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Multiphoton quantum van Cittert-Zernike theorem
Chenglong You 1, Ashe Miller1, Roberto de J. León-Montiel 2✉ and Omar S. Magaña-Loaiza 1

Recent progress on quantum state engineering has enabled the preparation of quantum photonic systems comprising multiple
interacting particles. Interestingly, multiphoton quantum systems can host many complex forms of interference and scattering
processes that are essential to perform operations that are intractable on classical systems. Unfortunately, the quantum coherence
properties of multiphoton systems degrade upon propagation leading to undesired quantum-to-classical transitions. Furthermore,
the manipulation of multiphoton quantum systems requires nonlinear interactions at the few-photon level. Here, we introduce the
quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems. This
fundamental theorem demonstrates that the quantum statistical fluctuations, which define the nature of diverse light sources, can
be modified upon propagation in the absence of light-matter interactions. The generality of our formalism unveils the conditions
under which the evolution of multiphoton systems can lead to surprising photon statistics modifications. Specifically, we show that
the implementation of conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated
quantum statistics below the shot-noise limit. Remarkably, this effect cannot be explained through the classical theory of optical
coherence. As such, our work opens new paradigms within the established field of quantum coherence.
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INTRODUCTION
The van Cittert-Zernike theorem constitutes one of the pillars of
optical physics1,2. As such, this fundamental theorem provides the
formalism to describe the modification of the coherence proper-
ties of optical fields upon propagation1–4. Over the last decades,
extensive investigations have been conducted to explore the
evolution of spatial, temporal, spectral, and polarization coherence
of diverse families of optical beams5–8. In the context of classical
optics, the investigation of the van Cittert-Zernike theorem led to
the development of schemes for optical sensing, metrology, and
astronomical interferometry9–11. Nowadays, there has been
interest in exploring the implications of the van Cittert-Zernike
theorem for quantum mechanical systems12–17. Recent efforts
have been devoted to study the evolution of the properties of
spatial coherence of biphoton systems12,13,15,17–19. Specifically, the
van Cittert-Zernike theorem has been extended to analyze the
spatial entanglement between a pair of photons generated by
parametric down conversion12,13,20,21. The description of the
evolution of spatial coherence and entanglement of propagating
photons turned out essential for quantum metrology, spectro-
scopy, imaging, and lithography12,13,15,17,22–26. Nevertheless, pre-
vious research has not explored the evolution of the excitation
mode of the field that establishes the quantum statistical
properties of light fields12–26.
There has been important progress on the preparation of

multiphoton systems with quantum mechanical properties27–31.
The interest in these systems resides in the complex interference
and scattering effects that they can host25,30,32,33. Remarkably,
these fundamental processes define the statistical fluctuations of
photons that establish the nature of light sources27–29,34–36.
Furthermore, these quantum fluctuations are associated to distinct
excitation modes of the electromagnetic field that determine the
quantum coherence of a light field34,36. In the context of quantum
information processing, the interference and scattering among
photons have enormous potential to perform operations that are

intractable on classical systems25,32. However, the manipulation of
multiphoton systems requires complex light-matter interactions
that are hard to achieve at the few-photon level28,37. Indeed, it has
been assumed that light-matter interactions are needed to modify
the excitation mode of an optical field38,39. These challenges have
motivated interest in linear optical circuits for random walks,
boson sampling, and quantum computing32,40,41. Moreover, the
interaction of multiphoton quantum systems with the environ-
ment leads to the degradation of their nonclassical properties
upon propagation33,42. Indeed, quantum-to-classical transitions
are unavoidable in nonclassical systems interacting with realistic
environments42. These vulnerabilities have prevented the use of
nonclassical states of light for the sensing of small physical
parameters with sensitivities that surpass the shot-noise limit24,43.
The possibility of using nonclassical multiphoton states to
demonstrate scalable quantum sensing has constituted one of
the main goals of quantum optics for many decades43.
In contrast to well-established paradigms in the field of

quantum optics12–26, our work demonstrates that the quantum
statistical fluctuations of multiphoton light fields can be modified
upon propagation in the absence of conventional light-matter
interactions. These understood as optical processes taking place in
the absence of photon absorption and emission44. We introduce
the quantum van Cittert-Zernike theorem to describe the under-
lying scattering effects that give rise to photon statistics
modifications in multiphoton systems. Remarkably, our work
unveils the conditions under which sub-shot-noise quantum
fluctuations could potentially be extracted from thermal light
sources. These effects remained elusive for multiple decades due
to the limitations of the classical theory of optical coherence to
describe multiphoton scattering12–26. This stimulated the idea that
the quantum statistical fluctuations of light fields were not
affected upon propagation. Our work provides an all-optical
alternative to prepare multiphoton systems with sub-Poissonian-
like statistics. Previously, similar functionalities have been
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demonstrated in nonlinear optical systems, photonic lattices,
plasmonic systems, and Bose-Einstein condensates27,29,38,45.

RESULTS AND DISCUSSION
Description of the quantum van Cittert-Zernike theorem
We demonstrate the quantum van-Cittert-Zernike theorem by
analyzing the propagation of multiphoton two-mode correlations
in the setup depicted in Fig. 1. In general, each mode can host a
multiphoton system with an arbitrary number of photons. We
consider a thermal, spatially incoherent, unpolarized beam that
interacts with a polarization grating. This grating modifies the
polarization of the thermal beam at different transverse spatial
locations x according to πx/L. Here, L represents the length of the
grating. The thermal beam propagates to the far-field, where it is
measured by two point detectors46–48. We then post-select on the
intensity measurements made by these detectors to quantify the
correlations between different modes of the beam.
The multiphoton quantum van Cittert-Zernike theorem can be

demonstrated for any incoherent, unpolarized state, the simplest
of which is an unpolarized two-mode state49. The two-mode state
can be produced by a source emitting a series of spatially
independent photons with either horizontal (H) or vertical (V)
polarization, giving an initial state27,50

ρ̂ ¼ ρ̂1 � ρ̂2

¼ 1
4

Hj i1 Hj i2 Hh j1 Hh j2
� þ Hj i1 Vj i2 Hh j1 Vh j2

þ Vj i1 Hj i2 Vh j1 Hh j2 þ Vj i1 Vj i2 Vh j1 Vh j2
�
;

(1)

where the subscripts denote the mode. For simplicity, we begin by
considering the case where a single photon is emitted in each
mode.
We can find the state immediately after the polarization grating

shown in Fig. 1 to be

ρ̂pol ¼ P̂ x1ð Þρ̂1P̂ x2ð Þ � P̂ x3ð Þρ̂2P̂ x4ð Þ; (2)

where P̂ðxÞ is the projective measurement given by

P̂ xð Þ ¼ cos2 πx
L

� �
cos πx

L

� �
sin πx

L

� �
cos πx

L

� �
sin πx

L

� �
sin2 πx

L

� �
" #

: (3)

For ease of calculation, we utilize the Heisenberg picture, back-
propagating the detector operators to the polarization grating.
The point detector is modeled by Ôj;k;zðXÞ ¼ âyj;zðXÞâk;zðXÞ, where
z is the distance between the grating and the measurement plane.

The ladder operator âj;zðXÞ is defined as

âj;zðXÞ ¼
R L

2

�L
2
dxâj;0 xð Þ exp½� 2πi

zλ xX�; (4)

where X is the position of the detector on the measurement plane,
λ is the wavelength of the beam and j, k is the polarization of the
operator. Eq. (4) describes the contribution of each point on the
polarization grating plane to the detection measurement. Since
we wish to keep the information of each interaction on the screen,
we choose to calculate the four-point auto covariance by51,52

G 2ð Þ
jklm X; zð Þ ¼ Tr½ρ̂polâyj;z X1ð Þâk;z X2ð Þâyl;z X3ð Þâm;z X4ð Þ�; (5)

where X ¼ X1; X2; X3; X4½ �, allowing for the measurement of a
post-selected coherence. We then set X2= X1 and X4= X3, since
we are working with two point detectors. We allow the operators
of the two detectors to commute, recovering the well-known
expression for second-order coherence53. The second-order
coherence of any post-selected measurement is then found to be

Gð2Þ
jklmðX; zÞ ¼

R
dx1

R
dx2

R
dx3

R
dx4CjklmðxÞFðx;X; zÞ

´ ½δ x1 � x2ð Þδ x3 � x4ð Þ þ δ x1 � x4ð Þδ x3 � x2ð Þ�;
(6)

where the limits of integration for each integral is− L/2 to L/2,
x= [x1, x2, x3, x4], Cjklm xð Þ is the coefficient of the jj i1 kj i2 lh j1 mh j2
element of the density matrix ρ̂pol in Eq. (2), and j, k, l,m∈ {H, V}.
Furthermore, F x;X; zð Þ is given as

F x;X; zð Þ ¼ exp½2πiλz X4x4 � X3x3 þ X2x2 � X1x1ð Þ�: (7)

We set X2= X1 and X4= X3, which properly describes the two
point detectors allowing Eq. (6) to become a 2D Fourier transform6.
By observing Eq. (6), it is important to note that there are two spatial
correlations that contribute to the coherence at the measurement
plane. One is the correlation of a photon with itself which existed
prior to interacting with the polarizer, while the other is the spatial
correlation gained by two photon scattering. It is important to note
that the key difference between our formalism and the classical
formalism is the existence of the scattering term as discussed in the
Supplementary Notes 1 and 3. Due to the nature of projective
measurements in Eq. (2), the density matrix ρ̂pol will no longer be
diagonal in the horizontal-vertical basis, allowing for the beam to
temporarily gain and lose polarization coherence6. The self-
coherence of a photon results in the minimum coherence
throughout all measurements in the far-field. The correlations from
two photon scattering sets the maximum coherence and determines
how it changes with the distance between the detectors.
To extend the description of a two-mode system comprising two

photons to a multiphoton picture capable of handling any state, we
need to propagate a value other than the photon statistics.
Attempting to propagate a multiphoton field under the Schrodinger
and Heisenberg pictures becomes computationally hard, scaling on
the order of O(2nn!) where n represents the number of photons54. As
a result, we propagate multiphoton states using a quantum version
of the beam coherence-polarization (BCP) matrix6,55. This formalism
allows us to estimate the evolution of the four-point-correlation
matrix, reducing the total elements of interest. Consequently, the
two-photon calculation represents the simplest case that the BCP
matrix can handle and is in agreement with the general multiphoton
picture. We begin by defining the BCP matrix as

Ĵ X1; X2; zð Þ� � ¼ Ê
y
H X1; zð ÞÊH X2; zð Þ

D E
Ê
y
H X1; zð ÞÊV X2; zð Þ

D E

Ê
y
V X1; zð ÞÊH X2; zð Þ

D E
Ê
y
V X1; zð ÞÊV X2; zð Þ

D E
2
64

3
75:
(8)

Here, the angle brackets denote the ensemble average, whereas
the quantities Ê

y
α X; zð Þ and Êα X; zð Þ represent the negative- and

Fig. 1 The proposed setup for investigating the multiphoton
quantum van Cittert-Zernike theorem. We consider an incoherent,
unpolarized beam interacting with a polarization grating of length L
at z= 0. After interacting with the grating, the beam propagates a
distance of z onto the measurement plane, where two point
detectors are placed ΔX apart.
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positive-frequency components of the α-polarized (with α=H, V)
field-operator at the space-time point (X, z; t), respectively. We can
then propagate the BCP matrix through the grating and to the
measurement plane, by considering an initial BCP matrix of the form:
I2δ X1 � X2ð Þ55. The details of the calculation can be found in the
Supplementary Notes 1, 2 and 4. Upon reaching the measurement
plane, we can find the second-order coherence matrix given by56

Gð2ÞðX; zÞ ¼ hĴ X1; X2; zð Þ � Ĵ X3; X4; zð Þi: (9)

Each element of the G(2) matrix is a post-selected coherence
matching each combination of polarizations shown in Eqs. (5)-(6).
As shown in the Supplementary Note 2, the result obtained is
equivalent to the approach described in Eqs. (1)-(7).
In order to demonstrate the results of our calculation, we first

look at the second-order coherence of the horizontal mode in the
far-field. By normalizing either Eq. (5) or the matrix element of Eq.
(9), we find the coherence of the horizontal mode to be

gð2ÞHHHH ðνÞ ¼ 1þ 1
16 sinc

2 2� νð Þ þ 5
8 sinc

2 νð Þ þ 1
16 sinc

2 2þ νð Þ
þ 1

4 sinc 2� νð Þsinc 1� νð Þ þ 3
8 sinc

2 1� νð Þ
þ 1

4 sinc 1þ νð Þ sinc 2þ νð Þ þ sinc 1� νð Þð Þ
þ 3

8 sinc
2 1þ νð Þ þ 1

8 sinc νð Þðsinc 2� νð Þ
þ sinc 2þ νð Þ þ 6sinc 1� νð Þ þ 6sinc 1þ νð ÞÞ;

(10)

where gð2Þjklm is the normalized second-order coherence. Here
sincðνÞ ¼ sinðπνÞ= πνð Þ and ν ¼ LΔX= λzð Þ. Therefore, gð2Þjklm depends
on the distance between the detectors ΔX= X1− X2, the length of
the polarization grating L, the wavelength λ, and the distance in the
far field z. The same holds true for all other gð2Þjklm, where each
expression can be found in the Supplementary Notes 4 and 5. Since
Eq. (10) applies to all incoherent unpolarized states, we will perform
the analysis for two mode thermal states, as the statistical properties
are well studied35,36,38,53.

Quantum Coherence of a Multiphoton System upon
Propagation
As shown in Fig. 2, increasing the separation ΔX of the detectors
causes the correlations to gradually decrease. Once ν ≈ 2.7, the
detectors become uncorrelated. We note that g(2)(ν)= 1, ν ≠ 0
represents an uncorrelated measurement since this can only be

true when the two spatial modes become separable. In addition,
when one of the two measured modes is no longer contributing to
the measurement we get a g(2)(ν)= 0. Interestingly, by fixing the
distance ΔX between the two detectors, we can increase the
correlations by moving the measurement plane further into the far-
field. This is equivalent to decreasing ν, causing correlations to
increase to a possible maximum value of g(2)(0)= 1.62. By measuring
gð2Þgratingð0Þ immediately after the polarization grating at x= 0, a
horizontally polarized beam is measured with a gð2Þgratingð0Þ ¼ 2. We
note the theory we presented only applies to the far-field, therefore
these two values do not contradict each other. While the exact
transition between the near and the far-fields are beyond the scope
of the paper, we note that the horizontal mode along the central
axis becomes more coherent as it propagates to the far-field, as
predicted by the van Cittert-Zernike theorem14,51.
Setting one detector to measure the vertical mode and the other

detector the horizontal mode, given by gð2ÞHHVV in Fig. 2, we can
measure the coherence between the horizontal and vertical mode.
This post-selective measurement results in a different effect from
when we only measured only the horizontal mode. Placing the
detectors immediately after the polarization grating at x= 0, we
measure gð2Þgratingð0Þ ¼ 0 since there is no vertically polarized mode.
However, we measure g(2)(0) ≈ 1.1 when the beam is propagated
into the far-field. In this case, the polarization grating leads to the
thermalization of the beam38. This can be verified by removing the
polarization grating and repeating the measurement giving
gð2Þinitialð0Þ ¼ 1 since the two modes are completely uncorrelated.
The measurements of gð2ÞHHHH and gð2ÞHHVV can be performed using

point detectors, however we predict more interesting effects that
can be observed through the full characterization of the field. This
information can be obtained through quantum state tomogra-
phy57,58. We find that the second-order coherence gð2ÞVHHV, g

ð2Þ
HHVH and

gð2ÞHVHV is below one suggesting sub-Poissonian-like statistics—i.e. a
photon distribution narrower than the characteristic Poissonian
distribution of coherent light-sources—which potentially may allow
for sub-shot-noise measurement59. This feature is found using the
BCP matrix approach, therefore it is true for all unpolarized
incoherent fields. The sub-Poissonian-like statistics were achieved
only with the use of post-selection without nonlinear interac-
tions24,25,27. Our theoretical formalism unveils the possibility of
modifying the photon statistics of the electromagnetic field in free
space without resorting to complex light-matter interac-

tions28,38,45,60. Another interesting feature is that the gð2ÞVHHV decays
and resurrects at ν ≈ 1.6 before decaying again. The fact that these
elements are nonzero contrasts classical analyses where off-diagonal
correlations of the system are zero since the system is unpolarized in
the far-field6,49. In fact the classical analysis fails to describe any
emergent phenomena shown since the final density matrix is the
identity matrix (see Supplementary Note 3). This new quantum
degree of polarization is likely caused by the two photon scattering
induced by the polarization grating. Furthermore, the creation of
nonzero off-diagonal elements suggests that we induced correla-
tions between orthogonally-polarized fields in our system.
The sub-Possonian statistics are exclusive to unpolarized systems.

Returning to Eq. (6) we have that there are two correlations
contributing to the final coherence, one from the photons self-
coherence that existed prior to interaction with the screen and
another coherence term that comes from photon scattering. For
unpolarized states there is no initial correlations in the off-diagonal
elements of the density matrix, since by definition the off-diagonal
elements are zero49. This results in the first term of Eq. (6) to be zero
for all off-diagonal elements. As noted above, this term sets the
minimum value of the coherence measurement to zero, allowing for
the measurement of sub-Poissonian-like statistics.
Finally, we would like to highlight the fact that the quantum

statistical properties of multiphoton systems can change upon
propagation without complex light-matter interactions due to the

HHVH
HHVV
HVHV

VHHV
HHHH

0
0.1
0.2
0.3
0.4
1.0
1.2
1.4
1.6

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig. 2 The second-order coherence for various post-selected
measurements in the far field. The x-axis is how the g(2) changes
as a function of ν ¼ LΔX= λzð Þ while keeping L, λ and z fixed. As the
detectors move further apart, the spatial correlations created by the
polarization grating decrease until they diminish entirely at ν ≈ 2.7.
In addition, certain post-selected measurements allow us to quantify
the coherence between two fields that possess sub-Poissonian-like
statistics, suggesting the possibility of sub-shot-noise measure-
ments. Note, these measurements can be also performed using
quantum state tomography57.
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scattering of their constituent single-mode photons carrying
different polarizations. This effect is quantified through the
second-order quantum coherence g(2)(τ= 0) defined as
gð2Þðτ ¼ 0Þ ¼ 1þ ðhðΔn̂Þ2i � hn̂iÞ=hn̂i234,36. In this case, the aver-
aged quantities in g(2)(τ= 0) are obtained through the density
matrix of the system’s state, as described in Eq. (1), at different
spatial coordinates (X, z). In Fig. 3, we report the photon-number
distribution of the combined vertical-horizontal multiphoton field.
In this case, a single photon-number-resolving detector was
placed at X= 0.4L35. Note that by selecting the proper propaga-
tion distance z, one could, in principle, generate on-demand
multiphoton systems with sub-Poissonian-like or Poissonian
statistics27,38, see the Supplementary Note 6 for details on the
combined-field photon-number distribution calculation. As indi-
cated in Figs. 2 and 3, the evolution of quantum coherence upon
propagation lies at the heart of the quantum van Cittert-Zernike
theorem for multiphoton systems. Finally, we note that a
generalized form of the Hanbury Brown and Twiss effect suggests
possible connections with the quantum van Cittert-Zernike
theorem61. We believe that it will be interesting to pursue further
investigations along this research direction.
In conclusion, we have investigated new mechanisms to control

the photon statistics of multiphoton systems. We describe these
interactions using a quantum version of the van Cittert-Zernike
theorem. Specifically, by considering a polarization grating together
with conditional measurements, we show that it is possible to control
the quantum coherence of multiphoton systems. Moreover, we
unveiled the possibility of producing multiphoton systems with sub-
Poissonian-like statistics without complex light-matter interac-
tions28,38,45,60. This possibility cannot be explained through the
classical theory of optical coherence4. Thus, our work demonstrates
that the multiphoton quantum van Cittert-Zernike theorem will have
important implications for describing the evolution of the properties
of quantum coherence of many-body bosonic systems28,33. As such,
our findings could offer alternatives to creating novel states of light by
controlling the collective interactions of many single-photon
emitters30.

METHODS
Calculation of the quantum BCP matrix
We now present the detailed calculation where two-photon
correlations are built up during propagation. Let us start from a

spatially incoherent and unpolarized source, whose four-point
correlation matrix is written, in the f HHj i; HVj i; VHj i; VVj ig basis, as

Gini x1; x2; x3; x4; 0ð Þ ¼ jini x1; x2; 0ð Þ � jini x3; x4; 0ð Þ
¼ λ4I20 δ x2 � x1ð Þδ x3 � x4ð Þ þ δ x2 � x3ð Þδ x1 � x4ð Þ½ �

´

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775;

(11)

where

jini x1; x2; 0ð Þ ¼ λ2I0δ x2 � x1ð Þ 1 0

0 1

� �
(12)

stands for the two-point correlation matrix for a spatially
incoherent and unpolarized photon source, and I0 describes a
constant-intensity factor. Note that, for the sake of simplicity, we
have restricted ourselves to a one-dimensional case, i.e., we have
taken only one element of the transversal vector r= (x, y).
To polarize the source, we make use of a linear polarizer.

Specifically, we cover the source with a linear polarization grating
whose angle between its transmission axis and the x-axis is a
linear function of the form θ= πx/L, with L being the length of the
grating. The four-point correlation matrix after the polarization
grating can thus be written as

Gout x1; x2; x3; x4; 0ð Þ ¼ Py x1ð Þjini x1; x2; 0ð ÞP x2ð Þ� 	� Py x3ð Þjini x3; x4; 0ð ÞP x4ð Þ� 	
´ rect x1=Lð Þrect x2=Lð Þrect x3=Lð Þrect x4=Lð Þ
´ λ4I20 δ x2 � x1ð Þδ x3 � x4ð Þ þ δ x2 � x3ð Þδ x1 � x4ð Þ½ �

(13)

where the product of rect � � �ð Þ functions describe the finite size of the
source, and the action of the polarization grating is given by Eq. (3).
Furthermore, the elements defined by the previous equation

follow a propagation formula of the form62

Gjklm r1; r2; r3; r4; zð Þ ¼ R R R R
Gjklm ρ1; ρ2; ρ3; ρ4; 0ð ÞK� r1; ρ1; zð ÞK r2; ρ2; zð Þ

´ K� r3;ρ3; zð ÞK r4; ρ4; zð Þd2ρ1d2ρ2d
2ρ3d

2ρ4;

(14)

with the Fresnel propagation kernel defined by

Kðr;ρ; zÞ ¼ �i expðikzÞ
λz

exp
ik
2z

ðr � ρÞ2
� �

; (15)

Fig. 3 The modification of the photon-number distribution and quantum coherence of a thermal multiphoton system upon propagation.
In this case, the multiphoton system comprises a mixture of single-mode photons with either vertical or horizontal polarization. We assumed a
single photon-number-resolving detector placed at different propagation distances: a z= 0, b z= 50L, c z= 100L, d z= 150L, e z= 200L,
f z= 250L, g z= 300L, h z= 350L. In the transverse plane, the photon-number-resolving detector is placed at X= 0.4L.
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where k= 2π/λ. Interestingly, in the context of the scalar theory, a
spatially incoherent source is characterized by means of a delta-
correlated intensity function, which indicates that subfields—
making up for the whole source—at any two distinct points across
the source plane are uncorrelated36.
By substituting Eq. (13) into the one dimensional version of Eq.

(14), we can obtain the explicit form of the polarized, four-point
correlation matrix elements. As an example, we can find that, in
the far-field, the normalized four-point correlation function for
H-polarized photons reads as

GHHHH ν1; ν2; ν3; ν4; zð Þ ¼ sinc ν1ð Þ þ 1
2 sinc ν1 � 1ð Þ þ 1

2 sinc ν1 þ 1ð Þ� 	
´ sinc ν2ð Þ þ 1

2 sinc ν2 � 1ð Þ þ 1
2 sinc ν2 þ 1ð Þ� 	

þ 1
16 ½sinc 2þ ν3ð Þ sinc ν4ð Þ þ 2sinc 1� ν4ð Þ þ sinc 2� ν4ð Þð Þ

þ2sinc 1þ ν3ð Þð3sinc ν4ð Þ þ 3sinc 1� ν4ð Þ
þsinc 2� ν4ð Þ þ sinc 1þ ν4ð ÞÞ
þsinc 2� ν3ð Þ sinc ν4ð Þ þ 2sinc 1þ ν4ð Þ þ sinc 2þ ν4ð Þð Þ
þ2sinc 1� ν3ð Þð3sinc ν4ð Þ þ sinc 1� ν4ð Þ
þ3sinc 1þ ν4ð Þ þ sinc 2þ ν4ð ÞÞ
þsinc ν3ð Þð10sinc ν4ð Þ þ 6sinc 1� ν4ð Þ þ sinc 2� ν4ð Þ
þ6sinc 1þ ν4ð Þ þ sinc 2þ ν4ð ÞÞ�

(16)

with

ν1 ¼ L
x2 � x3

λz
; ν2 ¼ L

x4 � x1
λz

; ν3 ¼ L
x2 � x1

λz
; ν4 ¼ L

x4 � x3
λz

:

(17)

Finally, by realizing that when monitoring the two-photon
correlation function with two detectors, at the observation plane
in z, we must set: x2= x3 and x1= x4, we find that

GHHHH ν1; ν2; ν3; ν4; zð Þ ¼ GHHHH 0; 0; ν1;�ν1; zð Þ: (18)

We can follow a similar procedure as above to obtain the
remaining terms of the four-point correlation matrix.
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