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The aging human body shape
Alexander Frenzel1, Hans Binder1,2, Nadja Walter3, Kerstin Wirkner2,4, Markus Loeffler1,2,4 and Henry Loeffler-Wirth 1,2✉

Body shape and composition are heterogeneous among humans with possible impact for health. Anthropometric methods and
data are needed to better describe the diversity of the human body in human populations, its age dependence, and associations
with health risk. We applied whole-body laser scanning to a cohort of 8499 women and men of age 40–80 years within the frame of
the LIFE (Leipzig Research Center for Civilization Diseases) study aimed at discovering health risk in a middle European urban
population. Body scanning delivers multidimensional anthropometric data, which were further processed by machine learning to
stratify the participants into body types. We here applied this body typing concept to describe the diversity of body shapes in an
aging population and its association with physical activity and selected health and lifestyle factors. We find that aging results in
similar reshaping of female and male bodies despite the large diversity of body types observed in the study. Slim body shapes
remain slim and partly tend to become even more lean and fragile, while obese body shapes remain obese. Female body shapes
change more strongly than male ones. The incidence of the different body types changes with characteristic Life Course
trajectories. Physical activity is inversely related to the body mass index and decreases with age, while self-reported incidence for
myocardial infarction shows overall the inverse trend. We discuss health risks factors in the context of body shape and its relation to
obesity. Body typing opens options for personalized anthropometry to better estimate health risk in epidemiological research and
future clinical applications.

npj Aging and Mechanisms of Disease             (2020) 6:5 ; https://doi.org/10.1038/s41514-020-0043-9

INTRODUCTION
Human body dimensions and shape vary between individuals in
an age-dependent manner. Body size and shape are governed by
genetic and environmental factors, including lifestyle with
potential impact for health. There is growing evidence that body
shape and regional body composition are strong indicators of
metabolic health1,2. For example, overweight and obesity increase
risks for developing metabolic and cardiovascular diseases in an
age-dependent manner3. Simple anthropometric measures such
as the body mass index (BMI) and waist circumference are often
used to define the obesity status of a person. However, it turned
out that about 10% of BMI-defined obese individuals of European
ethnicity are healthy in terms of their metabolic state, while
another nearly 10% have a normal BMI but are metabolically
unhealthy4,5. Health risk obviously associates in a more complex
way with human body dimensions and depends, for example, on
the relation between fat and muscles and their distributions along
the body4. For example, upper body and lower body fat depots
show opposite associations with risk for diabetes and cardiovas-
cular diseases6–8.
Fat distribution can be analyzed in detail using imaging

techniques, such as computed tomography and magnetic
resonance imaging, which are relatively expensive methods
requiring expert skills and which are therefore difficult for
application in large population studies. Other methods, such as
dual-energy X-ray absorptiometry (DXA) and bioelectrical impe-
dance analysis, represent interesting options of estimating
“internal” tissue distribution in the human body. Three-
dimensional (3D) whole-body laser scanning provides another
promising technique for evaluating “external” body shape by
granting the opportunity to assess dozens of anthropological
body measures at once with high accuracy and within only a few

seconds of time9. Body scanning is utilized in medical application,
for example, for cosmetic and reconstructive surgery10,11, and
increasingly in health research to study anthropometry of
hundreds to thousands of participants in epidemiological cohort
studies9,12 to assess their possible relevance for health risk
prediction.
The capability of 3D laser scanning anthropometry arises from

the vast number of measured body surface dimensions that allow
discovery of health risk phenotypes beyond simple, one-
dimensional classification schemes based on the waist-to-hip
ratio (WTH) or the BMI. However, current applications usually do
not consider the whole information provided by the set of body
measures and instead use only a small part of them often to
extract only body indices such as BMI or WTH13–16. 3D body scans
were applied in the Leipzig Research Center for Civilization
Diseases (LIFE), conducting the largest population-based study
with extensive phenotyping of urban individuals in Germany17.
Previously, we proposed a concept of human body types based

on a machine learning to extract meta-measures from the LIFE-
ADULT body scanning data18. However, it remains unclear how
body shapes change upon aging, and how body types describe
the aging process.
Health scientists and epidemiologists increasingly use a Life

Course approach to interpret anthropometrical data because body
measures such as weight, height, and BMI in earlier stages of life
seem to affect diseases later in life, such as obesity, type 2
diabetes, hypertension, or stroke19. Developmental trajectory
types enabled to assess the relation between body shape and
the mortality risk20. The results indicate the health benefit of body
shape management across the lifespan, but they also underline
the necessity of developing elaborated measures of body shapes
and their age-depending characterization.
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In this publication, we aim at studying and characterizing
systematic alterations of anthropometric measures as a function of
participant’s age using cross-sectional data derived from 3D laser
scanning technique of the LIFE-ADULT cohort. Hereby, we direct
our special focus towards alterations of body shapes of
participants based on their stratification into body types according
to our previous classification scheme.

RESULTS
Aging as seen by body indices
The LIFE-ADULT cohort included 10,000 participants sampled from
the population of Leipzig. This cross-sectional study covers an age
range from mid-age (about 40 years) up to elderly (80 years) men
and women. Basic characteristics of the sampling are summarized
in Table 1. 3D body scanning data is available for 8499
participants, which were stratified by sex and age to estimate
the alterations of “classical” anthropometrical characteristics (body
height, weight, BMI, and waist-to-hip circumference ratio (WTH))
upon aging (Fig. 1). Body heights of both sexes start to decrease
from an age of about 50 years. The lower quantile of body height
in younger participants (<50 years) approximately corresponds to
the upper quantile in older ones (>70 years). The weight of the
participants alters in an opposed fashion. It increases with age up
to 55–59 years, and then it declines. Combination of height and
weight results in increasing BMI values up to about 60 years and
virtually invariant BMI values for older people. Such a levelling off
behavior of BMI at about 60 years followed by a slight decay was
found also in other studies and seems to reflect rather aging-
related physiological changes than changes of lifestyle (e.g., due
to retirement)21–23.
BMI curves of both sexes are very similar; however, men show a

slightly higher mean BMI than women. The age dependency of
WTH resembles that of BMI, where, however, men show typically
markedly higher values compared to women. Among people older
than 50 years, more than 50% show an “apple-like” body shape
(WTH ≥0.8 and 0.9 in women and men, respectively), which is
found to associate with higher health risk24.
The body indices remain, on average, virtually invariant for

women and men older than 60 years, which makes them
unsuitable to discriminate age-dependent trends for elderly
people.

Overall, about 21–23% of women and men are obese, while a
markedly higher fraction of about 45% of men are overweight
compared with 32% of women. The relative amount of obese
people increases with age, while that of normal weight ones
decreases mainly up to an age of about 60 years. More than 25%
of participants older than 60 years are obese (BMI ≥30). In
summary, standard body indices reflect typical alterations of body
dimensions upon aging, such as decreasing body height and
increasing WTH, sex specifics, and also deviations from linear
changes as, for example, observed for elderly people. Especially
WTH, but also BMI, show sex-specific differences with relation to
obesity. In summary, we find age-related trends of decreasing
body height and weight. This single-feature related anthropome-
trical information is however relatively rough and not sufficient for
a detailed evaluation of changes of the body shape upon aging.

Aging body shapes
Next, we analyzed age-related alterations of the body meta-
measures, which distribute virtually over all parts of the body (Fig. 2a).
Most of them positively correlate with age (Pearson’s correlation
coefficients between 0.2 and 0.5, whereby correlation is stronger
for women than for men in most cases, Fig. 2b). In contrast, thigh
girth and upper body lengths decrease with age on the average as
indicated by negative correlation coefficients.
For visualization of the meta-measures and of their changes, we

use a polar diagram termed “bodygram,” where each axis refers to
one meta-measure (Fig. 2c). The bodygrams reveal marked sex-
specific differences such as larger dimensions of the upper body
(meta-measures H–M) in men, and larger girth and length
dimensions of the legs (meta-measures C and F) in women
(Fig. 2c, left part), meaning that the leg measures were larger in
women in relation to their body height. For an age-dependent
view, we generated mean bodygrams averaged over decadal age
intervals (Fig. 2c, right part), and difference bodygrams between
the youngest (40–49 years) and oldest (70–80 years) strata
(Fig. 2c). Interestingly, these Δ-bodygrams are very similar for
women and men, indicating similar changes of the body measures
upon aging despite the distinct gender specifics of the body-
grams. In correspondence with the correlation analysis, we found
that all meta-measures increase upon aging, except for meta-
measure H estimating upper body lengths. These opposite trends
indicate reshaping of the body towards a smaller torso in relation
to body size in older individuals. The increasing meta-measures
collect mainly girth measures, reflecting a gain of body volume
and weight as discussed above. Other meta-measures such as
J and L (neck length and arm girths, respectively) markedly
increase in women, while C (thigh girth) increases typically in men.
The latter alterations reflect redistributions of body mass from legs
towards the torso, or, in other words, the shift from a pear-like
towards an apple-like body shape.
Overall, we documented alterations of the anthropometrical

meta-measures extracted from 3D body scanning. They reflect
marked sex-specific differences of the body shapes as expected,
especially the broader upper male body and the larger dimension
of female legs. At the same time, we see similar reshaping trends
upon aging in both sexes, namely increasing body girths and a
(relative) shortening of the upper body.

Aging body types
In the next step, we aimed to describe age-related alterations of
the 15 body types identified previously to describe the hetero-
geneity of body shapes observed in the population of Leipzig18

(see also Supplementary Fig. 1). Each of the body types collects
different age strata of participants showing, however, large
variances and broad mutual overlaps (Fig. 3a). We ordered the
body types with increasing mean age of their members. Female
body types (F-types) show a broader range of mean ages, whereas

Table 1. Basic characteristics of the LIFE-ADULT study population.

Male Female

Total study population 4766 5234

Age (years) 57 ± 13 56 ± 12

Height (cm) 176 ± 7 165 ± 7

Weight (kg) 86 ± 14 71 ± 14

Waist circumference (cm) 101 ± 12 91 ± 13

Body mass index (kg/m2) 28 ± 4 26 ± 5

Waist-to-hip ratio 0.96 ± 0.08 0.84 ± 0.08

Step number 9683 ± 4011 9903 ± 3682

Metabolic equivalent 1.41 ± 0.25 1.35 ± 0.24

Alcohol consumption (g/day) 18.8 ± 21.7 5.9 ± 10.0

Reported previous myocardial
infarction

192 (4.0%) 59 (1.1%)

Smoker/ex-smoker 1089 (22.8%)/1715
(36.0%)

1016 (19.4%)/
1090 (20.8%)

Mean values ± standard deviation.
BMI body mass index, WTH waist-to-hip ratio, MET metabolic equivalent.
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male body types (M-types) are more uniform. The gender-
unspecific (B) body types collect either younger (B1) or older
(B2) people and were considered separately for women (B1F, B2F)
and men (B1M, B2M). Variability of M-types is higher than that of
female ones, except for F3, which collects overweight and obese
women of all ages. Age-related changes of BMI are small
compared to variabilities of the body types (see below and
Supplementary Fig. 2). Two F-types (F3 and F4) and one M-type
(M5) collect mainly obese individuals (BMI >30 kg/m2).

Interestingly, the WTH ratios do not reflect obese characteristics
of these body types compared with the other, non-obese ones.
Body types F5, F6, B2M, and M7 collect the highest fractions of
people older than 70 years (Supplementary Fig. 1).
Detailed bodygram analysis of the different body types reveals

type-specific changes upon aging, where a part of them is
characterized by increasing values of the meta-measures, while
others are dominated by decreasing or virtually age-invariant
meta-measures (Supplementary Fig. 6). The shoulder angle, for

Fig. 1 Classical anthropometric measures as a function of age. a Body height, b weight, c BMI, and d waist-to-hip circumference ratio are
given as violin plots stratified by sex and age, respectively. Dashed horizontal lines refer to mean values for women and men, respectively.
e The overall distribution of participants classified as underweight (BMI <18.5), normal weight (18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30),
and obese (BMI ≥30) according to WHO classification53. f BMI categories stratified by age.
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example, increases with age, leading to more hanging shoulders
for older people. Also, chest and arm lengths are growing
measures reflecting the relative increase of the upper body.
Decrease of the dimensions of the lower part of the body is
reflected by decreasing thigh girths in men. Overall, aging body
types are characterized by the shift of body proportions towards a
larger upper part and smaller legs, which become relatively short
and lean. Some of the meta-measures reveal gender-specific
alterations, such as upper body girths, which increases typically in
the M-types reflecting the shift into apple-like body shapes. Other
meta-measures, for example, arm length, arm girths, neck girth,
and neck length specifically change in F-typess and partly reflect

the increase of the upper body’s size. In general, F-types seem to
underlie stronger changes than male ones.
Table 2 summarizes the characteristic body shape changes

observed. The major characteristics of the body types are virtually
age independent. They maintain and partly amplify their most
prominent characteristics in elderly people. For example, body
types with tall and lean shape (B1, F1, and M2) become longer
and/or leaner (longer chest and upper body). Moreover, men with
a broad neck (M4 and M7) keep this property, and participants
with a massive upper body (F3 and M5) additionally get leaner
legs. Overall, these results indicate that, upon aging, slim body
shapes remain slim and partly tend to become even more lean

lower body lengths

Fig. 2 Alterations of body measures with age. a Assignment of the 13 meta-measures defined previously. b Correlation of the meta-
measures with age visualized as polar diagram. The black polygon refers to r= 0. c The “bodygram” visualizes the meta-measures in Z-units as
a polar diagram. The black polygon refers to Z= 0. Mean bodygrams of male and female participants averaged over all ages (left part) and
after stratification into age decades (right part) reveal gender-specific differences and age-dependent changes of the meta-measures.
Difference Δ-bodygrams visualize the changes of the meta-measures between the 40–49 and 70–80 years intervals. The green and red arrows
in the left part highlight the most pronounced differences (ΔZ >±0.2).
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and fragile, while obese body shapes remain obese. For most of
the body types, we observe sex-independent changes upon aging
as described in the previous subsection. Stratification of indivi-
duals into body types provides a detailed picture of aging body
shapes.

The incidence of body types is a function of age
The mean age of the body types ranges from about 45 to more
than 65 years (Fig. 3a and Supplementary Fig. 6), reflecting a
systematic change of the age distribution of the respective
participants. The incidence of most of the body types markedly
alters with age and locally deviates from the mean incidence,
especially for younger and older people (Fig. 4a). Age-dependent
changes are more pronounced for women than for men as
indicated by the steeper slope of the respective curves in Fig. 4a. It
corresponds to the stronger correlation of most of the meta-

measures with age observed for women (Fig. 2b). Net changes of
the relative frequency of body types are all together roughly twice
as much in women (±94%) as in men (±43%; Fig. 4a, right part).
Changes of the incidences of F-typess are observed in the
complete age range, while the incidence of most M-types remains
virtually constant above 60 years.
The body types B1, F1, and M1 show the highest incidence for

middle-aged people of about 40–50 years, while their incidences
then markedly decrease for elderly people, who enrich in F6 and
M7. The incidence of F2, M2, and M3 is virtually independent of
age. These body types collect participants from intermediate age
ranges, which suggest compensation of in- and out-fluxes of type
members upon aging.
Taken together, we find gender-specific aging of body shape

where alterations of women are more pronounced than shape
changes of men. Aging is characterized by the redistributions of
body shapes towards specific body types of elderly people

Fig. 3 Anthropometric parameters of the body types. a The age dependence of F-types (F1–F6) is more pronounced than that for men
(M1–M7). b, c F3 and F4 are obese types among the F-types with a high variability of F3, while M5 is the most obese M-type. d The WTH data
do not reflect these characteristics. P values of differences between the body types groups and age-matched reference groups are indicated
as signs in the head line of each plot (p < 0.1 (+/−), <0.01 (++/–), and <0.001 (+++/−−−).
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showing a narrower age distribution than body types of younger
people (Fig. 4b).

Transitions between the body types suggest Life Course
trajectories
So far, age-dependent alterations are described by changes of the
mean meta-measures (Supplementary Fig. 6) and by the changing
incidences of the body types (Fig. 4a). Both effects are linked
because alterations of the meta-measures potentially change the
incidences of the body types due to the re-classification of
individuals between them. We applied a probabilistic approach to
estimate such transitions. They are assumed to refer to pairs of
individuals from two different body types with similar body
shapes and they are obtained by counting all such similarity links
between all pairwise combinations of body types (see heatmaps in
Fig. 5a, b).
We found such links especially between “younger” body types

(B1, M1, and M2 for men, and B1, F1, and F2 for women). Their
number strongly decreases with increasing age (Supplementary

text). Body types of the intermediate age range (M3–M5 and F3)
form “transition” types linking “younger” with the “older” body
types. The links typically refer to a relative shortening and
broadening of the upper body (decreasing meta-measure H,
increasing meta-measures B, K, and L; see Supplementary text).
For example, the intermediate position of F3 suggests transitions
from F1 and F2 towards F3 and from F3 towards F5 and F6 (see
Fig. 5c). For men, links reflect a less pronounced age structure (Fig.
5d) in correspondence with the weaker age-dependent changes
of M-types (Fig. 4a). Interestingly, F4 (women with massive bodies
and thick girts) forms a relatively isolated body type virtually
without similarity links to other body types. Younger women of
the androgynous body type B1 link to F1, and younger men of B1
link to M1, whereby all of them collect slim bodies. The second
androgynous body type B2 (big upper body) links to M4–M6,
which all show larger upper body dimensions. In summary,
similarity relations between individuals of different body types
enabled us to identify possible transitions between the body types
upon aging. They can be summarized into two major Life Course
trajectories for women linking the younger and older body types
F1 and F5, respectively, either by direct transitions or via the obese
type F3, both affecting predominantly the dimensions of the
upper body. For men, possible trajectories are more diverse,
involve more inter-linked body types, and affect different parts of
the body. Also for men one of this pattern of links reflects two
major Life Courses, one via the obese type M5 and the other via
the tall types M2 and M6.

Body types diversify the aging curves of anthropometric indices
We found that most body types develop specifically upon aging.
For their better characterization, we decomposed the age
dependencies of the “classical body indices” separately for each
body type (Fig. 6). The body type-specific curves of body height
roughly follow the course of the mean body height averaged over
all participants (thick curve) with a slight scatter between them
reflecting different body height levels. In contrast, the body
weight and especially BMI curves of the individual body types
show much stronger scattering (Fig. 6b, c).
Importantly, the BMI of the body types remains virtually

constant, while the overall mean BMI increases until the age of
60–65 years. In other words, body typing roughly stratifies the
population into virtually age-independent BMI levels, especially
for women in the order F1 < F2 < F5 < F6 < F3 < F4 and, to a less
degree for men M1 <M2 < (M3 ≈M6 ≈M7) <M4 <M5. M3, M6,
and M7 are characterized by similar BMI levels (and body height),
but different WTH levels. The relative small scatter between the
body height curves of the individual body types indicates that
body height is only a relatively weak determinant of body typing,
while the much larger spread of the weight curves reflects its
larger impact on BMI.
The WTH index is steadily increasing with age in most body

types, reflecting a general apple-to-pear-like shift of body shapes,
where the slope is largest for F-types with smallest WTH (F1, F2).
WTH seems less suited as an age-independent marker index of
body shape. The slope of the different WTH curves decreases with
increasing WTH level, especially for women, leading to conver-
gence of WTH indices and thus of stable pear-like body shape for
elderly people. F6, accumulating elderly women, shows virtually
constant WTH over age, and M5, accumulating obese men, is even
slightly decreasing for participants older than 60 years. Interest-
ingly, the female body type with the highest BMI, F3, does not
show the largest WTH values, presumably reflecting a different fat
distribution. Also, other body types of both sexes show differing
relative BMI and WTH levels.
The mean BMI levels of F2 and M1 roughly correspond to a BMI

value of about 24 kg/m2, which associates with minimum all-cause
mortality25. The more obese types F4, M4, and especially F3 and

Table 2. List of body types and associated characteristics of
body shape.

Body type General characteristics and
age-related change

Shifting proportions
upon aging

B1 (♀) Long/slim body and legs
Decreasing incidence

Longer chest

B2 (♀) Big upper body; short legs
Incidence independent of age

Longer upper body

F1 Small girths; slim upper body
Decreasing incidence

Longer upper body and
shorter lower body

F2 Small arms; long chest
Incidence independent of age

Shorter and broader legs

F3 Big upper body; big thighs
Slightly increasing incidence

Shorter and leaner legs

F4 Massive body; big girths
Incidence independent of age

Leaner legs

F5 Short upper body
Increasing incidence

Longer chest

F6 Broad drooping shoulders
Increasing incidence

Shorter and leaner legs;
smaller arms and neck

B1 (♂) Long/slim body and legs
Decreasing incidence

(Longer chest)

B2 (♂) Big upper body; short legs
Increasing incidence

Leaner legs (and shorter
upper body)

M1 Slim body; long extremities
Decreasing incidence until
60 years

(Shorter upper body)

M2 Long upper body
Incidence independent of age

Longer chest

M3 Big arms and neck
Incidence independent of age

Shorter and leaner legs

M4 Broad neck; short legs
Incidence independent of age

(Broader neck and
upper body)

M5 Massive upper body
Incidence independent of age

Longer chest; shorter and
leaner lower body

M6 Long body; short extremities
Incidence independent of age

Longer and bigger
upper body

M7 Broad neck; thin legs
Incidence independent of age

(Broader neck)

Men and women in mixed-gender body types (B1 and B2) are considered
separately. Shifting proportions between younger (40–49 years) and older
(70–80 years) participants of a body type are to be interpreted in relation
to body height. Minor effects are given within brackets.
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M5, seem to associate with an increased risk based on previous
data linking mortality risk and BMI25. Overall, stratification of body
shapes into distinct body types levels out age-related alterations
of body indices and enables the study of health-related
associations in terms of defined anthropometric groups.

Association between body types, physical activity, and selected
health and lifestyle factors
Next, we studied the physical activity of the participants of the
LIFE study as a function of age and its association to the body
types. The number of steps per day and the metabolic equivalent
(MET) as measures of physical activity systematically decrease with
age similarly for women and men (Fig. 7a). Among the body types,
we identified more (F1, M1) and less (F3, F4, M5) active ones using

age-matched reference groups for comparison (p value <0.001,
Wilcoxon’s rank-sum test, Fig. 7b). The mean MET value of the
body types decreases as a function of age, except for the most
obese type F4 (Fig. 7c). The MET levels anti-correlate with BMI and
weight values (compare with Fig. 6, r=−0.87). The plots of the
mean BMI and MET values per body type as a function of their
mean age can be roughly described by lines of opposite slopes
(Fig. 7d), but obese body types (F3, F4, M5 and to a less degree,
M3, M4) deviate from these lines towards low MET, while B2F has a
slightly elevated MET value. Note that MET is normalized per kg of
body weight. Consequently, the treated energy grows not in
parallel to body weight of the participants. Low MET values were
found particularly for F3, F4, and also M5, which were risk groups
in terms of high BMI (see above).

Fig. 4 The distribution of body types reveals a systematic shift from young age to older age body types. a Percentage distribution of
participants per body types as a function of age (middle part). The sidebars show the respective percentages of individuals in each of the
body types averaged over all ages (left side) and their changes between the latest and earliest age interval (right side), respectively. b
Frequency distribution of age of the participants collected in the individual body types.
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We use the history of myocardial infarction (i.e., the prevalence
of myocardial infarction in the previous life of participants, PMI) as
one proxy to estimate the health risk of the body types. PMI of M-
types markedly exceeds PMI in nearly all F-types, except for B2F
(Fig. 8a). PMI steeply increases with the mean age for men’s types,
but to a markedly less degree for women (Fig. 8b). We find slightly
increased PMI for obese risk types of men (M5), while PMI is
maximal for M7, presumably because of the increased mean age
of this type (66.7 years). Age is obviously a relevant risk factor for
elderly men compared to BMI and physical activity. Among
women, the androgynous-type B2F shows strikingly high PMI.

Notably, PMI is virtually independent of BMI and MET for women
of all body types, except for B2F, while it increases/decreases with
BMI/MET for men’s body types. Surprisingly, no case of previous
myocardial infarction is among F4 collecting obese and elderly
women (p= 0.11). Also, F3, another obese body type, associates
with a relatively small PMI level. On the other hand, F3 and F4
collect, on the average, younger women than F5 and F6,
suggesting that age constitutes the more relevant risk factor of
PMI for women in contrast to men, who are under increased risk
with increasing BMI for most body types.

Fig. 5 Similarity links suggest an age course of body types. Frequencies of similarity links between female (a) and male (b) body types are
shown as heatmaps. These link frequencies were used to construct a schematic overview of transitions between the body types in an age-
versus-BMI coordinate system. It suggests a partly linear sequence of female body types (c), and a more compact structure for male ones with
more mutual transitions between the different body types (d). Intersecting areas and arrow widths approximately scale with the number of
corresponding links (see also Supplementary Figs. 6 and 7 for more details). The figures schematically illustrate the mean BMI and mean age of
the body types in an arbitrary scale.

A. Frenzel et al.
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Fig. 6 Body height, weight, BMI, and WTH of body types as a function of age. Curves were smoothed for each body type. Thick black lines
indicate the mean parameter development averaged over all female (left panels) and male participants (right panels), respectively. Gender-
unspecific body types B1 and B2 are not shown here due to low sample sizes. The background colors in c, d indicate different weight
categories as indicated. The horizontal dashed line refers to minimum BMI-associated all-cause mortality (BMI= 24 kg/m2) and the dotted
lines to hazard ratios of 1.5 taken from ref. 25.
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Fig. 7 Physical activity of body types. a Physical activity as measured in units of the number of steps per day and MET decreases with age. b
Body types divide into more and less active ones, where the former category collects younger and less obese individuals. Dashed lines
indicate median values of the reference age groups, “+” and “−” symbols in the head line indicate significant differences between the body
types and their reference groups with p values of <0.1 (+/−), <0.01 (++/–) and <0.001 (+++/−−−), respectively. c MET of the body types as a
function of age resemble the respective BMI curves in Fig. 6 and reflects that high BMI associates with low physical activity. d The plot of body
types’mean BMI as a function of their mean age can be roughly described by lines of similar positive slopes for women and men (≈0.25 kg/m2

per year) if one excludes the obese types F3, F4, M5, and M4. MET provides negative slopes with larger variability of the values of the F-types
and F4 as outlier showing lowest MET value.
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The high PMI of the female B2F group is noteworthy, and it
even exceeds the PMI levels of men’s body types (except M7).
Androgynous women are obviously under elevated risk for
myocardial infarction. To better understand this anomaly, we
included alcohol consumption and smoking status as lifestyle
factors, and also medication data available for the LIFE participants
into our analysis. Particularly, medication of the group “C:
cardiovascular system” according to ATC (Anatomical Therapeutic
Chemical) Classification shows similar patterns as PMI, for
example, higher percentage of medication in B2F and M7 (Fig.
8c). Obese and elderly women of body types F4–F6 take more
medication than men of all BMI categories, except for oldest (M7)
men. B2F women, on the other hand, take virtually no drugs of the
medication categories “G: genito-urinary system and sex hor-
mones” and “H: Systemic hormonal preparations, excluding sex
hormones and insulins,” which considerably deviates from women
of the other F-types. Women consume, on average, less alcohol
than men, and the consumption decreases for body types of
elderly women, but without marked specifics for B2F individuals
(Fig. 8d). In contrast, B2F women show highest smoking level
among women, which is comparable with that of men: 56% in B2F
compared with 40% for all women and 59% for all men.
In summary, the physical activity of participants measured in

units of MET anti-correlates with BMI and decays with age.
Prevalence of myocardial infarction increases with age and/or BMI
among men, but it is low among women, except those of the

androgynous body type B2F, which, in turn, associates with high
medication of group C drugs and relative extensive smoking.

DISCUSSION
Obesity per se is associated with health risk, for example, for
cardiovascular diseases. This relationship is however complex due
to several independent associations with risk factors26–28. Hence,
the total body fat mass can have divergent associations. There is
emerging understanding that instead of considering “simply”
obesity, one hast to take into account “obesities,” that is, a
heterogeneous multitude of phenotypes depending on factors
such as the distribution of fat over different types of fat depots in
the human body with different impact for different diseases and
health in an age- and sex-dependent fashion2. “Paradoxically,”
previous studies reported differences in short-, medium-, and
long-term mortality showing partly better survival for overweight
compared with normal and underweight individuals29. Moreover,
despite perceptions of higher risk, increasingly obese patients can
have fewer adverse clinical outcomes than expected30. Hence,
there is a need for better risk assessment for obesity. This task
includes collection of extended and refined cohort data to better
understand variability between humans and also the identification
of improved measures, which more specifically and sensitively
serve as markers for health risks.
Single anthropometric indices, such as weight-to-height ratio,

waist circumference, WTH, and BMI, are advantageous because

Fig. 8 Myocardial infarction prevalence, lifestyle factors, and medication in body types. a Prevalence of myocardial infarction is much
smaller for female (1.1%) compared with male (4.1%) participants of the LIFE study where however women of the B2F type have a strikingly
high PMI value (7.4%). b Plots of PMI as a function of age, BMI, and MET consequently reveal much steeper slopes for M-types than for F-types.
Women of the androgynous body type B2F are disproportionately affected by myocardial infarction. cMedication frequency of the individuals
of the body types (within 7 days before their examination in LIFE) with drugs of the ATC groups C (cardiovascular system), G (genito-urinary
system and sex hormones), and H (systemic hormonal preparations, excluding sex hormones and insulins), which all show anomalies for B2F.
d Violin plots of the lifestyle factors alcohol consumption and smoking stratified by the body types. Alcohol consumption is higher for men
than for women, and it slightly decreases with the mean age of the body types. Smoking among B-type women is more intense than among
the other F-types and resembles that of men. Note that the violin plots reflect a bi-modal distribution for most of body types referring to non-
smokers and smokers, respectively (“smokers” here subsumes current and former smoking; see percentage of smokers in the body type as
indicated in the header).
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they are easy to measure and to interpret in terms of simple
threshold values31,32. As the major trend of “classical” anthro-
pometry upon aging, we observed a decrease of body height, a
moderate increase of BMI towards obese and overweight
characteristics, and the increase of WTH ratio reflecting changes,
popularly described as apple-to-pear-like body shape transforma-
tions. Application of 3D body scanning in combination with our
body typing shows that human body shapes are diverse requiring
a detailed description to study possible associations with health
and lifestyle factors as a function of age.
Here we applied our body typing approach to resolve the

multidimensionality of anthropometrical data extracted from 3D
body scanner measurements. Our method reduces the about 150
derived body measures into 13 relevant anthropometric dimen-
sions called “meta-measures.” These meta-measures reflect
marked sex-specific differences resulting in the clear division into
F (female) and M (male) body types. They were used to diversify
human body shapes into 15 body types, 6 of them for female
participants, 7 for male ones, and 2 mixed-gender types (see ref. 18

for details). Interestingly, aging results in virtually sex-independent
reshaping of female and male bodies, which is characterized by
the shortening and widening of upper body dimensions and an
expansion of the leg girths of women and arm girths of men. With
increasing age, slim body shapes remain slim, whereas obese
body shapes tend to remain obese. We find marked sex
differences of the distribution of body types upon aging: the
populations of F-types change twice as large, in terms of
cumulative percentages, compared with those of men. The age
dependencies of the mean anthropometric indices (BMI, WTH) do
not reveal such differences. Making use of similarities between the
body measures of different body types, we deduced possible Life
Course trajectories based on the frequencies of possible transi-
tions between the types. For women and men, we identified two
main aging paths referring to more obese and to normal weight
individuals, respectively. For men, trajectories seem more complex
particularly because of a network-like structure of links between
the body types. Overall, female body shapes are more diverse and
change more strongly than male ones. Anthropometric changes in
terms of body types and indices begin to level off in the age range
between 55 and 60 years as a physiological characteristic of the
aging body of elderly people.
Several anthropometric measures, such as BMI and WTH, but

also waist-to-height ratio33 and “a body shape index” (ABSI)34,
have been developed to judge the health status in terms of
obesity, mortality, and biological age35 using simple, “one-
dimensional” measures. For example, discussion has developed
around the so-called “obesity-mortality paradox” stating that
mortality shows a U-shaped dependence on BMI with a minimum
at about 25 kg/m2 25. Other studies showed that confounding
factors and/or other anthropometric measures remove the
protecting effect of body fat on risk36. Beyond this, there is
growing evidence that a certain level of, for example, BMI (or other
anthropometric indices) can associate with different disease risks
due to differences between “metabolic healthy” and “metabolic
unhealthy” physiological states37, and also because a series of
confounders, for example, age, sex, genetic factors, cardio-
metabolic fitness, and pre-existing diseases. Our body typing
offers a multidimensional metrics of anthropometry, which aims to
fully exploit the data provided by 3D laser scanning. Importantly,
our body types divide men and women into strata of virtually age-
independent mean BMI levels ranging from underweight to obese
characteristics. On the other hand, some body types represent
different body shapes for similar BMI levels, for example, the
slightly overweight types M3, M6, and M7 (see Table 2).
We here used participant-matched data on the prevalence for

myocardial infarction and physical activity as example features to
estimate the possible impact of body types on their health and
aging behavior. Overall, physical activity (MET) is inversely related

to BMI and decreases with age. Obese body types reveal markedly
small MET values reflecting low activity levels of these individuals.
Prevalence for myocardial infarction roughly increases with mean
age and mean BMI for most of the body types with roughly twice
the rates for men compared to women. However, obese and
“inactive” body types are virtually inconspicuous regarding
myocardial infarctions in the disease history of the respective
men (M3) and especially women (F4). Interestingly, the obese
(high weight and high BMI) female body type F4 shows a
decreased WTH value compared with, for example, F6 (Fig. 6).
These differences suggest a larger proportion of less dangerous
“leg fat” in F4, which eventually is related to reduced health risk
and possibly explains the effect observed. On the other hand,
elderly men (M7) and androgynous women in B2F had a higher
prevalence of myocardial infarction (11% and 7%, respectively)
compared with the other F and M body types with possible impact
for risk prediction. These results demonstrate that body typing
increases resolution regarding health-related strata. However,
extensive research, particularly longitudinal follow-up studies and
larger sample sizes, are needed to extract detailed associations
between body types and health, especially in obesity research to
make this information usable in healthcare.
We studied the aging body shape using 3D laser scanning data

of about 8500 adult people of Middle European ethnicity
randomly selected from the population of Leipzig, Germany.
Ethnic differences in body size and composition have been
identified as a limitation to use simple body indices for estimating
health risk38. Systematically varying distributions of visceral and
subcutaneous fat between populations are thought to associate
with differences in their obesity status and health risks, for
example, for developing cardio-metabolic diseases. It has been
reported that Inuit and Africans have less fat for any given
anthropometric measure compared with Europeans39. Hence, the
relationship between conventional obesity measures, fat accumu-
lation, body shape, and health risk is not clearly established across
ethnic groups at present. In consequence, the use of conventional
anthropometric measures in clinical practice to identify health risk
is ethnicity dependent and therefore requires further research.
Systematic body typing of so far understudied, non-middle
European populations offers an option for the better, in-depth
understanding of phenotypic variability of humans, its aging
behavior, and its relation to health. We expect that the frequency
distribution among our body types and their health risk differs
between populations. One interesting question is whether our
collection of body types must be extended by novel types in other
ethnicities. 3D laser scanning offers a relatively simple and non-
expansive method for such studies in future.
For estimating the “internal” fat distribution, computational

tomography seems to be the best, but also the most expansive
method, especially with its ability to pin-point differences
between visceral and subcutaneous fat in the abdominal region40.
DXA is another special x-ray-based method enabling to measure
regional body composition with high precision and stability and
showing advantages over classical, single-index anthropometry in
estimating health risks41,42. Although the expose of patients and
operators to ionizing radiation does not exceed natural back-
ground radiation, it usually requires licensing of the technologist
and a designated X-ray site in contrast to optical laser scanning
techniques. Despite such direct “competitive” pro-versus-contra
comparisons, both DXA and laser scanning body typing provide
complementary information about, for example, the “internal” fat
distribution and the “external” body shape, respectively. Hence,
parallel studies using both methods are required to achieve a
better understanding of the physiological state of the body types,
for example, by relating the body shape to the fat distribution and
to the associated health risks. Interestingly, recent developments
of DXA data analysis aim at deriving “holistic” body shapes from
the measured “tissue distribution” in order to better describe its
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relation to health risk43. Hence, both 3D laser scanning-based
anthropometry and DXA tend to make use of “body shape”
concepts with “tissue distribution” and “body surface” information
as outputs, respectively.
In summary, future directions can be seen in the systematic use

of the concept of body types to describe body shapes, its
application to different ethnicities to better describe the variability
of human body shapes, combination of body shape measure-
ments using different techniques to relate the external body
shape to the “internal” tissue distribution, and the associations
with health and aging.
Body typing by utilizing 3D body scanning data offers

opportunities for studying the diversity of human phenotypes.
Stratification of aging human body shapes into Life Courses is one
step towards personalized anthropometry with the perspective to
predict lifetime risks. Verification and further development of this
approach should include longitudinal follow-up programs, wider
phenotype association profiles to identify multidimensional
anthropometrical risk profiles for clinics, and, last but not least,
improved bioinformatics for dimension reduction and focused
feature selection of this data type. High-dimensional anthropo-
metry after further reduction of size and price of available
scanning devices potentially provides a standard option in
epidemiological research and, possibly, also in clinical practice
for monitoring the health status of patients.

METHODS
The LIFE study and ethics approval
Our analysis included data collected in the frame of the LIFE-ADULT study
between 2011 and 2014 with a targeted sample size of 10,000 participants
with uniform sex and age distribution in the age range between 40 and 80
years17. Lists of randomly sampled citizens along with officially registered
age and sex were provided for recruitment by the resident’s registration
office of the city of Leipzig. The study included persons with sufficient
knowledge of German to read and understand the study documents and
questionnaires. An existing pregnancy was exclusion criterion. All
participants gave their written consent to participate in the study.

We utilized body scanner data of 8499 participants and physical activity
measurements of 2429 participants. The study was approved by the
responsible institutional ethics board of the Medical Faculty of the
University of Leipzig.

3D body scanning and anthropometric data
3D body surface scanning was performed by a “Vitus Smart XXL” 3D laser
scanner (Avalution GmbH, Kaiserslautern, Germany), which provides an
image of the body surface of each participant. In total, 155 body measures
were extracted from each of these images using AnthroScan 2.9.9 software
in agreement with ISO 20685, the international anthropometric database
standard for 3D scanning methodologies.
We considered 134 body measures of 8499 participants, including

length and girth measures, weight, and the indices “BMI”44, “WtH”24,
WHtR33, and “ABSI”34. The body measures of each participant were divided
by the body height to get height-normalized values. Each measure was
then Z-normalized, which makes the different measures comparable.
Details about data preprocessing are given in ref. 18.

Meta-measures and body types
We analyzed 3D body scanning data based on self-organizing map
machine learning to stratify the LIFE-ADULT data into body types18. In
brief, machine learning aggregates the body measures provided by the
scanner software into a set of 13 meta-measures instead of 150 features
measured by the scanner. Each meta-measure represents a cluster of
correlated single-body measures. They define the relevant dimension of
the body shape (see Table 3 and Fig. 2a for illustration). Approximately half
of the meta-measures collects length measures (n= 7), while the other half
mostly refers to girth measures (n= 5) of different parts of the body.
The meta-measures were then used to cluster the participants of the

study into 15 body types (see Supplementary Fig. 6a, c for illustration): two
of the body types (B1 and B2) lack gender specifics because they include
both male and female participants. Six body types (F1–F6) collect almost
exclusively women (F1–F6), while seven body types (M1–M7) are male
specific. The body types differ in the mean age, body height, weight, and
BMI characteristics of the participants18. We defined age-matched and sex-
specific reference groups for each of the body types collecting all
participants in an age window of ten years independent of their body type.
Body types’ features, for example, BMI and activity parameters, were then
compared with those of the respective reference group and tested for
significance using Wilcoxon’s rank-sum test.

Similarity links between body types
For comparison of the body types, we estimated their mutual similarities
by calculating the Euclidian distance of the meta-measures between all
pairwise combinations of participants. The number of most similar pairs
then defines links between the corresponding body types. In Supplemen-
tary Material, we stratify body type links by age, and associate differential
meta-measures to them (Supplementary Figs. 6 and 7). Changes of the
body type with age are assumed to occur along these links.

Physical activity data and MET estimation
Physical activity status of a subcohort of 2429 participants (1319 men and
1100 women) was estimated in units of MET using the SenseWear Pro
Armband (SWA, Bodymedia Inc., Pittsburgh), a multi-sensor tool with 2-axis
accelerometer, heat flux sensor, galvanic skin response sensor, skin
temperature sensor, a near-body ambient temperature sensor, and heart
rate detection using a chest strap45. It was used by participants on 8 days
or more, including at least 4 weekdays and 1 weekend day46. We only
consider days with sufficient wearing time of at least 18 h on weekdays, or
at least 20 h on weekend days47. Under these conditions, the SWA delivers
valid and reliable data as proven by several validation studies46,48–50. The
SWA software estimates physical activity in units of MET, where a MET
value of unity refers to the amount of oxygen consumed while sitting at
total rest. It is set equal to 3.5 ml O2 per kg body weight and minute51. In
addition to MET, we also used the “number of steps per day” of the
participants counted by SWA during the measurement as a rough direct
estimate of physical activity. The SWA has limitations leading to lower
accuracy, for example, while cycling, and it cannot be worn while
swimming47.

Table 3. List of meta-measures and most prominent associated body
measures.

Meta-measure Associated body measures

A. Shoulder width Shoulder width, width of armpits, cross
shoulder length

B. Upper body girths Chest girth, waist girth, hip girth, belly
circumference, BMI, WHtR

C. Thigh girth Thigh girth (left and right)

D. Head circumference Head circumference, crotch length

E. Shoulder angle Shoulder angle (left and right)

F. Sideseam length Sideseam length (left and right), ankle height
(sideseam left and right), head height

G. Inseam length Inseam length (left and right), ankle height
(inseam left and right), crotch height

H. Upper body lengths Distance neck to hip, distance neck to knee,
distance waist to knee

I. Arm length Arm length (left and right), up arm length (left
and right)

J. Neck length Neck length

K. Neck girth Neck girth (at base and middle)

L. Arm girth Arm girth (forearm, up arm, elbow; each left,
and right), ankle girths (left and right)

M. Torso length Neck to waist distances (left, right, central)

Meta-measures are labeled with capital letters.
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History of myocardial infarction, medication, and lifestyle factors
PMI of LIFE participants was assessed in questionnaires and refers to at
least one previous infarction during their lifetime according to self-
reporting. These particular reports were further verified in an interview
lead by a physician, who asked about details of the previous diagnosis of
myocardial infarction. This “self-reported” PMI amounts to 4.3% of men
and 1.2% of women in the LIFE-ADULT cohort. These percentages are
lower than the mean lifetime prevalence for myocardial infarction of the
German population (age range: 40–79 years) of 7% and 2.5%, respec-
tively52. We are aware of possible inaccuracies in self-reporting giving rise
to a bias of the PMI values used and possibly explains the deviation
between the PMI in LIFE compared with that in the German population.
Further, we make use of selected lifestyle characteristics of the

participants such as cigarette and alcohol consumption, and medication
status collected via questionnaires.
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