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Quantum simulations of materials on near-term
quantum computers
He Ma1,2✉, Marco Govoni 2,3✉ and Giulia Galli 1,2,3✉

Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present
they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term
quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the
quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an
active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory
for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density
functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in
semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers
and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the
way to simulations of realistic materials on near-term quantum computers.
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INTRODUCTION
In the last three decades, atomistic simulations based on the
solution of the basic equation of quantum mechanics have played
an increasingly important role in predicting the properties of
functional materials, encompassing catalysts and energy storage
systems for energy applications, and materials for quantum
information science. Especially in the case of complex, hetero-
geneous materials, the great majority of first-principles simula-
tions are conducted using density functional theory (DFT), which is
in principle exact but in practice requires approximations to
enable calculations. Within its various approximations, DFT has
been extremely successful in predicting numerous properties of
solids, liquids, and molecules, and in providing key interpretations
to a variety of experimental results; however it is often inadequate
to describe so-called strongly-correlated electronic states1,2. We
will use here the intuitive notion of strong correlation as
pertaining to electronic states that cannot be described by static
mean-field theories. Several theoretical and computational meth-
ods have been developed over the years to treat systems
exhibiting strongly-correlated electronic states, including dynami-
cal mean-field theory3,4 and quantum Monte-Carlo5,6; in addition,
ab initio quantum chemistry methods, traditionally developed for
molecules, have been recently applied to solid state problems as
well7. Unfortunately, these approaches are computationally
demanding and it is still challenging to apply them to complex
materials containing defects and interfaces, even using high-
performance computing architectures.
Quantum computers hold promise to enable efficient quantum

mechanical simulations of weakly and strongly-correlated mole-
cules and materials alike8–17; in particular when using quantum
computers, one is able to simulate systems of interacting electrons
exponentially faster than using classical computers. Thanks to

decades of successful experimental efforts, we are now entering
the noisy intermediate-scale quantum (NISQ) era18, with quantum
computers expected to have on the order of 100 quantum bits
(qubits); unfortunately this limited number of qubits still prevents
straightforward quantum simulations of realistic molecules and
materials, whose description requires hundreds of atoms and
thousands to millions of degrees of freedom to represent the
electronic wavefunctions. An important requirement to tackle
complex chemistry and material science problems using NISQ
computers is the reduction of the number of electrons treated
explicitly at the highest level of accuracy19,20. For instance,
building on the idea underpinning dynamical mean field theory
(DMFT)3,4, one may simplify complex molecular and material
science problems by defining active regions (or building blocks)
with strongly-correlated electronic states, embedded in an
environment that may be described within mean-field theory21–23.
In this work, we present a quantum embedding theory built on

DFT, which is scalable to large systems and which includes the
effect of exchange-correlation interactions of the environment on
active regions, thus going beyond commonly adopted approx-
imations. In order to demonstrate the effectiveness and accuracy
of the theory, we compute ground and excited state properties of
several spin-defects in solids including the negatively charged
nitrogen-vacancy (NV) center24–30, the neutral silicon-vacancy (SiV)
center31–36 in diamond, and the Cr impurity (4+) in 4H-SiC37–39.
These spin-defects are promising platforms for solid-state
quantum information technologies, and they exhibit strongly-
correlated electronic states that are critical for the initialization
and read-out of their spin states40–45. Our quantum embedding
theory yields results in good agreement with existing measure-
ments. In addition, we present theoretical predictions for the
position and ordering of the singlet states of SiV and of Cr, and we
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provide an interpretation of experiments that have so far
remained unexplained.
Importantly, we report calculations of spin-defects using a

quantum computer46,47. Based on the effective Hamiltonian
derived from the quantum embedding theory, we investigated
the strongly-correlated electronic states of the NV center in
diamond using quantum phase estimation algorithm (PEA)8,48 and
variational quantum eigensolvers (VQE)49–51, and we show that
quantum simulations yield results in agreement with those
obtained with classical full configuration interaction (FCI) calcula-
tions. Our findings pave the way to the use of near term quantum
computers to investigate the properties of realistic heterogeneous
materials with first-principles theories.

RESULTS
General strategy
We summarize our strategy in Fig. 1. Starting from an atomistic
structural model of materials (e.g., obtained from DFT calculations
or molecular dynamics simulations), we identify active regions
with strongly-correlated electrons, which we describe with an
effective Hamiltonian that includes the effect of the environment
on the active region. This effective Hamiltonian is constructed
using the quantum embedding theory described below, and its
eigenvalues can be obtained by either classical algorithms such as
exact diagonalization (FCI) or quantum algorithms.

Embedding theory
A number of interesting quantum embedding theories have been
proposed over the past decades52. For instance, density functional
embedding theory has been developed to improve the accuracy
and scalability of DFT calculations53–57. Density matrix embedding
theory (DMET)58–60 and various Green’s function based
approaches61,62, e.g., DMFT, have been developed to describe
systems with strongly-correlated electronic states. At present, ab
initio calculations of materials using DMET and DMFT have been
limited to relatively small unit cells (a few tens of atoms) of pristine
crystals, due to their high computational cost63,64. In this work, we
present a quantum embedding theory that is applicable to
strongly-correlated electronic states in realistic heterogeneous
materials and we apply it to systems with hundreds of atoms. The
theory, inspired by the constrained random phase approximation
(cRPA) approach65–67, does not require the explicit evaluation of
virtual electronic states68,69, thus making the method scalable to
materials containing thousands of electrons. Furthermore, cRPA
approaches contain a specific approximation (RPA) to the
screened Coulomb interaction, which neglects exchange-
correlation effects and may lead to inaccuracies in the description
of dielectric screening. Our embedding theory goes beyond the

RPA by explicitly including exchange-correlation effects, which are
evaluated with a recently developed finite-field algorithm70,71.
The embedding theory developed here aims at constructing an

effective Hamiltonian operating on an active space (A), defined as
a subspace of the single-particle Hilbert space:

Heff ¼
XA

ij
teffij a

y
i aj þ

1
2

XA

ijkl
Veff
ijkla

y
i a

y
j alak: (1)

Here, teff and Veff are one-body and two-body interaction terms
that take into account the effect of all the electrons that are part of
the environment (E) in a mean-field fashion, at the DFT level. An
active space can be defined, for example, by solving the
Kohn–Sham equations of the full system and selecting a subset
of eigenstates among which electronic excitations of interest take
place (e.g., defect states within the gap of a semiconductor or
insulator). To derive an expression for Veff that properly accounts
for all effects of the environment including exchange and
correlation interactions, we define the environment density
response function (reducible polarizability) χE ¼ χE0 þ χE0fχ

E , where
χE0 ¼ χ0 � χA0 is the difference between the polarizability of the
Kohn–Sham system χ0 and its projection onto the active space χA0
(see Supplementary Information (SI)). χE thus represents the
density response outside the active space. The term f = V + fxc
is often called the Hartree-exchange-correlation kernel, where V is
the Coulomb interaction and the exchange-correlation kernel fxc is
defined as the derivative of the exchange-correlation potential
with respect to the electron density. We define the effective
interactions between electrons in A as

Veff ¼ V þ fχEf ; (2)

given by the sum of the bare Coulomb potential and a
polarization term arising from the density response in the
environment E. When the RPA is adopted, the exchange-
correlation kernel fxc is neglected in Eq. (2) and the expression
derived here reduces to that used within cRPA. We represent χE

and f on a compact basis obtained from a low-rank decomposition
of the dielectric matrix68,69 that allows us to avoid the evaluation
and summation over virtual electronic states. Once Veff is defined,
the one-body term teff can be computed by subtracting from the
Kohn–Sham Hamiltonian a term that accounts for Hartree and
exchange-correlation effects in the active space (see SI).

Embedding theory applied to spin-defects
The embedding theory presented above is general and can be
applied to a variety of systems for which active regions, or
building blocks, with strongly-correlated electronic states may be
identified: for example active sites in inorganic catalysts or organic
molecules or defects in solids and liquids (e.g., solvated ions in
water). Here we apply the theory to spin-defects including NV and
SiV in diamond and Cr in 4H-SiC. Most of these defects’ excited

Fig. 1 General strategy for quantum simulations of materials using quantum embedding. The full system is separated into an active space
and its environment, with the electronic states in the active space described by an effective Hamiltonian solved with either classical (e.g., full
configuration interaction, FCI) or quantum algorithms (e.g., phase estimation algorithm (PEA), variational quantum eigensolver (VQE)). The
effective interaction between electrons in the active space includes the bare Coulomb interaction and a polarization term arising from the
dielectric screening of the environment (see text), which is evaluated including exchange-correlation interactions.
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states are strongly-correlated (they cannot be represented by a
single Slater determinant of single-particle orbitals), as shown e.g.,
for the NV center in diamond by Bockstedte et al.72 using cRPA
calculations. We demonstrate that our embedding theory can
successfully describe the many-body electronic structure of
different types of defects including transition metal atoms; our
results not only confirm existing experimental observations but
also provide a detailed description of the electronic structure of
defects not presented before, which sheds light into their optical
cycles.
We first performed spin-restricted DFT calculations using hybrid

functionals73 to obtain a mean-field description of the defects and
of the whole host solid. The spin restriction ensures that both spin
channels are treated on an equal footing and that there is no spin-
contamination when building effective Hamiltonians. Based on
our DFT results, we then selected active spaces that include single-
particle defect wavefunctions and relevant resonant and band
edge states. We verified that the size of the chosen active spaces
yields converged excitation energies (see SI). We then constructed
effective Hamiltonians (Eqs. (1)–(2)) by taking into account
exchange-correlation effects, and we obtained many-body ground
and excited states using classical (FCI) and, for selected cases,
quantum algorithms (PEA, VQE). All calculations were performed
at the spin triplet ground state geometries obtained by spin-
unrestricted DFT calculations, thus obtaining vertical excitation
energies (equal to the sums of zero phonon line (ZPL) and Stokes
energies). It is straightforward to extend the current approach to
compute potential energy surfaces at additional geometries1, so
as to include relaxations and Jahn–Teller effects36,72. In Fig. 2 we
present atomistic structures, single-particle defect levels, and the
many-body electronic structure of three spin-defects. Several
relevant vertical excitation energies are reported in Table 1, and
additional ones are given in the SI. In the following discussion,
lower-case symbols represent single-particle states obtained from
DFT and upper-case symbols represent many-body states.
For the NV in diamond, we constructed effective Hamiltonians

(Eq. (1)) by using an active space that includes a1 and e single-
particle defect levels in the band gap and states near the valence
band maximum (VBM). Our FCI calculations correctly yield the
symmetry and ordering of the low-lying 3A2,

3E, 1E and 1A1 states.
The vertical excitation energies reported in Table 1 show that
including exchange-correlation effects yields results in better
agreement with experiments than those obtained within the RPA.
The results obtained within RPA (0.476/1.376/1.921 eV for
1E/1A1/

3E states) are in good agreement with cRPA results reported
in72 (0.47/1.41/2.02 eV).
In the case of the SiV in diamond, we built effective

Hamiltonians using an active space with the eu and eg defect
levels and states near the VBM, including resonant e0u and e0g
states. Effective Hamiltonians including or neglecting exchange-
correlation effects yield similar results, with the excitation energies
obtained beyond RPA being slightly higher. We predicted the first
optically-allowed excited state to be a 3Eu state with vertical
excitation energy of 1.59 eV, in good agreement with the sum of
1.31 eV ZPL measured experimentally31 and 0.258 eV Stokes shift
estimated using an electron-phonon model36. Our calculations
predicted a 3A2u state 11 meV below the 3Eu state, in qualitative
agreement with a recent experimental observation by Green

et al.35, which proposed a 3A2u-
3Eu manifold with 7 meV separation

in energy. The small difference in energy splitting between our
results and experiment is likely due to geometry relaxation effects
are not yet taken into account in our study. In addition to states of
u symmetry generated by eu → eg excitations, we observed a
number of optically dark states of g symmetry (gray levels in Fig.
2b) originating from the excitation from the e0g level and the VBM
states to the eg level.
Despite significant efforts33–36, several important questions on

the singlet states of SiV remain open. These states are crucial for a
complete understanding of the optical cycle of the SiV center. Our
predicted ordering of singlet states of SiV is shown in Fig. 2b. We
find the vertical excitation energies of the 1A1u state to be slightly
higher than that of the 3A2u-

3Eu triplet manifold, suggesting that
the intersystem crossing (ISC) from 3A2u or 3Eu to singlet states
may be energetically unfavorable (first-order ISC to lower 1Eg and
1A1g states are forbidden). We note that the 1Eu and

1A2u states are
much higher in energy than 1A1u and are not expected to play a
significant role in the optical cycle. In addition the first-order ISC
process from the lowest energy singlet state 1Eg to the 3A2g
ground state is forbidden by symmetry. Overall our results
indicate that the 3A2g state is populated through higher-order
processes and therefore the spin-selectivity of the full optical cycle
is expected to be low. While more detailed studies including spin-
orbit coupling are required for definitive conclusions, our
predictions shed light on the strongly-correlated singlet states of
SiV and provide a possible explanation for the experimental
difficulties in measuring optically-detected magnetic resonance
of SiV.
We now turn to Cr in 4H-SiC, where we considered the

hexagonal configuration. We constructed effective Hamiltonians
with the half-filling e level in the band gap and states near the
conduction band minimum including resonance states. Upon
solving the effective Hamiltonian, we predict the lowest excited
state to be a 1E state arising from e → e spin-flip transition, with
excitation energy of 1.09 (0.86) eV based on embedding
calculations beyond (within) the RPA. Results including
exchange-correlation effects are in better agreement with the
measured ZPL of 1.19 eV37, where the Stokes energy is expected
to be small given the large Debye-Waller factor39. There is
currently no experimental report for the triplet excitation energies
of Cr in 4H-SiC, but our results are in good agreement with
existing experimental measurements for Cr in GaN, a host material
with a crystal field strength similar to that of 4H-SiC38. We predict
the existence of a 3E + 3A1 manifold at ≃ 1.4 eV and a 3E0þ3A0

2
manifold at ≃ 1.7 eV above the ground state (Fig. 2c), resembling
the 3T2 manifold (1.2 eV) and 3T1 manifold (1.6 eV) for Cr in GaN
observed experimentally74. We note that in many cases it is
challenging to study materials containing transition metal
elements with DFT75. The agreement between FCI results and
experimental measurements clearly demonstrates that the
embedding theory developed here can effectively describe the
strongly-correlated part of the system, while yielding at the same
time a quantitatively correct description of the environment.

Quantum simulations of spin-defects
The results presented in the previous section were obtained using
classical algorithms. We now turn to the use of quantum
algorithms. To perform quantum simulations with PEA and VQE,
we constructed a minimum model of an NV center including only
a1 and e orbitals in the band gap. This model (four electrons in six
spin orbitals) yields excitation energies within 0.2 eV of the
converged results using a larger active space. In Fig. 3 we show
the results of quantum simulations.
We first performed PEA simulations with a quantum simulator

(without noise)46 to compute the energy of 3A2,
3E, 1E, and 1A1

states. We used molecular orbital approximations of these states

1For example, one may follow the strategy of ref. 72 and compute
excited states of defects along given normal modes, which are usually
obtained from delta-SCF calculations. This type of treatment, albeit
approximate, provides valuable insights into the vibrational properties
of defects in excited states.
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derived from group theory26 as initial states for PEA, which are
single Slater determinant for 3A2 (MS = 1) and 3E (MS = 1) states,
and superpositions of two Slater determinants for 1E and 1A1
states. As shown in Fig. 3a, PEA results converge to classical FCI
results with an increasing number of ancilla qubits.
We then performed VQE simulations with a quantum simulator

and with the IBM Q 5 Yorktown quantum computer47. We

estimated the energy of the 3A2 ground state manifold by
performing VQE calculations for both the single-Slater-
determinant MS = 1 component and the strongly-correlated
MS = 0 component. Within a molecular orbital notation, MS = 1
and MS = 0 ground states can be represented as aaexey

�� �
and

1ffiffi
2

p aaexey
�� �þ aaexey

�� �� �
, respectively, where a, ex, ey (spin-up) and

Fig. 2 Electronic structure of spin-defects. (a), (b), and (c) present results for the negatively-charged nitrogen vacancy (NV) in diamond, the
neutral silicon vacancy (SiV) in diamond, and the Cr impurity (4+) in 4H-SiC, respectively. Left panels show spin densities obtained from spin
unrestricted DFT calculations. Middle panels show the position of single-particle defect levels computed by spin restricted DFT calculations.
States included in active spaces (see text) are indicated by blue vertical lines. Right panels show the symmetry and ordering of the low-lying
many-body electronic states obtained by exact diagonalization (FCI calculations) of effective Hamiltonians constructed with exchange-
correlation interactions included.
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a, ex , ey (spin-down) denote a1 and e orbitals. To obtain the MS = 0
ground state, we used a closed-shell Hartree–Fock state aaexexj i
as reference; the MS = 1 ground state is itself an open-shell
Hartree–Fock state, so we started with a higher energy reference
state aexexey

�� �
in the 3Emanifold. We used unitary coupled-cluster

single and double (UCCSD) ansatzes49 to represent the trial
wavefunctions. Fig. 3b and c shows the estimated ground state
energy as a function of the number of VQE iterations, where VQE
calculations performed with the quantum simulator correctly
converges to the ground state energy in both the MS = 1 and
MS = 0 case. Despite the presence of noise, whose characteriza-
tion and study will be critical to improve the use of quantum
algorithms76, the results obtained with the quantum computer
converge to the ground state energy within a 0.2 eV error.
Calculations of excited states with quantum algorithms will be the
focus of future works.

DISCUSSION
With the goal of providing a strategy to solve complex materials
problems on NISQ computers, we proposed a first-principles
quantum embedding theory where appropriate active regions of a
material and their environment are described with different levels
of accuracy, and the whole system is treated quantum mechani-
cally. In particular, we used hybrid DFT for the environment, and
we built a many-body Hamiltonian for the active space with

effective electron-electron interactions that include dielectric
screening and exchange-correlation effects from the environment.
Our method overcomes the commonly used random phase
approximation, which neglects exchange-correlation effects;
importantly it is applicable to heterogeneous materials and
scalable to large systems, due to the algorithms used here to
compute response functions70,71. We emphasize that the

Table 1. Vertical excitation energies (eV) of the negatively charged
nitrogen vacancy (NV) and neutral silicon vacancy (SiV) in diamond
and Cr (4+) in 4H-SiC, obtained using the random phase
approximation (RPA: third column) and including exchange-
correlation interactions (beyond RPA: fourth column). Experimental
measurements of zero-phonon-line (ZPL) energies are shown in
brackets in the fifth column. Reference vertical excitation energies are
computed from experimental ZPL when Stokes energies are available.

System Excitation RPA Beyond-RPA Expt.

NV 3A2 ↔ 3E 1.921 2.001 2.180a (1.945a)
3A2 ↔ 1A1 1.376 1.759
3A2 ↔ 1E 0.476 0.561
1E ↔ 1A1 0.900 1.198 (1.190b)
1A1 ↔ 3E 0.545 0.243 (0.344–0.430c)

SiV 3A2g ↔ 3Eu 1.590 1.594 1.568d (1.31e)
3A2g ↔ 3A1u 1.741 1.792
3A2g ↔ 1Eg 0.261 0.336
3A2g ↔ 1A1g 0.466 0.583
3A2g ↔ 1A1u 1.608 1.623
3A2g ↔ 1Eu 2.056 2.171
3A2g ↔ 1A2u 2.365 2.515
3A2u ↔ 3Eu 0.003 0.011 (0.007e)

Cr 3A2 ↔ 3E 1.365 1.304
3A2 ↔ 3A1 1.480 1.406
3A2$3E0 1.597 1.704
3A2$3A02 1.635 1.755
3A2 ↔ 1E 0.860 1.090 (1.190f)
3A2 ↔ 1A1 1.560 1.937

aRef. 24.
bRef. 25.
cEstimated by Ref. 30 with a model for intersystem crossing.
dComputed with Stokes energy from Ref. 36.
eRef. 35.
fRef. 37.

Fig. 3 Quantum simulations of a minimum model of the NV
center in diamond using the phase estimation algorithm (PEA)
and a variational quantum eigensolver (VQE). The energy of the
3A2 ground state manifold is set to zero for convenience. a PEA
estimation of ground and excited states of the NV center. Error bars
represent the uncertainties due to the finite number of ancilla
qubits used in the simulations; dashed lines show classical FCI
results. b VQE estimation of ground state energy, starting from
aexexey
�� �

state (MS = 1, see text). c VQE estimation of ground state
energy, starting from aaexexj i state (MS = 0); strongly-correlated
1ffiffi
2

p aaexey
�� �þ aaexey

�� �� �
state (MS = 0 state in the 3A2 manifold) is

obtained with VQE.
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embedding theory presented here provides a flexible framework
where multiple effects of the environment may be easily
incorporated. For instance, dynamical screening effects can be
included by considering a frequency-dependent screened Cou-
lomb interaction, evaluated using the same procedure as the one
outlined here for static screening; electron-phonon coupling
effects can be incorporated by including phonon contributions
in the screened Coulomb interactions. Furthermore, for systems
where the electronic structure of the active region is expected to
influence that of the host material, a self-consistent cycle in the
calculation of the screened Coulomb interaction of the environ-
ment can be easily added to the approach.
We presented results for spin-defects in semiconductors

obtained with both classical and quantum algorithms, and we
showed excellent agreement between the two sets of techniques.
Importantly, for selected cases we showed results obtained using
a quantum simulator and a quantum computer, which agree
within a relatively small error, in spite of the presence of noise in
the quantum hardware. We made several predictions for excited
states of SiV in diamond and Cr in SiC, which provide important
insights into their full optical cycle. We also demonstrated that a
treatment of the dielectric screening beyond the random phase
approximation leads to an accurate prediction of excitation
energies.
The method proposed in our work enables calculations of

realistic, heterogeneous materials using the resources of NISQ
computers. We demonstrated quantum simulations of strongly-
correlated electronic states in considerably larger systems (with
hundreds of atoms) than previous studies combining quantum
simulation and quantum embedding19–23. We have studied solids
with defects, not just pristine materials, which are of great interest
for quantum technologies. The strategy adopted here is general
and may be applied to a variety of problems, including the
simulation of active regions in molecules and materials for the
understanding and discovery of catalysts and new drugs, and of
aqueous solutions containing complex dissolved species. We
finally note that our approach is not restricted to strongly-
correlated active regions and will be useful also in the case of
weakly correlated systems, where different regions of a material
may be treated with varying levels of accuracy. Hence we expect
the strategy presented here to be widely applicable to carry out
quantum simulations of materials on near-term quantum
computers.

METHODS
Density functional theory
All ground state DFT calculations are performed with the Quantum
Espresso code77 using the plane-wave pseudopotential formalism.
Electron-ion interactions are modeled with norm-conserving pseudopo-
tentials from the SG15 library78. A kinetic energy cutoff of 50 Ry is used. All
geometries are relaxed with spin-unrestricted DFT calculations using the
Perdew-Burke-Ernzerhof (PBE) functional79 until forces acting on atoms are
smaller than 0.013 eV / Å. NV and SiV in diamond are modeled with 216-
atom supercells; Cr in 4H-SiC is modeled with a 128-atom supercell. The
Brillouin zone is sampled with the Γ point.

Construction of effective Hamiltonians
Construction of effective Hamiltonians is performed with the WEST code69,
starting from wavefunctions of spin-restricted DFT calculations. For this
step, we remark that the use of hybrid functional is important for an
accurate mean-field description of defect levels, even though the
geometry of defects are well represented at the PBE level. We used a
dielectric dependent hybrid (DDH) functional73 which self-consistently
determines the fraction of exact exchange based on the dielectric constant
of the host material. In particular, 17.8% and 15.2% of exact exchange were
used for the calculations of defects in diamond and 4H-SiC, respectively.
The DDH functional was shown to yield accurate band gaps of diamond
and silicon carbide, as well as optical properties of defects41,42,80–82. After

hybrid functional solutions of the Kohn–Sham equations are obtained,
iterative diagonalizations of χ0 are performed, and density response
functions and fxc of the system are represented on a basis consisting of the
first 512 eigenpotentials of χ0. Finite field calculations of fxc are performed
by coupling the WEST code with the Qbox83 code. FCI calculations84 on the
effective Hamiltonian are carried out using the PySCF7 code.

Quantum simulations
In order to carry out quantum simulations, a minimum model of the NV
center is constructed by applying the embedding theory with a1 and e
orbitals beyond the RPA.
In PEA simulations, the Jordan–Wigner transformation85 is used to map

the fermionic effective Hamiltonian to a qubit Hamiltonian, and Pauli
operators with prefactors smaller than 10−6 a.u. are neglected to reduce
the circuit depth, which results in less than 10−4 a.u. (0.003 eV) change in
eigenvalues. In order to achieve optimal precision, the Hamiltonian is
scaled such that 0 and 2.5 eV are mapped to phases ϕ = 0 and ϕ = 1 of
the ancilla qubits, respectively. We used the first-order Trotter formula to
split time evolution operators into 4 time slices.
In VQE simulations, the parity transformation9 is adopted. For the

simulation of the MS = 1 state, the resulting qubit Hamiltonian acts on four
qubits and there are two variational parameters in the UCCSD ansatz. For
the simulation of the MS = 0 state, we fixed the occupation of the a orbital
and the resulting qubit Hamiltonian acts on 2 qubits. We replicated the
exponential excitation operator twice, with parameters in both replicas
variationally optimized. Such a choice results in six variational parameters,
providing a sufficient number of degrees of freedom for an accurate
representation of the strongly-correlated MS = 0 state. Parameters in the
ansatz are optimized with the COBYLA algorithm86.
Quantum simulations are performed with the QASM simulator and the

IBM Q 5 Yorktown quantum computer using the IBM Qiskit package46.
Each quantum circuit is executed 8192 times to obtain statistically reliable
sampling of the measurement results.
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