2ℏg2/ωo

m  is the polaronic energy,  
T is the temperature and kB is the Boltzmann constant. Remarkably, the 
resonance frequency ωQ associated with the linear restoring force 
decreases when lowering the temperature and vanishes at T = 4ϵP/kB. 
The dependence of ωQ as a function of ϵP/kBT is shown as a dotted (yel-
low) line in Extended Data Fig. 1.

Another striking effect of the coupling and of the suppression 
of ωQ is that the nonlinear part of the restoring force becomes domi-
nant at low temperatures. Due to this nonlinearity, the period of 
oscillation becomes strongly dependent on the oscillation ampli-
tude. Thermal fluctuations allow the oscillator to explore different 
amplitudes and thus different resonance frequencies: when aver-
aged, these fluctuations lead to an observed resonance frequency 
that is much higher than ωQ (Extended Data Fig. 1, red line). In 
other words, the effect of nonlinearity becomes more important 
when the vibrations are cooled to a low temperature. This is just 
the opposite of what has been observed in mechanical resonators  
so far.

Despite the rich physics at work, the temperature dependence of 
the observed resonance frequency is a universal function of ϵP/kBT for 
weak damping. We find this by calculating the displacement fluctuation 
spectrum Sxx(ω) (shown as a density plot; Extended Data Fig. 1). It has 
been shown41 that Sxx(ω) is proportional to the amplitude response to 
a weak drive, which is what we measure in this work. The temperature 
dependence of the measured resonance frequency (Fig. 3d) agrees 
well with the prediction (Extended Data Fig. 1, full red line). It is used 
to extract the value of ϵP and therefore g.

Device production
Carbon nanotubes are grown on high-resistive silicon substrates with 
prefabricated platinum electrodes and trenches. The growth is done 
in the last step of the fabrication process to reduce surface contami-
nation. Nanotubes are grown by the ‘fast heating’ chemical vapour 
deposition method, which comprises rapidly moving the sample from 
a position outside of the oven to the centre of the oven so that the tem-
perature of the sample rapidly grows from room temperature to about 
850 °C. This enables us to grow nanotubes over shallow trenches42. We 
remove the contamination molecules adsorbed on the nanotube sur-
face during the transfer of the nanotube between the chemical vapour 
deposition oven and the cryostat, by applying a large current through 
the device under a ultrahigh vacuum at the base temperature of the 
dilution cryostat43. In the three measured devices, the nanotube–gate 
separation is 150 nm and the length of the suspended nanotube is 
between 1.2 and 1.4 μm.

Electrical characterization
We select ultraclean, small-bandgap semiconducting nanotubes. 
Extended Data Fig. 2a–c shows the charge stability diagram measure-
ments at 6 K, 1 K and base temperature of the cryostat. The nanotube 

regions in contact with the source and drain electrodes are p doped44. 
For large positive gate voltages, p–n junctions are formed along the 
nanotube near the metal electrodes, forming a quantum dot along the 
suspended nanotube. For gate voltage values below 0.05 V, the sus-
pended nanotube region is p doped and the p–n junctions disappear, 
resulting in a higher conductance. The size of the Coulomb diamonds 
decreases as the number of electrons in the nanotube quantum dot 
increases. The charging energy Ec approximately varies from 8.5 to 
6.5 meV in the gate voltage range discussed in the main text, whereas 
the level spacing ΔE changes from 0.97 to 0.73 meV. All the data shown 
in the main text and Supplementary Information are in the kBT < ΔE, Ec 
regime. The short separation between the nanotube and gate electrode 
enables us to achieve a large capacitive coupling between the nano-
tube island and gate electrode as Cg ≫ Cs, Cd, where Cs and Cd are the 
capacitances between the nanotube island and the source and drain 
electrodes, respectively. The diamonds in the charge stability diagram 
measurements become distorted when lowering the temperature due 
to the mechanical self-oscillations of the suspended nanotube gener-
ated at finite source bias voltages31,34,35.

Temperature calibration
The temperature calibration in quantum dot devices operated in the 
incoherent SET regime (ℏΓe < kBT < ΔE, Ec) is achieved by measuring  
the electrical conductance peak (Extended Data Fig. 3a), where Γe is  
the electron coupling rate and T is the temperature. The electron  
temperature is obtained from the width of the gate voltage Vdc

g  of the 
conductance peak using the standard incoherent SET description 
(Supplementary Equation (5)):

G = G0

cosh2 [α(Vdc
g − VP)/2kBT]

. (3)

Here G0 is the T-dependent peak conductance, α is the lever arm and 
VP is the gate voltage of the conductance peak. We checked with the 
numerical calculations of the Fokker–Planck equation that the modi-
fication of the width of the conductance peak by electromechanical 
coupling is negligible over the measured temperature range. Extended 
Data Fig. 3b shows that the electron temperature is linear with the 
cryostat temperature except at low temperatures where it saturates 
at about 100 mK.

We cannot estimate the temperature of mechanical vibration 
fluctuations by measuring their spectrum as a function of temperature, 
since the low mechanical quality factor due to electron tunnelling 
in the SET regime impedes us to resolve the resonance of thermal 
vibrations. In another work34, we measured the vibration fluctuation 
temperature of a high-quality-factor nanotube device as a function of 
cryostat temperature using the same cryostat and the same cabling, 
filters and amplifier; we observed that the vibration temperature is 
linear with the cryostat temperature down to a saturation temperature 
that is similar to the electron saturation temperature (Extended Data 
Fig. 3b). This indicates that the vibration temperature and electron 
temperature are similar.

Data availability
Source data are available for this paper. All other data that support the 
plots within this paper and other findings of this study are available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Universal behavior of the temperature dependence  
of the resonance frequency expected by theory. Contour plot on the plane  
ϵP/kBT − ω of the intensity of the spectrum Sxx(ω) in units of ϵP/mω3

0. The spectrum 
is evaluated at a conductance peak; this is the well-known peak arising from 
single-electron tunneling in quantum dots as the gate voltage is swept. The thick 

continuous red line indicates the maximum of the spectrum, the dashed black 
lines indicates the values ω for which the intensity of the spectrum is reduced by a 
factor of 2 with respect to the maximum. The yellow dotted line is the prediction 
of Supplementary Equation 35 for the value of ωQ.
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Extended Data Fig. 2 | Charge stability diagram measurements at different temperatures. Differential conductance of device I measured as a function of the 
source-drain voltage Vs and the gate voltage Vdc

g  at different temperatures. The temperature of the cryostat is (a) 6 K, (b) 1 K, and (c) 15 mK.
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Extended Data Fig. 3 | Temperature calibration.  (a) Gate voltage dependence of the conductance of device I at T = 1 K. The red solid line is the fit to the data using  
Eq. (3). (b) The electron temperature of the device measured as a function of the cryostat temperature.
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