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Flat bands are intriguing platforms for correlated and topological physics. Variousmethods have been
developed to create flat bands utilizing lattice geometry, but the investigation of orbital symmetry in
multiorbital materials is a new area of focus. Here, we introduce a site symmetry-based approach to
emerging multiorbital 2D and 3D flat bands on the kagome and pyrochlore lattices. As a conceptual
advance, the one-orbital flat bands are shown to originate asmutual eigenstates of isolatedmolecular
motifs. Further developing the mutual eigenstate method for multiple orbitals transforming differently
under the site symmetries, we derive interorbital hopping generated flat bands from the antisymmetric
interorbital Hamiltonian and introduce group-theoretic descriptions of the flat band wavefunctions.
Realizationsofmultiorbital flat bands in realisticmaterials are shown tobepossible in theSlater-Koster
formalism. Our findings provide new directions for exploring flat-band electronic structures for novel
correlated and topological quantum states.

The search, discovery, and design of flat bands in electronic structures have
attractedmuch interest in realizingnovel correlatedand topological states of
matter due to the suppression of kinetic energy. A primary example is the
theoretical proposal offlat band enabled fractional quantumanomalous hall
effect1–5,whichhasbeenobserved recently in twistedbilayerMoTe2

6, twisted
bilayer graphene7, and multilayer graphene8. There are diverse and intri-
guing physical phenomena associatedwithflat bands in quantummaterials,
including negative orbital flat band magnetism in kagome magnetic metal
Co3Sn2S2

9, strange metallicity in flat band kagome materials Ni3In
10, and

non-Fermi liquid behavior in flat band pyrochlore materials CuV2S4
11. In

the much attractive “135” family of kagome metals and superconductors
AV3Sb5 (A = K, Cs, Rb) and related compounds such as CsTi3Bi5, the
interorbital flat band physics may play an important role as the low-energy
electronic structure evades theone-orbitalmodel12,13 and incipientflat bands
beyond density functional theory have even been detected recently14,15.
Remarkably, the flat bands in the new member of the family CsCr3Sb5 are
close to the Fermi level and produce a landscape of correlatedmagnetic and
charge density wave states, and quantum criticality, non-Fermi liquid
metals, and superconductivity under pressure16,17. Since the multiorbital
nature is generic to quantum materials13,18, it is crucial to understand the
multiorbital origin of the flat bands and their electronic wavefunctions,
which are necessary for engineering flat bands and constructing theoretical
models including correlations beyond band theory to study emergent novel
electronic states.

An increasing number of theoretical approaches have been developed
to understand and construct flat bands19–21, including the line-graph
method22–25, the Wannier function, and the compact localized states
method26–32. Fine-tuning parameters in certain systems can also result in a
flat band33–36. In this work, we present a systematic theory to construct
single- and multiorbital flat bands in the 2D kagome and 3D pyrochlore
lattices made of corner-sharing molecular motifs of triangles and tetra-
hedrons. Different and complementary to the existing approaches, we
develop amutual eigenstatemethod (MEM)basedon the isolatedmolecular
states33,37–39, which enables us to obtain the analytical flat bandwavefunction
and determine its group-theoretic origin from the molecular states. More-
over, the MEM reveals the important correlation of the flat band wave-
function singularity and topological properties with the hopping
symmetries within molecular motifs. We directly utilize the orbital sym-
metry at the lattice sites, i.e. the local site symmetry, which is particularly
suitable for the construction of flat bands in the presence of multiple
orbitals20,39–41. The new method is also applicable for treating an equal
number of orbitals on different sublattices, thereby contributing an
important component to the recently proposed general construction of flat
bands for an unbalanced number of sublattice orbitals20.

We discover that the local site symmetry, such asmirror and inversion,
plays a vital role. The mathematical origin of the interorbital hopping
generated flat bands (“interorbital flat band” is used in the following text for
brevity) is the formation of antisymmetric (or skew-symmetric) off-
diagonal interorbital hopping Hamiltonian. We show that inversion even/
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odd orbitals give rise to singular flat bands containing band-touching points
with dispersive bands, while mirror even/odd orbitals lead to a new type of
nonsingular flat band in lattices with an odd number of sublattice sites,
including the kagome lattice. The different singularity of the mirror/
inversion flat bands arises due to whether the interorbital hopping breaks
the symmetrieswithin themolecularmotifs.Wedemonstrate the realization
and topological properties of the mirror-symmetry generated flat bands for
multiorbital materials on the kagome lattice using the Slater-Koster
formalism42. An intriguing property we discover is that the interorbital flat
band can be transformed into a dispersive kagome band with inherited
pure-type (p-type) vanHove singularity (vHS)where thewavefunctions are
localized on one of the three sublattices in space. Beyond advancing the
general theory of flat band construction, our findings are directly relevant to
the intriguing electronic structure of the “135” kagome metals AV3Sb5 and
related compounds, particularly the anomalous double p-type vHS12,13 and
the incipient flat bands near vHS detected in bothCsTi3Bi5

14 andCsV3Sb5
15.

Moreover, the interorbital flat band environment captures that in the pyr-
ochlore CuV2S4 and provides a concrete model for including strong cor-
relation effects beyond band theory11.

One-orbital model and MEM
The one-orbital tight-binding Hamiltonian with hopping t on the kagome
lattice can be written as H = t ⋅ HK + μI in the three-sublattice basis
cy1ðkÞ; cy2ðkÞ; cy3ðkÞ
h i

, and

HK ¼ 2

0 cðk � r21Þ cðk � r31Þ
cðk � r12Þ 0 cðk � r32Þ
cðk � r13Þ cðk � r23Þ 0

2
64

3
75 ð1Þ

where μ is the chemical potential, rij denotes the hopping vector connecting
the sublattice sites i and j in an up triangle in Fig. 1a, and the wavevector k is
defined in the first Brillouin zone in Fig. 1b. For brevity, cðxÞ � cosðxÞ and
sðxÞ � sinðxÞ are used throughout. It is widely known that the band
structure obtained from the eigenstates of Eq. (1) contains a flat band, as
shown in Fig. 1d,middle. Variousmethods, including the compact localized
states based onWannier functions32 and line-graph of honeycomb lattice43,

have been employed to understand the physical andmathematical origin of
the flat band.

Since the kagome lattice is made of alternating corner-sharing up and
down triangles, the Hamiltonian HK in Eq. (1) can be decomposed as
HK =HΔ + H∇,

HΔ=∇ðkÞ ¼
0 e∓ik3 e± ik2

e± ik3 0 e∓ik1

e∓ik2 e± ik1 0

2
64

3
75;HΔ=∇

molecule ¼
0 1 1

1 0 1

1 1 0

2
64

3
75; ð2Þ

where kl = ϵijlk ⋅ rij. HΔ ¼ ðH∇Þ� is a result of the inversion symmetry and
theHΔ=∇

molecule is theHamiltonian for an isolated trianglemolecule in the basis
½cy1; cy2; cy3�. We are thus motivated to develop a systematic molecular
approach37,38 to the flat band states from the localized states on the isolated
motifs. The eigenvalues of HΔ/∇ are independent of the reciprocal vector k
with n2 accidental degeneracy at each energy: E1 = 2 in the A1 irreducible
representation (irrep) and E2/3 =− 1 (irrepE), corresponding to n2 isolated
triangle molecules. Combining the two non-commuting HΔ and H∇, a flat
band arises as a solution of the total Hamiltonian HK when there exists a
mutual eigenstate HΔ=∇∣ΨMEMi ¼ EΔ=∇∣ΨMEMi. The resulting k-indepen-
dent total energy EFB ¼ EΔ

MEM þ E∇
MEM as indicated by the purple flat

dispersion in Fig. 1d.
The energy and wavefunction of the flat band can be directly derived

from theC3v symmetry of the triangles combinedwith theC2v site symmetry
subgroup of the point group. The detailed analysis is given inMethods. For
example, the wavefunction can be constructed using symmetry arguments
and understood as a linear combination of the degenerate eigenstates in the
E irrepΨE

2=3. The flat band solution requires the two-sublattice eigenvector
∣Ψ3a

� ¼ 1;�1; 0½ �= ffiffiffi
2

p
as part of the mutual eigenstate, while the ortho-

gonal eigenvector ∣Ψ2

� ¼ �1;�1; 2½ �= ffiffiffi
6

p
becomes dispersive. The two

degenerate states can be linearly combined into ∣Ψ3b

� ¼ �1; 0; 1½ �= ffiffiffi
2

p
and

∣Ψ3c

� ¼ 0; 1;�1½ �= ffiffiffi
2

p
, forming a C3 rotation symmetric two-sublattice

eigenvector set. The ∣Ψ3a=b=ci isolated molecular states are Fourier trans-
formed with respect to three origins at the center of the adjacent hexagons,
as shown in Fig. 1(c), and linearly combined in 1: 1: 1 ratio to get the final
wavefunction ∣ΨMEM

�
. At Γ point, ∣ΨMEM

�
vanishes and the degeneracy in

Fig. 1 | Flat band in one-orbital tight-binding
model on the kagome lattice. aWeuse theC6vpoint
group for the 2D kagome lattice and C2v group for
the local site symmetry at Wyckoff position 3c.
There are two sets of mirror planes perpendicular to
the kagome lattice. The dash lines indicate the unit-
cell. b Brillouin Zone and high symmetry path of the
kagome lattice. c Illustration of mutual eigenstate
shared by up and down triangles for one-orbital flat
band. The arrows (filled: +; empty: −) indicate
Fourier transformation vectors r1/2/3 − r0 from
three hexagonal centers. The sublattices 1/2/3 are
marked by cyan, magenta, and yellow, respectively.
d Illustration of kagome flat band construction
(t =−1.0 eV) from isolated up (red) and down
(blue) triangles with k-independent energies.
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E is recovered by ∣Ψ2=3i. The discontinuous jump of wavefunctions cor-
responds to the incomplete CLS as a criterion of the flat band
singularity31,33,37,44. For a general k-point except Γ, the ∣ΨMEM

�
wavefunction

is a basis function of theB1 irrep of the local site symmetryC2vwith n2k � 1
accidental degeneracy, which originates from the E1 irrep in the induced
representation IndðEÞC6v

¼ E1 þE2 frommolecular hopping lattice point
group C3v to the full kagome lattice point group C6v. The topological non-
trivial singularity of the flat band can also be understood by considering that
theB1 irrep of the flat band cannot be induced to theE2 irrep of the band-
touching point. This concept of identifying singularities through symmetry
is akin to the topological criterion used for disconnected elementary band
representations (EBRs)45–47, butwith the added consideration of amolecular
symmetry group in addition to the site symmetry group. Notably, this
approach avoids the need to calculate Wannier functions or identify EBRs
for tight-binding models.

The detailed analysis provided in Methods leads to

EFB ¼ EΔ
MEM þ E∇

MEM ¼ �2 ð3Þ

∣ΨFB
K

� ¼ ∣ΨMEM

� ¼ sðk1Þ; sðk2Þ; sðk3Þ
� �

=N: ð4Þ

for HK, where N is the normalization factor. The odd parity of ∣ΨFB
K i is a

result of the alternating sign of the two-sublattice wavefunction ∣Ψ3a=b=c

E
.

The single-branchflat bandwith a double-degeneracy touching point at Γ in
a one-orbital tight-binding model for the kagome lattice is thus explained.

Inversion interorbital flat band
We next extend the molecular MEM to construct interorbital flat bands for
systems involving two orbitals. Properly orienting the orbitals based on
kagome lattice symmetries, the diagonal blocks of the Hamiltonian for
intraorbital hopping have the same form as HK, with orbital-dependent
hopping parameters t11/22. The off-diagonal interorbital hopping blocks are
dependent on the site symmetry of the orbitals. If the two orbitals belong to
the same irrep in the site symmetry group, the interorbital hoppingwill be of
the same form as HK. In this case, absent of intraorbital hopping, the off-
diagonal blocks generate two (a bonding and an antibonding) sets of typical
kagome band dispersions with an effective interorbital hopping t± = ±t12.
Theflat bands have identical properties to the one-orbital kagome flat band.

Newphenomena arisewhen the two orbitalsO1/2 transformdifferently
(for instance, even or odd) under certain symmetry operations S and thus
belong to different irreps γ1/2 of the site symmetry group: χγ1=2 ðSÞ ¼ ± 1 as
an example. It is important to note that although the even and odd orbitals
belong to different irreps of the local site symmetry, mixing between the
orbitals are no longer forbidden at general k-points in the 2DBrillouin zone
because of the lowering of symmetry42. We first consider the case where S
corresponds to the inversion operation. For instance, common inversion

even/odd combination of orbitals can be s and p orbitals or d and p orbitals.
Inversion even and odd orbitals have been studied on the square lattice40 but
withmore hoppings beyond the nearest neighbor and parameter tuning. In
lattices made of corner-sharing motifs, an exact flat-band solution can be
achieved. To satisfy the inversion symmetries, the off-diagonal interorbital
hopping blocks of the two-orbital Hamiltonian must be antisymmetric
(skew-symmetric):

Hoe
6× 6 ¼

t11H
K
11 t12H

ASy
12

t12H
AS
12 t22H

K
22

" #
; ð5Þ

where

HAS
12 � HAS

I ¼ 2i

0 �sðk3Þ sðk2Þ
sðk3Þ 0 �sðk1Þ
�sðk2Þ sðk1Þ 0

2
64

3
75: ð6Þ

Mathematically, all odd dimension antisymmetric matrices must
have at least one zero eigenvalue because their determinants are zero.
That happens at all k gives rise to flat bands at zero-energy.
Consequently, the second nearest neighbor interorbital hopping with
the same sign structure also gives flat bands at E = 0. A similar zero-
energy flat band was found in systems with spin-orbit-coupling48

interpreted by line-graph and split-graph, but not in multiorbital
systems. The antisymmetric interorbital HAS

I can also be divided into
up and down triangles: HAS

I ¼ HΔ
I þH∇

I . Because the triangles are
related by inversion, HAS

I ¼ HΔ � H∇ can be understood as flipping
the sign of hopping t12 for one set of triangles. Thus, the mutual
eigenvector ∣ΨMEM

�
in Eq. (4) for the one-orbital Hamiltonian is also

shared by the up and down triangles for HAS
I , leading to two

degenerate flat bands at energy

EFB
I ¼ EΔ

MEM � E∇
MEM ¼ 0; ð7Þ

described by flat band wavefunctions

∣ΨFB;I
O1

E
¼ sðk1Þ; sðk2Þ; sðk3Þ; 0; 0; 0

� �
=N0;

∣ΨFB;I
O2

E
¼ 0; 0; 0; sðk1Þ; sðk2Þ; sðk3Þ

� �
=N0:

ð8Þ

The flat bands with band-touching singularity are shown in the two-orbital
band dispersion in Fig. 2a. Note that the odd-parity interorbital flat band
wavefunctions in Eq. (8) are alsomutual eigenstates of the single-orbital flat
band in each orbital sector given in Eq. (4). Consequently, two non-

Fig. 2 | Band dispersions with inversion/mirror antisymmetric interorbital
hopping generated flat bands on the kagome lattice. a, b Band dispersion of the
two-orbital models showing singular inversion (a) and the nonsingular mirror (b)
interorbital flat bands. The interorbital hopping is t12 = 1.0 eV. Bands are doubly

degenerate in the absence of intraorbital hopping. c, d Band dispersion in the
inversion interorbital model, in the presence of nearest neighbor (nn) intraorbital
hopping tnn11 ¼ �0:20 eV (c) and the mirror interorbital model, in the presence of
nearest neighbor intraorbital hopping tnn22 ¼ 0:20 eV (d).
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degenerate and perfectly flat bands remain robust even in the presence of
significant intraorbital hopping, as shown in Fig. 2c. The singularity of the
flat band at Γ point evolves fromDirac-like under predominant interorbital
hopping (Fig. 2a) to quadratic band touching when intraorbital hopping
becomes significant (Fig. 2c). Moreover, different inversion symmetries
usually involve orbitals of different angular momentum such as the p and d
orbitals. The different atomic energies and crystal fields can further separate
the singular flat bands with these unique signatures in realistic materials of
kagome as well as pyrochlore materials to be discussed below.

Mirror interorbital flat band
Next, we study the case where the site symmetry S is with respect to all
mirror operations and construct the interorbital flat bands. Consider a
mirror-even orbital and a mirror-odd orbital under S with respect to either
set of mirror planes perpendicular to the kagome lattice plane (σv and σ 0v).
Examples include the px and py orbitals or the dxz and dyz orbitals described
by χB1

px=dxz
ðσv=σv0 Þ ¼ ± 1 and χB2

py=dyz
ðσv=σv0 Þ ¼ ∓1. The resulting inter-

orbital hopping Hamiltonian matrix HAS
12 � HAS

M must also be antisym-
metric, but real and inversion-even:

HAS
M ¼ 2

0 �cðk3Þ cðk2Þ
cðk3Þ 0 �cðk1Þ
�cðk2Þ cðk1Þ 0

2
64

3
75: ð9Þ

The mirror antisymmetric interorbital HAS
M has emergent zero-energy flat

bands, just as the inversion-antisymmetric HAS
I discussed above. Thus,

EFB
M ¼ 0. There are, however, important differences in their properties. As

shown inFig. 2b, themirror antisymmetricflat bands areno longer singular,
i.e., without symmetry-protected band-touching points with dispersive
bands, in contrast to the inversion-antisymmetric flat bands shown in Fig.
2a. Moreover, they are different from the flat bands constructed based on
chiral operators20 since the interorbital flat bands in this work do not
originate from site number differences but rather from the differences in
orbital symmetry.

The flat band wavefunctions can be directly deduced from the lattice
harmonics of HAS

M . For a matrix of the form:
HAS

3× 3 ¼ ½0; a;�b;�a; 0; c; b;�c; 0�, its zero-energy eigenvector wave-
function is ∣ΨAS

0 i ¼ ½c; b; a�=N0, where N0 is a normalization factor.
Therefore, in the absence of intraorbital hopping,∣ΨAS

0 i is a zero-energy
eigenvector of either orbital of the two-orbital Hamiltonian, leading to the
flat band wavefuctions

∣ΨFB;M
O1

i ¼ ½cðk1Þ; cðk2Þ; cðk3Þ; 0; 0; 0�=N0;

∣ΨFB;M
O2

i ¼ ½0; 0; 0; cðk1Þ; cðk2Þ; cðk3Þ�=N0:
ð10Þ

They are parity even under mirror operation. When intraorbital hoppings
are added to one of the orbitals, the flatness and pure orbital content of the
other orbital’s flat band are unchanged, as shown in Fig. 2d.

The interorbital flat band wavefunction can also be understood using
the MEM. The two-orbital Hamiltonian can be divided into four chiral
hopping sectors (clockwise: L; counterclockwise: R) on the up/down tri-
angles: Hoe

M ¼ HΔ
R þHΔ

L þH∇
R þ H∇

L (see Methods for details). For the
mirror interorbital model, tΔR ¼ �tΔL ¼ t∇R ¼ �t∇L ¼ 1. For each Hamil-
tonian, there are three degenerate bonding/antibonding eigenstates at
energies E± = ±1 described by two-sublattice eigenvectors. A shared eigen-
vector exists for a combination of mirror (σv) related chiral up and down
triangles HA ¼ HΔ

R þ H∇
L and HB ¼ HΔ

L þH∇
R with EA=B

± ¼ ± ðtΔR=L þ
t∇L=RÞ ¼ 0 and the corresponding wavefunction ∣ΨA=B

O1
i ¼

∣e± k1 ; e± k2 ; e± k3 ; 0; 0; 0i and ∣ΨA=B
O2

i ¼ ∣0; 0; 0; e∓k1 ; e∓k2 ; e∓k3i. It can be
shown thatHA∣ΨB

Oi
i ¼ ðHB∣ΨA

Oi
iÞ� is a pure imaginary vector, thus leading

to two flat band solutions ∣ΨFB;M
Oi

i ¼ ∣ΨA
Oi
i þ ∣ΨB

Oi
i, as given in Eq. (10),

since ðHA þHBÞ∣ΨFB;M
Oi

i ¼ μ∣ΨFB;M
Oi

i as the dispersive cross terms can-
cel out.

It is interesting to note that the mirror interorbital flat band wave-
function ∣ΨFB;M

Oi
i is an even-parity counterpart of the single-orbital kagome

flat band wavefunction ∣ΨFB
K i in Eq. (4) and the inversion interorbital flat

band wavefunction ∣ΨFB;I
Oi

i in Eq. (8). Conceptually, the even-parity coun-

terpart remains a flat band solution because the hopping sign structure
within a trianglemotifmatcheswith the one-orbitalflat bandwavefunction.
The difference in the parity of the flat band wavefunctions of the inversion
and mirror even/odd Hamiltonians reveals an intriguing mechanism for
generating two kinds of flat bands. For singular flat bands with band-
touching points with other dispersive bands, such as the ones in the single-
orbital and the inversion interorbital band structures shown in Figs. 1d,
middle and 2a, the uniform hopping within the motifs gives rise to mutual
eigenstates. By contrast, hopping from orbital Oi to orbital Oj with alter-
nating signs within each motif breaks the original mirror-symmetry of the
isolated triangles, thus removing themirror-protected degeneracy; but if the
signs match the one-orbital flat band solution, there can be a branch of
nonsingular dispersion-canceling eigenstates without band-touching
points. In the CLS language31,44, the wavefunction of ∣ΨFB;M

Oi
i is a complete

CLS with no singularity. In the EBR language45–47, the band representations
of the flat band ∣ΨFB;M

Oi
i are connected because they are equal to the

representations of the symmetrized orbital Oi at any k-point, thus no sin-
gularity exists. The MEM understanding of the flat band wavefunction
provides a bottom-up construction of the CLS or Wannier function and a
direct determination of the symmetry properties with insights into the
singularity of the flat band.

The inversion interorbital flat band can also be understood in a similar
way by decomposing the multiorbital Hamiltonian Hoe

I ¼ HA � HB.
Because of the minus sign, in order to cancel out the dispersive cross term
HA∣ΨB

�þHB∣ΨA

�
, a flat band wavefunction of ∣ΨI

FBi ¼ ∣ΨAi � ∣ΨBi is
required,which is the inversion-odd solution (seeMethods for details) given
in Eq. (M.10). From another perspective, it does not break the point group
symmetry of the isolated triangular molecules, but rather the inversion
symmetry relating the up and down triangles. Therefore, the original E
degeneracy still exists, leading to singular flat bands. Inversion even/odd
orbitals have different orbital angularmomentumquantumnumber l, while
mirror even/odd orbitals can come from the same orbital with different
magnetic quantum number ml or orientations. Thus, on general grounds,
large interorbital hoppings betweenmirror even/oddorbitals aremore likely
to appear, of which the properties are discussed in the following.

Properties and realizations
The two degenerate interorbital flat bands can be shifted in energy by a
difference in the orbital potential energy μ1 and μ2 without disturbing the
flatness because they are pure in orbital content. The double-degeneracy of
the dispersive bandswill be lifted aswell. An interesting feature of themirror
even/oddflat bands is the pure-type (p-type) site-localizedwavefunctions at
the M point shown in Fig. 2b, d. In each orbital sector, this corresponds to
the sublattice polarized p-type state that resides at the van Hove singularity
(VHS) in a single-orbital kagome band structure (Fig. 1d) with nn
hopping49. In bothHK andHAS

M;I , the p-type vHS is pinned at the energy of
the corresponding orbital. While the interorbital second nn hopping does
not perturb the flat bands, the intraorbital nn or second nn hopping inHK

ii
transforms the corresponding flat band in Fig. 2b into a kagome-like dis-
persionwith unchanged p-type vHSwavefunction and energy shown inFig.
2d. These remarkable properties of dynamical generation of interorbital flat
bands and the transformation to vHS turns out to be crucial for under-
standing the electronic structure of the ”135” kagome metals. At the M
points, the well-known HK band structure possesses a pair of p-vHS and
m-vHS for the dispersive bands (Fig. 1d), while theflat bandhosts themixed
two-sublattice eigenstate. However, in the DFT band structure of “135”
kagomemetals, the pair of low-energy kagome-like bands are anchoredby a
pair of double p-type vHSs for the dispersive d-bands12, thus defying a
single-orbital effective model description. The mirror flat band with p-type
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eigenstate at the M point provides a mechanism by transforming the
interorbital flat band to the kagome-like dispersion with the additional p-
vHS, thus producing the anomalous double p-type vanHove singularities in
the electronic structure13. Moreover, this mechanism also provides a plau-
sible origin for the flat band-like spectral buildup around the p-vHS
observed in ARPES measurements14,15.

To make further connections to realistic materials50–52, we construct
explicitly a two-orbital tight-bindingHamiltonian for thedxz anddyzorbitals
using the Slater-Koster formalism42. We show that although it is not
enforced by the lattice symmetry and is affected by intraorbital hopping, the
interorbital flat band can play a significant role in the electronic structure of
realistic materials. After linear combinations or rotations24,53 of the two d-
orbitals basedon lattice symmetry,we obtain twohybrid orbitals labeled as 1
and2, as shown inFig. 3a, havingdifferentmirror-symmetry (even andodd)
with respect to the mirror planes σv or σv0 . The HamiltonianHxz/yz has the
structure of Hoe

6× 6 in Eq. (5), where the hopping parameters of the hybrid
orbitals determined by the overlap tδ and tπ for the δ andπ bonds: t11 = (tπ−
3tδ)/2, t22 = (tδ − 3tπ)/2, and t12 ¼

ffiffiffi
3

p ðtδ þ tπÞ=2,

Hxz=yz ¼
1
2 ðtπ � 3tδÞHK

11

ffiffi
3

p
2 ðtδ þ tπÞHASy

Mffiffi
3

p
2 ðtδ þ tπÞHAS

M
1
2 ðtδ � 3tπÞHK

22

" #
: ð11Þ

As illustrated in Fig. 3b, the interorbital hopping indeed has an alternating
sign structure. Intriguingly, when tπ = 3tδ or tδ = 3tπ, the intraorbital hop-
ping for oneof thehybrid orbitals in thediagonal blocks of Eq. (11) vanishes.
Our findings then imply that the associated interorbital flat band would
remainperfectlyflat,while theother becomes significantlydispersive.This is
confirmed by the calculated band dispersion plotted in gray lines in Fig. 3c,
d, in the presence of a moderate crystal field splitting between the hybrid
orbitals “1” and “2”.We thus predict interorbital nearlyflat or narrowbands
involving dxz and dyz orbitals in proximity to having tδ: tπ = 1: 3 or 3: 1 in
kagome materials.

It is constructive to study the effects of atomic spin-orbit coupling (SOC)
Hsoc = λsocL ⋅ S. Since the hybrid orbitals are l = 2 angular momentum
eigenstates withmagnetic quantumnumberml = ±1, the SOC leaves the spin
component sz conserved and the up and down spin bands degenerate. For
smallλsoc, the bands shift, and the band crossings are split, as shown inFig. 3c.
The flat band remains isolated and mostly across the whole Brillouin zone.
The calculated Chern number for a single spin-projection is marked next to
each band, which is the same as the spin-Chern number when taking into
account the degenerate band of the different spin-projection carrying an
opposite Chern number. In this case, the isolated flat band carries zeroChern
number, as proved in previous work on nonsingular flat bands44,54. Inter-
estingly, increasing λsoc causes a gap between the flat band and the dispersive

band toclose andreopen, asplotted inFig. 3d, andendows theflatbandwitha
nontrivial spin-resolved Chern number or a spin-Chern number.

Topologically nontrivial flat bands have been investigated for possible
realizations of fractionalized anomalous quantum states. When time-
reversal symmetry is broken either spontaneously by correlation effects or
by coupling to ferromagnetic structures, partial occupation of the spin-
polarized flat band has the potential for realizing fractional quantum
anomalous Hall state or fractional Chern insulators1–5,55,56. When time-
reversal symmetry is preserved, partial filling of the degenerate spin-Chern
band has the potential of realizing fractional quantum spin Hall state or the
proposed fractional topological insulator40. The isolated topological inter-
orbital flat band discussed here can provide a useful direction for material
realizations of the fractionalized quantum states.

Extension to pyrochlore
The 3D pyrochlore lattices are made of isolated motifs of apex-
sharing tetrahedrons with four-sublattices, as shown in Fig. 4a. The
band dispersions of a single-orbital on the pyrochlore lattice with
nearest neighbor hopping are plotted in Fig. 4c along the high
symmetry directions of the 3D Brillouin zone in Fig. 4b. Similar to
the 2D kagome lattice, the 3D flat band wavefunction in the single-
orbital pyrochlore can be understood as the mutual eigenstates of the
up (red) and down (blue) tetrahedrons (see Methods
Fig. 5). Applying the MEM to the T2 irrep of the tetrahedron point
group Td, there are two sets of two-sublattice eigenvectors ΨP

j¼1;2 that
form a shared 3D flat band wavefunction at energy EP

FB ¼ �2t,

∣ΨFB
a

� ¼ sðk23Þ; sðk31Þ; sðk12Þ; 0
� �

=Na;

∣ΨFB
b

� ¼ sðk24Þ; sðk41Þ; 0; sðk12Þ
� �

=Nb

ð12Þ

where kij = k ⋅ (ri− rj). These parity-odd wavefunctions, responsible for the
double-degeneracy of the 3Dflat bands, arebasis functions of theEu irrepof
the D3d site symmetry. The 3D flat bands have been observed
experimentally57.

A natural question is whether 3D interorbital flat bands can be con-
structed for multiorbital quantum materials on the pyrochlore lattice.
Building on the findings on the kagome lattice, we consider two atomic
orbitals that are even and odd under a site symmetry operation S on the
pyrochlore lattice, such as s− p, p− d, ord− f combinations. Because of the
four-sublattices, the tight-bindingHamiltonian is nowan8 × 8matrix of the
same form as in Eq. (5). A crucially important difference from the kagome
lattice is that the 4 × 4 off-diagonal antisymmetric interorbital hopping
matrix (HAS

12 ) is now even-dimensional. As a result, only inversion even/odd
HAS

I is allowed, but mirror even/odd HAS
M vanishes in a two-orbital model

due to the impossible sign alternations to satisfy all mirror orC2 operations.

Fig. 3 | Realization of mirror interorbital flat band on the kagome lattice using
the Slater-Koster formalism. a Linear combination of dxz and dyz orbitals to form
two sets of orbitals with different mirror-symmetry for both sets of mirror planes.
b Alternating two sets of orbitals on the kagome lattice have alternating signs of
interorbital hopping parameters. tπ = 3tδ = 0.6 eV, μ1 = 0.0 eV, μ2 =−1.0 eV for

(c, d). c Flat band disturbed by onsite spin-orbital-coupling with λSOC = 0.1 eV,
remaining topological trivial when there is no band-crossing. d Flat band disturbed
by onsite spin-orbital-coupling with λSOC = 0.3 eV, becoming topological nontrivial
when band-crossing occurs.
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The antisymmetric inversion even/odd interorbital Hamiltonian HAS
12 �

HAS
I on the pyrochlore lattice is given by

H12 ¼ 2i

0 �sðk21Þ �sðk31Þ �sðk41Þ
sðk12Þ 0 �sðk32Þ �sðk42Þ
sðk13Þ sðk23Þ 0 �sðk43Þ
sðk14Þ sðk24Þ sðk34Þ 0

2
6664

3
7775: ð13Þ

Note that thedeterminantof an even-dimensional antisymmetricmatrix is a
Pfaffian, which is usually non-zero. Surprisingly, the inversion interorbital
matrix in Eq. (13) has a zero determinant DetðHAS

12 Þ ¼ 0 due to the lattice
geometry. The flat band wavefunctions are given by

∣ΨFB
O1 ;a

E
¼ sðk23Þ; sðk31Þ; sðk12Þ; 0; 0; 0; 0; 0

� �
=Na;

∣ΨFB
O1 ;b

E
¼ sðk24Þ; sðk41Þ; 0; sðk12Þ; 0; 0; 0; 0

� �
=Nb;

ð14Þ

∣ΨFB
O2 ;a

E
¼ 0; 0; 0; 0; sðk23Þ; sðk31Þ; sðk12Þ; 0

� �
=Na;

∣ΨFB
O2 ;b

E
¼ 0; 0; 0; 0; sðk24Þ; sðk41Þ; 0; sðk12Þ

� �
=Nb:

ð15Þ

In the inversion interorbital model, there is a new Dirac crossing at Γ
point in both kagome and pyrochlore lattices, as shown in Figs. 2a,
4d. Similar to the kagome lattice, the inversion interorbital flat bands
on the pyrochlore lattice have the remarkable property that their
flatness is robust against significant intraorbital hopping, which only
shifts the flat band energies, as explicitly shown in Fig. 4d. The same
singularity and triple degeneracy at Γ point can also be explained by
the intact symmetry of the tetrahedrons, independent of the inver-
sion symmetry that relates the up and down tetrahedrons.

In realistic band structures, a hybrid of quadratic and Dirac
crossing may occur. Whether the interorbital hopping is dominant or
not can be judged by the features of the dispersive bands with respect
to the singular flat band. For instance, in a recent study11 of CuV2S4,
which contains a pyrochlore structure, the interorbital Dirac crossing
features of the dispersive bands dominate over quadratic band
touching at Γ point, pointing to the proximity to an inversion
interorbital flat band between different atoms (possibly of Cu d and S
p orbitals) with significant interorbital hopping.

Discussion
We introduced a new theoretical framework to discover and con-
struct singular and nonsingular flat bands in multiorbital 2D kagome
and 3D pyrochlore crystals. These lattice structures have corner-
sharing motifs containing either an odd or an even number of sub-
lattices, which are shown to be suitable for the isolated molecular
approach and the mutual eigenstate method. The method bridges the
gap between the geometric understanding of the lattice based on line-
graph methods and the numerical construction of orthonormal
Wannier functions in realistic multiorbital electronic structures. In
comparison to the compact localized state (CLS) method, which
interprets the flat band by constructing CLS from the eigenmode31,
our method directly derives the flat band eigenstates without diag-
onalizing the tight-binding Hamiltonian. Additionally, it establishes a
connection between the symmetry of the flat band wavefunction and
the underlying lattice geometry. For the molecular state method itself,
we have advanced it by using the mutual eigenstate method (MEM)
to find the wavefunction, replacing the original mathematical
construction33,37–39. This modification provides deeper insights into
the degeneracy of flat bands, especially in higher dimensions such as
the pyrochlore lattice. Although the current methods are limited to a

Fig. 4 |One-orbital and inversion interorbitalflat bands on the pyrochlore lattice.
a Pyrochlore lattice structure consisting of up and down tetrahedrons. The solid
lines indicate the unit-cell. b Brillouin Zone and high symmetry path.
c Pyrochlore one-orbital band structure with t =−1.0 eV, where there are

doubly-degenerate flat bands. d Inversion interorbital flat band with t12 = 1.0 eV
and t1 = 0.0 eV, t2 = 0.0 eV (black thick line) or t1 =−0.5 eV, t2 = 0.0 eV (orange
thin line).

Fig. 5 | Up (red) and down (blue) tetrahedrons in pyrochlore lattice. The two
tetrahedrons are defined by the different chirality with respect to the vector from the
shared vertex to the center of the triangle face consisting of the rest of the vertices.
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small number of orbitals, they can serve as an elementary starting
point for constructing CLS or Wannier states.

We discovered that the local site-symmetry S plays a crucial role in the
emergence of interorbitalflat bands betweena pair of even/oddorbitalswith
respect to S. Interorbital flat bands and wavefunctions are found for S
corresponding to the local inversion andmirror symmetries on the kagome
lattice, and for local inversion on the 3D pyrochlore lattice. The singularity
properties and the energies of the flat bands are shown to be determined by
the hopping symmetrieswithin isolatedmolecularmotifs. The singularityof
flat bands can be classified by the incomplete CLS31,44 or, similarly, the
absence of symmetry-preserving, exponentially localized Wannier
functions45–47.Our approachoffers both intuitive and analytical insights into
flat band singularities by examining the symmetry properties of interorbital
hopping within isolated molecular eigenstates. If the interorbital hopping
preserves isolated molecular symmetries, the original degeneracy of mole-
cular eigenstates ensures a singularity or band-touching of flat bands with
the dispersive band at the Γ point, corresponding to the incompleteness of
CLSat the touchingpoint.On theother hand,when the interorbital hopping
breaks any isolated molecular symmetry, it lifts the degeneracy of the
molecular eigenstate, resulting innonsingularflat bands.Ourmethod shares
some similarities with the concept of identifying elementary band repre-
sentations (EBRs) for topologically nontrivial bands45–47, but it provides a
compact, lattice geometry and orbital symmetry-based approach for mul-
tiorbital tight-bindingmodels without calculatingWannier functions or the
full determination of EBRs.

Direct atomic realizations of such interorbital flat bands and the
potential for hosting novel topological states are illustrated in the Slater-
Koster framework for the mirror even/odd orbitals on the kagome lattice.
The proposed mechanism for the interorbital flat bands is directly relevant
to the search and design of flat bands in kagome and pyrochlore materials
for studying novel correlated and topological quantum states. It provides a
plausible interorbital flat band mechanism for the intriguing electronic
structure of kagome metals AV3Sb5, such as the anomalous p-type vHS12,13

and the flat band high spectral intensity buildup around the vHS below the
Fermi level observed inCsTi3Bi5

14 andCsV3Sb5
15, aswell as the incipientflat

band responsible for the non-Fermi behavior in pyrochloremetal CuV2S4
11.

The findings pave the way for new directions in flat band exploration and
the understanding of multiorbital electronic structures.

Methods
General proof of the symmetry structure
The mirror-symmetry operator M along the y-direction that keeps site-1
invariant while exchanging site-2 with site-3 can be expressed as a 6 × 6
matrix in the two-orbital basis C for the even/odd orbitals:

M ¼

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 �1 0 0

0 0 0 0 0 �1

0 0 0 0 �1 0

2
666666664

3
777777775
; C ¼

ce1
ce2
ce3
co1
co2
co3

2
666666664

3
777777775

ðM:1Þ

The other set of mirror symmetries can also be represented in similar ways.
TheHamiltonian satisfies:MHM−1 =H. Therefore, the interorbital hopping
has the antisymmetric form: ϵijktijc

e
i c

o
j , where ϵijk is the total antisymmetric

tensor.
Another way to describe the symmetry structure is based on the two-

center integral approximation42, where the hopping strength is approxi-
matedby the atomic orbital overlap fαβ = ∫ΨαΨβdr3. The representationof the
hopping parameters can be determined: χγ

f αβ
ðSÞ ¼ χ

γα
Ψα ðSÞχγβ

Ψβ ðSÞ, where S is
a local site symmetry. For the kagome lattice, χγ

f αβ
ðSÞ are all one-dimensional

irreps and the intraorbital hopping for any orbital gives χγ
f αβ
ðSÞ ¼ 1 and

γ ¼ A1. Therefore, all intraorbital hoppingmatrix exhibits simple s-orbital
symmetry. For the interorbital hopping between, e.g. mirror even and odd

orbitals, χγf ¼ χB1
dxz
χB2
dyz
, γ ¼ B1 �B2 ¼ A2. Thus, the interorbital hopping

terms tαβij c
α
i c

β
j should transform under this irrep. For the pyrochlore lattice,

the two-dimensional irreps become complicated with complex repre-
sentations. For exam-
ple, χγf ¼ χ

Eg

dxz
χ
Eg

dyz
; γ ¼ Eg �Eg ¼ A1g þA2g þEg .

MEM for single-orbital model
The eigenvectors of a triangle molecule are: ∣Ψ1

� ¼ 1; 1; 1½ �= ffiffiffi
3

p
, ∣Ψ2

� ¼
�1;�1; 2½ �= ffiffiffi

6
p

and ∣Ψ3a

� ¼ �1; 1; 0½ �= ffiffiffi
2

p
. The latter two degenerate

states can be linearly combined into ∣Ψ3b

� ¼ 1; 0;�1½ �= ffiffiffi
2

p
and

∣Ψ3c

� ¼ 0;�1; 1½ �= ffiffiffi
2

p
, which together with ∣Ψ3a

�
form a C3 rotation

symmetric eigenvector set. Placing up (down) triangle molecules on a tri-
angular netwith aligned equal triangle edgesai and shared vertexes results in
the kagome lattice. The eigenvectors of n2 molecular HΔ and H∇ in the
kagome lattice is equivalent to a Fourier transform of the molecular
eigenvectors based on the translation symmetry of the triangular lattice,
while the eigenvalues remain degenerate and independent of k:

∣ΨΔ=∇
1

E
¼ e ± ik1 ; e± iðk1�k3Þ; e± ik3

� �
=N1; ðM:2Þ

∣ΨΔ=∇
2

E
¼ �e± ik1 ;�e± iðk1�k3Þ; 2e± ik3

� �
=N2; ðM:3Þ

∣ΨΔ=∇
3a

E
¼ �e± ik1 ; e± ik2 ; 0

� �
=N3: ðM:4Þ

The two sets of eigenvectors form the eigenspaces of theHamiltonians of the
up and down triangles, spanning the same k-space,

HΔ=∇ ¼ tΔ=∇
0 e∓ik3 e± ik2

e± ik3 0 e∓ik1

e∓ik2 e± ik1 0

2
64

3
75: ðM:5Þ

The Hamiltonians and eigenvectors of the up and down triangles are
complex conjugates of eachother due to the inversion symmetry relating the
two sets of triangles. Thedegeneracy of the energies atE =−t corresponds to
the band-touching degenerate point at the Γ point. Away from the Γ point,
the degeneracy is lifted, and only one eigenvector still has dispersionless
energy, which is the mutual eigenstate of HΔ/∇. To find the shared
eigenspace, a linear combination of k-space eigenvectors with different
origins is performed,

Φγjk ¼ P3
m¼1

Pno
n¼1

Pdj
i¼1

eik�ðrm�r0nÞaiw
γj
i;mc

y
k;m

¼ Pno
n¼1

Pdj
i¼1

aiΨ
γj
i ðk; nÞ

ðM:6Þ

which is allowed by the energy degeneracy for all k-point. Here ai is the
linear combination coefficients between different eigenstates, w

γj
i;m is the

eigenstate coefficients for mth site in the ith eigenvector of irrep γj, and fr0ng
is a limited set of no ≪ n2 origins.

The mutual eigenvector satisfies invariance under inversion:

gIΦ
γj
k ¼ ±Φ

γj
gI k
, each site remains themselves under inversion thus a set of

inversion related gIðrm � r0nÞ ¼ rm � r0n0 becomes themain requirement as
shown in Fig. 6c. By contrast, before linear combination, the ∣ΨΔ

1=2=3i does
not match with the right eigenvector ∣Ψ∇

1=2=3i pattern because they are not

inversion invariant as shown in Fig. 6a, b. The problem is thus transformed
into finding a proper set of origins and eigenvectors.

For an origin r0n, if there exists jrp � r0nj≠jrq � r0nj for non-zerow
γj
i;p=q

(number of w can be two or three), there must exist another origin r0n0 in
order to form the inversion pair for site p or q. Because there is no possibility
for a one-sublattice eigenstate in E, if jrp � r0nj ¼ jrp � r0n0 j, there must
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exists jrs � r0n0 j≠jrp � r0n0 j≠jrs � r0nj. As a consequence, the number of
origins quickly increaseno→Z*N, whereZ ≤D(C6v) andwon’t enclose. In a
word, frm � r0ngðm ¼ jwγj

i;mj≠ 0Þ is not inversion invariant unless for any
non-zero w

γj
i;p=q; jrp � r0nj ¼ jrq � r0nj. The center of the triangles can also

be excluded from the origin choice due to the infinite propagation of the
inversion-pair vectors. As a result, only the eigenvectors ∣Ψ3a=b=ci with two
non-zero w

γj
i;p=q (two-sublattice for short) satisfy the above requirement.

Meanwhile, the origins and their inversion partners have to lie on the three
mirror planes σv bisecting the bonds to satisfy the conditions simulta-
neously,whichare the center of thehexagons.Aroundone triangle, there are
three hexagon centers, forming a set of fjrm � r0njg that contains all point
group symmetry partners gI jrm � r0nj.

Thus we have derived the flat band solution ∣ΨFB
K i. Because the

eigenvectors ∣Ψ3a=b=ci are odd with respect to the mirror planes bisecting
correspondingbonds, the combined eigenvector ∣ΨFB

K i is oddwith respect to
inversion symmetry as shown in Fig. 6c: ∣ΨFB

K i ¼ ½sðk1Þ; sðk2Þ; sðk3Þ�=N .
The description ofB1 irrep is for the wavefunction under the site symmetry
C2v. The resulting wavefunction is the shared eigenstate of HΔ and H∇ and
has a k-independent total energy EFB

K ¼ EΔ
3 þ E∇

3 ¼ �tΔ � t∇ ¼ �2t for
the one-orbital model, and − t − (− t) = 0 for the inversion even/odd
interorbital model.

This process to find flat band states of single-orbital model for more
than two sublattices necessitates the linear combination of degenerate
eigenvectors, leading to an inevitable band touching between the resulting
flat band and other dispersive bands, asmandated by symmetry58. Similarly,
the flat bands in the pyrochlore structure also touch other dispersive bands
at Γ point57. The wavefunction can also be constructed using the two-
sublattice eigenvectors (ET2

¼ �t) with wT2
p ¼ 1;wT2

q ¼ �1;wT2
r ¼

wT2
s ¼ 0 in the three-fold degenerate irrepT2 for a tetrahedron belonging

to the Td group. Combined with the site symmetryD3d, there are two sets of
two-sublattice solutions out of the three degenerate eigenstates with
EP
1=2=3 ¼ �t: ∣ΨP

1 i ¼ ½1; 1;�1;�1�=2, ∣ΨP
2 i ¼ ½1;�1; 0; 0�= ffiffiffi

2
p

, and
∣ΨP

3 i ¼ ½0; 0; 1;�1�= ffiffiffi
2

p
. They form the two degenerate flat bands solution

belonging to the site symmetry irrepEu with energy E
P
FB ¼ EΔ

T2
þ E∇

T2
¼

�tΔ � t∇ ¼ �2t for the one-orbital model, and − t − (− t) = 0 for the
inversion even/odd interorbital model.

MEM for two-orbital model
In the one-orbital model, the hopping term
tf ðkÞijcyi ðkÞcjðkÞ ¼ ðtf ðkÞjicyj ðkÞciðkÞÞ

y
. Thus, there is no extra degrees of

freedom to further divideHΔ andH∇. By contrast, in the two-orbital model,
because of thepossible orbital combinationsHΔ/∇ canbe further divided into
left and right-handed chiral hopping channels. For example, the right-
handed interorbital chiral hoppings are defined according to
cyO1 ;j

ðkÞcO2 ;i
ððkÞÞwith {ij} = {12}, {23}, {31}. As a result, themirror even/odd

interorbital Hamiltonian is decomposed as

Hoe
M ¼ HΔ

R þHΔ
L þH∇

R þ H∇
L ; ðM:7Þ

where

HΔ=∇
R ¼ tΔ=∇R

0 0 0 0 e∓ik3 0

0 0 0 0 0 e∓ik1

0 0 0 e∓ik2 0 0

0 0 e± ik2 0 0 0

e± ik3 0 0 0 0 0

0 e± ik1 0 0 0 0

2
666666664

3
777777775

ðM:8Þ

and

HΔ=∇
L ¼ tΔ=∇L

0 0 0 0 0 e± ik2

0 0 0 e ± ik3 0 0

0 0 0 0 e± ik1 0

0 e∓ik3 0 0 0 0

0 0 e∓ik1 0 0 0

e∓ik2 0 0 0 0 0

2
666666664

3
777777775

ðM:9Þ

Here, tΔR ¼ �t∇L ¼ tA and t∇R ¼ �tΔL ¼ tB are required to construct the
antisymmetric interorbitalHamiltonianH12. The eigenstates for these chiral
hopping Hamiltonians around the up and down triangles are the inter-
orbital bonding/antibonding states on the three bonds. They are, therefore,
triple-degenerate two-sublattice wavefunctions. We construct the antisym-
metric relation with respect to σv by combining the mirror-related up and
down chiral Hamiltonians: HA ¼ HΔ

R þ H∇
L and HB ¼ HΔ

L þ H∇
R . If

tA = tB, antisymmetric relation with respect to σ 0v also exists because
tΔR ¼ �tΔL , forming the Hamiltonian Hoe

M ¼ HA þHB. If tA =−tB, the
hopping structure is symmetric with respect to σ 0v but antisymmetric with
respect to site inversion center, forming the HamiltonianHoe

I ¼ HA � HB.
As a result, the constructed mutual eigenstates with k-independent
eigenvalues for HA and HB are:
∣Ψ1

A=Bi ¼ ½e± ik1 ; e± ik2 ; e± ik3 ; e∓ik1 ; e∓ik2 ; e∓ik3 �=N1,
∣Ψ2

A=Bi ¼ ½�e± ik1 ;�e± ik2 ;�e± ik3 ; e∓ik1 ; e∓ik2 ; e∓ik3 �=N1. These states form
flat bands at zero-energy, which is a result of the hoppingwith opposite sign
on the up and down triangles. ∣Ψi

A=Bi can be linearly combined into orbital
pure wavefunctions, which will be the eigenstates when the chemical
potential μO1

≠μO2
.

Next to find the total eigenstate forHoe
M orHoe

I . For O1 as an example,
we calculate the cross terms HA∣ΨBi and HB∣ΨAi and obtain
HA∣ΨBi ¼ it½sðk2 � k3Þ; sðk3 � k1Þ; sðk1 � k2Þ; 0; 0; 0�=N , which is purely
imaginary, and HA∣ΨBi ¼ ðHB∣ΨAiÞ�. As a consequence,
HA∣ΨBi þHB∣ΨAi ¼ RealðHA∣ΨBiÞ ¼ 0. Therefore, for the total eigen-
state to remain a flat band solution, the parity of the wavefunction should

Fig. 6 | Demonstration of mutual eigenstate method (MEM) on the kagome
lattice. Up/down triangles are marked in red/blue faces. jr1=2=3 � r0a=b=cj belonging
to different sublattices 1/2/3 are colored in cyan, magenta, and yellow, and w = ±1 is
in filled and empty arrows, respectively. The curved black arrows indicate the
hopping terms with hopping parameters t∇/Δ. a Schematics for ∣ΨΔ

1

�
(left) and ∣Ψ∇

1

�

(right). b Schematics for ∣ΨΔ
3a=b=c

E
(left) and ∣Ψ∇

3a=b=c

E
(right) before linear combi-

nation. c Symmetric hopping within triangles for one-orbital and inversion inter-
orbital flat bands from site 2 or 3 to site-1. The schematic shows that the flat band
eigenstate has a k-independent eigenvalue− (t∇+ tΔ). dAntisymmetric hopping for
∣ΨFB;M

O1

E
from orbital O1 (light colors) to site-1 orbital O2 (dark colors).
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match with the total Hamiltonian:

ðHA ±HBÞ ∣ΨA

�
± ∣ΨB

�� �
¼ μ ∣ΨA

�þ ∣ΨB

�� �
± HA∣ΨB

�þ HB∣ΨA

�� �
¼ μ ∣ΨA

�þ ∣ΨB

�� � ðM:10Þ

Definition of up and down tetrahedrons
The tetrahedron is defined in the following way: form a perpendicular line
r10 from site-1 to the center of triangle of site-2/3/4. Up tetrahedron is a
right-handed triangle 234 around the axis r10, and down tetrahedron is a
left-handed triangle 234 around the axis r10.

Data availability
Relevant data generated in this work are available from the authors upon
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