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Computation-aided designs enable
developing auxotrophic metabolic sensors
for wide-range glyoxylate and glycolate
detection

Enrico Orsi 1,7 , Helena Schulz-Mirbach 2,7, Charles A. R. Cotton3,
Ari Satanowski 2, Henrik M. Petri 2, Susanne L. Arnold2, Natalia Grabarczyk1,
Rutger Verbakel1, Karsten S. Jensen1, Stefano Donati 1, Nicole Paczia 2,
Timo Glatter 2, Andreas M. Küffner2, Tanguy Chotel2, Farah Schillmüller2,
Alberto De Maria 1, Hai He 2, Steffen N. Lindner 3,4, Elad Noor 5,
Arren Bar-Even 3,6, Tobias J. Erb 2 & Pablo I. Nikel 1

Auxotrophic metabolic sensors (AMS) are microbial strains modified so that
biomass formation correlates with the availability of specific metabolites.
These sensors are essential for bioengineering (e.g., in growth-coupled
designs) but creating them is often a time-consuming and low-throughput
process that can be streamlined by in silico analysis. Here, we present a sys-
tematic workflow for designing, implementing, and testing versatile AMS
based on Escherichia coli. Glyoxylate, a key metabolite in (synthetic) CO2

fixation and carbon-conserving pathways, served as the test analyte. Through
iterative screening of a compact metabolic model, we identify non-trivial
growth-coupled designs that result in six AMSwith a wide sensitivity range for
glyoxylate, spanning three orders of magnitude in the detected analyte con-
centration. We further adapt these E. coli AMS for sensing glycolate and
demonstrate their utility in both pathway engineering (testing a keymetabolic
module for carbon assimilation via glyoxylate) and environmental monitoring
(quantifying glycolate produced by photosyntheticmicroalgae). Adapting this
workflow to the sensing of differentmetabolites could facilitate the design and
implementation of AMS for diverse biotechnological applications.

Metabolism is the set of chemical reactions sustaining life1. These
reactions can be systematically investigated thanks to standardized
approaches in synthetic biology, a field that applies engineering prin-
ciples to living (micro)organisms2. Engineered microbial auxotrophic

strains with defined disruptions of the metabolic network can be
designed to have a defined demand for a specific metabolite, which
can be supplemented exogenously, and thus are ideal platforms for
metabolic studies3,4. Given their dependence on metabolic
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intermediates, we will refer to these engineered strains as auxotrophic
metabolic sensors (AMS). Originally used for biochemistry studies
through growth complementation, metabolic sensors are now
increasingly used for studying metabolic pathways in vivo5–10.

Construction of AMS requires reliable quantitative predictions of
the effect of gene deletions that must be confirmed in vivo. Yet, the
implementation of auxotrophic phenotypes still relies on one-at-a-
time interventions (e.g., multiple rounds of deletion and testing) with
the exception of a handful of cases where systematic analysis of all the
possible options was performed through screening of metabolic
models8,11,12. In all these cases, computations were performed on a core
metabolic model, limited to glycolysis/gluconeogenesis, pentose
phosphate pathway, the tricarboxylic acid (TCA) cycle, and oxidative
phosphorylation. The output is inherently limited to growth-coupled
designs around the 12 universal biomass precursors belonging to the
central carbon metabolism13. Several additional reactions are involved
in the synthesis of key biomass precursors in vivo (e.g., amino acids or
lipids biosynthesis), hence larger metabolic models could lead to
multiple growth-coupled designs that can be further explored. How-
ever, a model encompassing the entirety of an organism’s metabolism
is highly complex, which could increase computing times and lead to
irrelevant or unfeasible solutions based on secondary reactions. A
compromise between these two approaches is employing a medium-
scale metabolic model, covering core metabolism and essential
metabolic pathways (i.e., the synthesis of energy carriers and biosyn-
thetic precursors, such as amino acids), without the redundancies of a
genome-scale metabolic reconstruction14.

In this work, we designed AMS for glyoxylate, a non-essential
metabolite that is not directly involved in the synthesis of biomass
precursors in Escherichia coli. Creating metabolic sensors for this
molecule therefore requires deep metabolic rewiring. We adopted a
medium-scalemetabolicmodel to guide the design and engineering of
several AMS for this metabolite. The relevance of glyoxylate is evident
by a wealth of studies in the context of prebiotic chemistry15–18, syn-
thetic metabolism19–22, and biomanufacturing23,24. We show that com-
plex screening applications can be accessed using our sensor strains.
These include in vivo screening of enzyme variants for synthetic one-
carbon (C1) assimilation and sensing of excreted glycolate produced
during photorespiration as a globally occurring environmental pro-
cess. This work improves the robustness of the workflow for the com-
putation-guided design of metabolic interventions and yields an array
of novel glyoxylate and glycolate sensors supporting applications
beyond the traditional uses of metabolic sensors.

Results
Systematic interrogation of a compact metabolic reconstruc-
tion for growth-coupled designs around glyoxylate
Since glyoxylate is not an essential metabolite for wild-type E. coli,
coupling this organism’s growth to glyoxylate availability requires
complex metabolic rewiring. Therefore, we propose a pipeline that
predicts potential designs in silico using a compact metabolic model
(Fig. 1A). To systematically investigate all the combinations of knock-
outs (KOs) that force growth to be dependent on glyoxylate, we used
an algorithm we had previously applied to a core E. colimodel12,25, but
replaced the core-model with the recently published iCH360medium-
scale model of E. coli’s metabolism14. This medium-scale model (323
reactions) offers wider coverage of possible KOs compared to a core
model (95 reactions) and limits the number of additional experience-
basedmanual interventions required compared to a full genome-scale
model (2000 reactions or above). To adapt themedium-scalemodel to
identify growth-coupled designs for glyoxylate, we included four
additional reactions: (i) glyoxylate uptake; (ii) an aspartate-glyoxylate
aminotransferase (BHC)26 as proxy for promiscuous transaminase
activities on glyoxylate; (iii) glyoxylate carboligase (GLXCL); and (iv)
tartronate semialdehyde reductase (TRSARr) (Fig. 1B). The procedure

then iterates through a list of KO combinations and uses flux balance
analysis to test which combinations render growth dependent on
glyoxylate using different carbon substrates12,25.

With this extended medium-scale model, we iteratively explored
how different combinations of gene deletions affect the dependency
of E. coli growth on glyoxylate. We set a maximum of two KOs to force
glyoxylate consumption for biomass buildup. To broaden the spec-
trumof identifieddesigns, weperformed this search for growthon two
different main carbon sources (glycerol and succinate) not affected by
catabolite repression (Fig. 1B). Although it would be computationally
possible to expand the search to more than two KOs and two alter-
native carbon sources (see “Methods”), we found that the solutions
provided by this smaller search space were sufficient. This feature
highlights the advantage of using smaller models (here, iCH360)
compared to genome-scalemetabolic reconstructions, where typically
manymore KOs are necessary to achieve growth coupling. Very often,
the essential KOs are the ones found by the small model, while the
others tackle obscure bypasses that are unlikely to be relevant in vivo.
In our case, the output of the algorithm was a set of different KO
combinations for each of the two carbon sources selected, spanning
different levels of dependency on glyoxylate (Supplementary Fig. 1).

From these results, we decided to pursue five designs covering
different glyoxylate-derived biomass precursors and glyoxylate
demands, namely the amount required for the synthesis of biomass
(Fig. 1C and Supplementary Methodological Note). The first group
included disruptions of glycolysis/gluconeogenesis, causing reliance
on glyoxylate either for the synthesis of intermediates in upper gly-
colysis (e.g., sugar phosphates, “upper metabolism”) or for the
synthesis of “lower metabolism” (UPP-AUX and LOW-AUX, respec-
tively). The second group included deletions requiring glyoxylate for
anaplerosis of the TCA cycle (TCA-AUX and 2OXO-AUX). The third
group included a design that requires glyoxylate for glycine bio-
synthesis through transamination (called C1 +GLY-AUX, since glycine
is also involved in the synthesis of C1 mediators). Notably, this last
group of designs would not have been accessible by using a core
model of E. coli metabolism because key metabolic routes of amino
acid metabolism were not included, e.g., serine and glycine
interconversion.

The algorithm provided the minimum set of KOs required for
generating each auxotrophic phenotype in the metabolic sensors.
However, since this in silico prediction does not consider additional
factors, such as metabolic regulation and enzyme promiscuities, it
needs to be complemented by literature knowledge of the host’s
metabolic network and physiology. Thus, we manually expanded the
knockout selection with additional targets known from the literature
to support the strain engineering step (Fig. 2A). In the next section, we
describe how we moved from the in-silico predictions to successfully
engineering the respective AMS.

Metabolic sensor engineering and corresponding glyoxylate
contribution to biomass buildup
We started by engineering a group of AMS that rely on disruptions of
glycolysis/gluconeogenesis. The selection predicted to have the
highest glyoxylate demand is based on the inactivation of triose
phosphate isomerase (encoded by the gene tpiA; Fig. 2B). Yet this
deletion alone is known to be bypassed during growth on glycerol by
activation of the methylglyoxal pathway27,28. To avoid this bypass, we
additionally deleted mgsA (encoding methylglyoxal synthase), thus
generating a double mutant ΔtpiA ΔmgsA28. We refer to this strain as
LOW-AUX because glyoxylate supplements all metabolism down-
stream of glyceraldehyde 3-phosphate (“lower metabolism”). After
validating the sensor’s dependency on glyoxylate, we confirmed the
expected metabolic fluxes by tracing 13C incorporation into proteino-
genic amino acids during growth of the LOW-AUX strain on uniformly
labeled 13C2-glyoxylate, with unlabeled glycerol serving as the main
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carbon source. The resulting data confirmed labeling incorporation in
themajority of the proteinogenic amino acids, thereby demonstrating
the contribution of glyoxylate to the buildup of a large fraction of
biomass precursors (Fig. 2B and Supplementary Figs. 2 and 3A). The
other glycolytic disruption requires the combined inactivation of
enolase (ENO, encoded by eno) and isocitrate lyase (ICL, encoded by
aceA). This strain relies on succinate supplementation to feed “lower

metabolism”, while supplied glyoxylate should be converted to gly-
cerate 2-phosphate, feeding “upper metabolism” (therefore named
UPP-AUX). To prevent futile consumption of glyoxylate via the glyox-
ylate shunt, we decided to delete the relevant reactions. These addi-
tional deletions included aceB and glcB (malate synthases), as well as
ghrA and ghrB (glyoxylate/hydroxypyruvate reductases) (Fig. 2C). In
this strain, glyoxylate followed a different fate, which was traced using
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13C labeling, confirming its contribution to the synthesis of amino acids
derived from upper metabolism (Fig. 2C and Supplementary
Figs. 2 and 3B).

Then, we implemented the designs interrupting TCA cycle ana-
plerosis. We started with a strain including inactivations of PEP car-
boxylase (ppc), PEP carboxykinase (pckA), and isocitrate lyase (aceA)29.
In addition, the strain included adaptations to streamline glyoxylate
utilization through constitutive, chromosomal overexpression of
malate synthase (glcB, Fig. 2D). Moreover, we deletedmaeA andmaeB
(encoding two malic enzymes, both canonically involved in gluco-
neogenesis but thermodynamically reversible under certain condi-
tions), ΔaceB (additional copy of malate synthase) and ΔaceK
(regulator of isocitrate dehydrogenase), Δgcl (glyoxylate carboligase,
deleted to prevent wasteful conversion of glyoxylate through tar-
tronate semialdehyde), and ΔghrA and ΔghrB (glyoxylate/hydro-
xypyruvate reductase). Therefore, this corresponding TCA-AUX strain
relies on malate synthase activity for the condensation of glyoxylate
and acetyl-CoA for the biosynthesis of all TCA cycle intermediates
(Fig. 2D). Labeling patterns in the TCA-AUX grownwith 13C2-glyoxylate
and unlabeled glycerol reflect the expected fluxes, with amino acids
derived from TCA cycle intermediates predominantly labeled (Fig. 2D
and Supplementary Figs. 2 and 3C).

The other TCA cycle-related design, which involved inactivation
of citrate synthase, was realized by deleting gltA (citrate synthase) and
prpC [2-methylcitrate synthase, reported to have promiscuous citrate
synthase activity30,31] (Fig. 2E). In addition to these deletions, we aimed
to reduce the demand for glyoxylate by deleting sucAB (2-oxoglutarate
dehydrogenase), thereby limiting the glyoxylate requirement for the
synthesis of the biomass precursor 2-oxoglutarate (2OXO-AUX strain).
This strain required additional supplementation of succinate to pre-
vent succinyl-CoA auxotrophy (Supplementary Fig. 4). To prevent
undesired glyoxylate consumption through other routes we abolished
suspected glyoxylate sinks by adding further deletions as in the TCA-
AUX, i.e., Δgcl, ΔghrAB, ΔglcB, and ΔaceBK. Isotopic 13C labeling pat-
terns of the 2OXO-AUX strain growing with 13C2-glyoxylate and unla-
beled succinate confirmed the incorporation of glyoxylate into
2-oxoglutarate with 100% of glutamate being labeled twice (m+ 2),
while the other TCA cycle-derived amino acids aspartate, lysine, and
threonine remained unlabeled (m +0) (Fig. 2E, Supplementary
Figs. 2 and 3D).

In the third and last selection strategy, we pursued transami-
nation of glyoxylate for the synthesis of the essential biomass pre-
cursor glycine. Glycine is also involved in the synthesis of the
essential C1 metabolites [5,10-methylene-tetrahydrofolate (methy-
lene-THF) and 10-formyl-THF]. Thus, we envisioned two setups for
glyoxylate sensor strains depending on the inclusion or not of the C1
pool, named C1 + GLY-AUX and GLY-AUX strains, respectively
(Fig. 2F, G). First, we implemented deletions that force glyoxylate
conversion to glycine through transamination (Δgcl ΔghrAB ΔglcB,
and ΔaceBAK). Second, we prevented glycine synthesis from glycerol
by deleting glyA (serine hydroxymethyltransferase), kbl (2-amino-3-
ketobutyrate CoA ligase), and ltaE [low-specificity L-threonine

aldolase32]. We demonstrated that this C1 + GLY-AUX strain grew in a
glyoxylate-dependent manner (described in detail in the next sec-
tion), thus suggesting that one of the endogenous transaminases is
employed for glyoxylate conversion to glycine. Indeed, isotopic
labeling patterns of C1 + GLY-AUX grown with 13C2-glyoxylate and
unlabeled glycerol confirmed the ability to support glycine synthesis
from glyoxylate by showing 100% of the glycine pool being labeled
twice (m + 2) (Fig. 2F and Supplementary Figs. 2 and 3E). Moreover,
we proved the glyoxylate contribution to the synthesis of the C1 pool
by measuring 100% of the histidine pool with one label, since C1
moieties are involved in the synthesis of this amino acid33. To gain
insights into native (promiscuous) transaminases involved in the
conversion of glyoxylate to glycine, we searched for differences in
protein abundances between the C1 + GLY-AUX and a wild-type strain
grown either with 20mM glycerol + 1mM glyoxylate or 20mM gly-
cerol + 5mM glycine (Supplementary Fig. 5). Here, we found that of
all known > 20 E. coli transaminases, hisC (encoding histidinol-
phosphate transaminase) was the only one that was significantly
upregulated in both comparisons of C1 + GLY-AUX vs the wild-type
strain on 20mM glycerol + 1mM glyoxylate and of C1 + GLY-AUX
grown with glyoxylate vs with glycine. Additionally, we observed an
upregulation of allantoin metabolism genes (allB and allC) in C1 +
GLY-AUX grown with glyoxylate in all comparisons, which is in line
with previous reports of glyoxylate-dependent expression of these
genes34,35. While the degradation of the purine synthesis intermediate
allantoin proceeds via a ureidoglycine:glyoxylate transaminase in
other organisms (PucG in Bacillus subtilis or HpxJ in Klebsiella
pneumoniae), E. coli MG1655 is not known to harbor a homolog.
However, when we used the DELTA-BLAST domain search and PucG
from B. subtilis (Uniprot ID A0A6M4JLB6) as a query, histidinol-
phosphate transaminase (HisC), which was upregulated in our pro-
teomics data, was amongst the hits with the highest identity score
(18.32% identity, e-value 1e−17). While these findings hint towards the
relevance of HisC for glyoxylate use in the C1 + GLY-AUX, it remains
to be investigated whether HisC can promiscuously interconvert
glyoxylate and glycine using ureidoglycine as an amine donor.

To further enhance the selection sensitivity through the same
rescue mechanism, we engineered an additional strain GLY-AUX
(derived from C1 + GLY-AUX) with modifications including hetero-
logous gene expressions not represented in the model. This strain
expressed a specific enzyme from Paracoccus denitrificans (bhcA)
that helps convert glyoxylate to glycine thanks to its asparta-
te:glyoxylate transaminase activity26. Additionally, we modified the
strain to produce methylene-THF from formate by integrating the
first module of the reductive glycine pathway directly into its
chromosome36. These modifications are expected to increase the
strain’s sensitivity to glyoxylate. Remarkably, the strain showed a
reduced pool of fully labeled glycine (m+ 2 pool reduced of 60%
compared to C1 + GLY-AUX strain; Fig. 2G), thereby suggesting a
partial contribution of formate to the synthesis of glycine through
the reverse glycine cleavage system. Moreover, the release of
glyoxylate contribution to histidine was confirmed by observing a

Fig. 1 | In silicomodeling for exploring glyoxylate-dependent growth-coupling
schemes. AOur workflow started by adapting a medium-scale metabolic model of
E. coli by including reactions involved in glyoxylate production or consumption:
glyoxylate uptake, BHC (aspartate-glyoxylate aminotransferase), GLXCL (glyox-
ylate carboligase), TRSAr (tartronate semialdehyde reductase). Next, the updated
model was used to run the algorithm for systematically determining combinations
of gene deletions that require glyoxylate for growth. As output, the algorithm
proposes different combinations of such gene inactivations and ranks them
quantitatively in terms of glyoxylate demand (represented by a “glyoxylate-to-
biomass ratio”, GBR). Created in BioRender. Orsi (2025) https://BioRender.com/
x91g989.B Schematic overview of the central carbonmetabolism of E. coli covered
by the adapted model. Glyoxylate is shown in magenta together with the reactions

(and associated enzymes) originating from this molecule. Succinate and glycerol
are shown (navy blue) because these metabolites are chosen as added carbon
sources for the design of individual glyoxylate sensor strains. Essential biomass
precursors are indicated in bold. Enzymes are abbreviated following BiGG
nomenclature. Colored arrows indicate reactions deleted in certain sensor strain
designs as proposed by the algorithm to force glyoxylate dependence. Each color
represents a different sensor strain design. C Graphic output highlighting the dif-
ferent combinations of enzyme inactivations proposed by the algorithm. The
normalized GBR value is a unitless value obtainedby dividing the GBRof the sensor
by theGBRof thewild-type strain growing on glyoxylate as a unique carbon source.
D Legend of strains and associated enzyme inactivations selected from the
algorithm.
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drastic change in the histidine labeling pattern, with the majority of
this amino acid pool remaining unlabeled (m + 0) (Fig. 2G and Sup-
plementary Figs. 2 and 3F). Once we confirmed that all strains
required glyoxylate for the synthesis of one or more essential bio-
mass components, we progressed further into their quantitative
characterization.

Metabolic sensors can detect glyoxylate over a wide con-
centration range spanning three orders of magnitude
We further analyzed themetabolic sensors bymonitoring their growth
with varying supplemented concentrations of glyoxylate (Fig. 3A). This
approach is routinely used in the characterization of metabolic
sensors5,25,37 and allows identifying the range of direct correlation
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between the concentration of the limiting substrate (glyoxylate) and
the final biomass concentration (Fig. 3B). This is determined by plot-
ting the maximal optical density (maxOD600) as a function of the
concentration of the target metabolite. For our sensitivity analysis, we
focused on an operational range giving linear response between sub-
strate concentration and maxOD600, i.e., excluding those concentra-
tions where glyoxylate is no longer the limiting metabolite (upper
limit) and those were we observed lack of growth because the con-
centration of glyoxylate is too low (lower limit).We confirmed that the
experimentally determined glyoxylate demand was qualitatively con-
sistent with the sensitivity ranking based on predicted “glyoxylate-to-
biomass ratios” (GBR) calculated beforehand in flux balance analysis
(Fig. 3B). In combination, the different constructed metabolite sensor
strains enabled a glyoxylate sensitivity range covering three orders of
magnitude from 10 µM to 20mM of glyoxylate (Fig. 3B and 1). We
confirmed robustness in auxotroph phenotypes for all strains by ruling
out any unexpected growth behavior over several days of incubation
(Supplementary Figs. 6 and 7). The upper limit of detection was
determinedby growing awild-type strainwith glyoxylate serving as the
only carbon source, i.e., representing the highest achievable glyoxylate
demand (Supplementary Fig. 8).

Notably, in some strains, the growth rate varied depending on
supplied glyoxylate concentrations. This was most likely caused by
factors affecting key limiting enzymes required for growth. For
example, C1 +GLY-AUX and GLY-AUX rely on different transamination
reactions to recover growth. Consequently, their growth rate differed
significantly (Fig. 3A and Supplementary Fig. 5). The faster growth of
C1 + GLY-AUX was probably due to an increased rate of glycine bio-
synthesis from glyoxylate caused by the additional engineered
expression of a heterologous transaminase (bhcA). We could confirm
this hypothesis by observing an improved growth rate of the GLY-AUX
strain when BhcA was additionally produced in this strain background
(Supplementary Fig. 6).

A functional glycolate dehydrogenase complex extends the
sensors’ detecting ability to glycolate
Once the ability of the sensors to detect glyoxylate was validated, we
aimed to extend the sensing ability of the strains to glycolate. The
glycolate dehydrogenase complex (GlcDEF) catalyzes the oxidation of
glycolate to glyoxylate and is native to E. coli. Due to this activity, we
expected glycolate to be converted to glyoxylate for subsequent for-
mation of the selected biomass precursors depending on the meta-
bolic context of each sensor strain. Accordingly, when cultivated on
glycolate the strains showed comparable growth dependencies as
observed with glyoxylate (Fig. 3C). Moreover, when plotting the
maximumOD600 in response to the glycolate concentration provided,
the sensor strains could cover a range of concentrations of three
orders of magnitude (from 10 µM to 20mM) (Fig. 3D). As had been
done for glyoxylate, the maximum glycolate detection capacity was
determined by growing the wild-type strain on glycolate as carbon
source (Supplementary Fig. 7).

Altogether, the set of metabolic sensors showed a strict depen-
dence on glyoxylate or glycolate for growth, a dependency that can be
exploited to couple growth tomodules forming eithermolecule. In the
next sections, we showcase two exemplary applications of these
metabolic sensors for the screening of enzymatic activities in vivo or
for the measurement of extracellular glycolate in spent
cultivation media.

In vivo testing ofmalate thiokinase andmalyl-CoA lyase through
glyoxylate sensing
Next, we investigated the use of ourmetabolic sensors for prototyping
metabolic pathways (Fig. 4A). A versatile metabolic module employ-
able in various pathways is the two-step reaction sequence catalyzed
by malate thiokinase (MtkAB) and malyl-CoA lyase (Mcl) (Fig. 4B, C).
The joint activity of these enzymes activates malate to malyl-CoA (at
the expense of ATP) and then cleaves it to generate acetyl-CoA and
glyoxylate. This module is part of natural metabolic routes, including
natural and modified variants of the serine cycle38, but is also required
for the HydrOxyPropionyl-CoA/Acrylyl-CoA (HOPAC) cycle21, a syn-
thetic route forCO2 fixation so far demonstrated only in vitro (Fig. 4B).
Moreover, this module here has been proposed in the context of the
reverse glyoxylate shunt22, which in theory allows generation of twoC2
compounds from one C4 moiety, and therefore holds potential for
achieving higher product yields for C2-dependent productions from
sugars22. Therefore, we reasoned that screening the combined MtkAB
and Mcl activity using our metabolic sensors could create new
opportunities for pathway engineering. In fact, while the module had
previously been shown to rescue an acetyl-CoA auxotrophic strain39,
engineering of the full HOPAC cycle requires functionality in a glyox-
ylate auxotroph because the cycle product is glyoxylate. Hence, we
chose to demonstrate the feasibility of the module in our sensor
strains as a proof-of-principle for glyoxylate selections.

Growth in the metabolic sensors is expected to be a trade-off
between flux capacity through the target module and the metabolic
burden associated with its production. Using the growth rate of the
metabolic sensor as a proxy for this trade-off, we proceeded by testing
how the module capacity is affected by modulating the expression of
the required genes (mtkAB andmcl). We hypothesized that if modules
display different flux capacities, they might differ in their growth rate,
yet they should not differ in their final biomass density because they
have access to the same nutrients in the cultivation medium.

We clonedmtkAB andmcl under the translational control of RBSs,
RBSA, RBSB, and RBSC as strong, medium, and weak ribosome binding
sites, respectively3. Then, we transformed this library into three
metabolic sensors: C1 + GLY-AUX (Fig. 4D, E), 2OXO-AUX (Supple-
mentary Fig. 9A–D), and UPP-AUX (Supplementary Fig. 9E, F). All
C1 + GLY-AUX strains grew to the samemaxOD600 (Fig. 4E), in line with
our above-mentioned expectation that the growth rate would corre-
late with module flux, while the maxOD600 should be comparable
(Fig. 4F). Indeed, different expression constructs resulted in different
growth rates, with two constructs resulting in faster growth as a

Fig. 2 | Auxotrophic metabolic sensor strains engineering and characteriza-
tion. ATheworkflow for creating themetabolic sensors startswith the output from
the algorithm, which is complemented by curated literature knowledge on the
host’s metabolic network. The strains are engineered accordingly, and the auxo-
trophic phenotype for the target molecule (glyoxylate) is characterized and con-
firmed. Created in BioRender. Orsi (2025) https://BioRender.com/x91g989.
B–G Overview of the metabolic sensors and the corresponding 13C-labeled amino
acids patternupon cultivationwith 13C2-glyoxylate (magenta). For each scheme, the
unlabeled co-substrate is highlighted in navy blue. For each strain, we proposed the
labeling pattern observed (‘o’) and expected (‘e’) in terms of label incorporation.
Labeling patterns are likewise identified with colored circles to trace the fate of the
13C atoms within the metabolic network. The color code for the mass isotopomers
(m+0, m+ 1, m + 2, etc.) is the same for panels B through G. Abbreviations for the

genesmgsAmethylglyoxal synthase, tpiA triose-phosphate isomerase, eno enolase,
gcl glyoxylate carboligase, glcB malate synthase G, ghrA glyoxylate/hydro-
xypyruvate reductase A, ghrB glyoxylate reductase, aceA isocitrate lyase, aceB
malate synthase A, aceK isocitrate dehydrogenase kinase/isocitrate dehydrogenase
phosphatase, maeA malate dehydrogenase (oxaloacetate-decarboxylating), maeB
malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+), ppc phosphoe-
nolpyruvate carboxylase, pck phosphoenolpyruvate carboxykinase (ATP), gltA
citrate synthase,prpC2-methylcitrate synthase, sucA 2-oxoglutarate decarboxylase,
thiamine-requiring, sucB 2-oxoglutarate dehydrogenase E2 subunit, kbl 2-amino-3-
ketobutyrate CoA ligase, tdh threonine dehydrogenase, ltaE low-specificity L-
threonine aldolase, glyA serine hydroxymethyltransferase. Source data are pro-
vided as a Source Data file.
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Fig. 3 | Growth profiles and dose-response relationship in the auxotrophic
metabolic sensors. A Growth profile of the different metabolic sensors with
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dilution factor used. B Relative distribution of the glyoxylate-to-biomass ratio
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reflection of the combined effect of high flux through MtkAB and Mcl
and lowmetabolic burden (Fig. 4G). The requirement of a strong RBSA

for mtkAB and weaker RBSs (RBSB or RBSC) for mcl suggests that the
rate-limiting step of the module is the step catalyzed by MtkAB.
Although the translation-initiation rates are strongly influenced by the
genetic context both upstream and downstream of the RBS, we con-
clude that the RBSA·mtkAB-RBSB·mcl and RBSA·mtkAB-RBSC-mcl

constructs provide the best trade-off and, therefore, the highest flux
capacity to support growth through the module.

Notably, the two other tested selection strains were not suitable
for such turnover estimations. The 2OXO-AUX strains showed differ-
ences in the final biomass density, as well as in growth rates, and
required supplementation with three times more succinate when
MtkAB-Mcl was expressed (Supplementary Fig. 9B). The different
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behavior of 2OXO-AUX could be a consequence of the selection
scheme architecture. With C1 +GLY-AUX the fate of the carbon pro-
vided by the substrate (glycerol) follows a linear path all the way to
glyoxylate (Fig. 4D), whereas in 2OXO-AUX succinate is needed both
for production of glyoxylate, as well as for its further condensation to
form isocitrate (Supplementary Fig. 9C). Therefore, MtkAB-Mcl and
isocitrate lyasemaybe competing for the succinate pool, which affects
the pool of 2-oxoglutarate and therefore the ability to rescue strain
growth (Supplementary Fig. 9A–D). The last design tested (UPP-AUX)
did not result in the growth of any of the combinations screened
(Supplementary Fig. 9E, F). This suggests that the demand from the
strain is too high to be supported by the module through its own
turnover rate (Supplementary Fig. 9F), which implies that the current
module flux is incapable of supporting growth when the GBR is 0.13 or
higher.

We thus demonstrated that different translation rates of MtkAB
andMcl affect the growth rates of themetabolic sensors. These results
can be used as a basis to further investigate the corresponding fluxes
for glyoxylate production in vivo. In the next section, to demonstrate a
second application of the metabolic sensors, we focused on quanti-
fying extracellular glycolate in the spent medium of microbial
cultivations.

Detection of glycolate produced through photorespiration
Another aim of this study was to demonstrate the feasible use of
metabolic sensors to monitor phenomena of ecological relevance.
From an environmental perspective, glycolate synthesis occurs during
phytoplankton blooms in the ocean40. During this event, glycolate
synthesis is caused by a metabolic process called photorespiration,
which is known to limit CO2 fixation via the Calvin-Benson-Bassham
(CBB) cycle in phototrophic organisms41,42. Here, photorespiration
occurs through the promiscuous oxygenase activity of the enzyme
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and lim-
its the CO2 fixation rate of this enzyme43,44.

Photorespiration has been associated with the secretion of gly-
colate in photoautotrophic microorganisms in the range of µg/L
(<1mM, in open waters) to g/L (>30mM, under controlled
conditions)45,46. Therefore, we reasoned that the sensitivity range of
our sensor strains should be able to detect glycolate in the spent
medium of phototroph cultures (Fig. 5A). Importantly, for this pur-
pose, we reasoned that the presence of glycolate will restore the
growth of our metabolic sensors and that the maxOD600 will be pro-
portional to the concentration of glycolate in the media.

We considered two phototrophic organisms where glycolate
secretionwas alreadydemonstrated: Synechococcus elongatus46 (which
grows in freshwater) andChlamydomonas reinhardtii45 (whichgrows in
salt water). We observed that only the low-salt medium used for S.
elongatus cultivation was compatible with our E. coli strains (Supple-
mentary Fig. 10A, B), and therefore we further investigated glycolate
secretion by this cyanobacterium using both wild-type and Δccm S.
elongatus strains. The Δccm strain lacks the carboxysome, a micro-
compartment that permits increased local CO2 concentrations around
RuBisCO and enhances the enzyme’s carboxylation rate (therefore the

Δccm strain is known to exhibit higher rates of RuBisCOoxygenation in
ambient CO2 conditions

47).
In the experimental setup, we performed cultivation as follows: (i)

highCO2 concentrations (3%) for three days (as negative controlwhere
photorespiration should be minimal); (ii) alternatively, we cultivated
the strains at 3% CO2 for three days to reach high biomass densities,
followed by an additional three days at 0.5% CO2 to stimulate photo-
respiration. We collected samples at the end of these cultivations,
removed cyanobacterial cells by centrifugation at 13,000×g, and
mixed spent medium in a 1:1 ratio with fresh M9 medium for the
application of the different metabolic sensors. We thenmonitored the
growth of the E. coli strains until the stationary phase was reached
(Fig. 5B) and used the maxOD600 (adjusted to a 1:1 dilution) to infer
glycolate concentration from glyoxylate-to-OD600 correlation as dis-
cussed above (Fig. 3D). As the control, we alsomeasured the glycolate
concentrations in the spent media samples using conventional analy-
tics (HPLC). As expected, the Δccm strain grown under photo-
respiratory conditions yielded the highest glycolate concentration,
whereas the wild-type strain grown constantly at high CO2 resulted in
the lowest concentration (Fig. 5B). This result was confirmed by the
maxOD600 values in all three sensor strains, which thus suggests that
optical densitymeasurements can serve as at least a coarse estimate of
the relative glycolate concentration within the samples.

We continued by determining which of the three strains wasmost
precise in sample detection. From the HPLC data, we could confirm
that the concentration of the samples ranged from 10 µM to 50 µM
glycolate (Fig. 5B), which is within the linear range of our most sensi-
tive GLY-AUX strain (Fig. 3D). In fact, when plotting the sensor-derived
concentration estimates of glycolate against those measured with
HPLC, we could determine a slope of 0.93 for the GLY-AUX measure-
ments (R2 =0.992) (Fig. 5C). On the other hand, since the other two
strains 2OXO-AUX and TCA-AUX presented a linear range for
glyoxylate-to-OD600 correlation only at higher glycolate concentra-
tions (Fig. 3D), we observed a greater discrepancy between HPLC-
derived and sensor-derived measurements for these strains, which
resulted in a slope of 2.37 for 2OXO-AUX and 0.75 for TCA-AUX.
Therefore, when glycolate concentrations laywithin the linear range of
detection of the sensor, measurement of the strain’s maxOD600 can be
a reliable readout of the concentration of the real target molecule in
the medium.

Discussion
AMS are valuable tools for several biological applications, including
synthetic biology and environmental monitoring. Yet their imple-
mentation is not trivial because the created auxotrophic phenotypes
must be robust in various contexts. Achieving such phenotypes
requires deep knowledge of the host’s metabolism. In our study, we
streamlined the workflow for creating such sensor strains by com-
bining the in-silico design of AMS with their engineering and physio-
logical characterization togetherwith in vivo applications.We selected
glyoxylate as the metabolite of interest around which we created a set
of sensor strains because this metabolite is not essential for growth
and therefore creating ad hoc growth-coupled designs requires

Fig. 4 | Application of the auxotrophic metabolic sensors for in vivo enzyme
screening operations. A Workflow for using metabolic sensors with different
designs and demands for the screening of metabolic modules. Created in BioR-
ender. Orsi (2025) https://BioRender.com/x91g989. B, C Lumped architectures of
the HydrOxyPropionyl-CoA/Acrylyl-CoA (HOPAC) cycle and reverse glyoxylate
shunt.D Selection scheme of C1 +GLY-AUX sensor strain, includingMtkAB andMcl
activities. E Growth profile of the RBS library was tested under selective (20mM
glycerol) and non-selective (20mMglycerol + 1.5mMglyoxylate) conditions within
the C1 +GLY-AUX strain. In this type of application for the sensor strain, the growth
rate is the proxy for the module activity (metabolic flux). Experiments were

conducted in 96-well plates in triplicates, which displayed identical growth curves
(±5%) and were averaged. F Schematic presents how the turnover number of the
rate-limiting enzyme determines the growth rate of the selection strain. If, e.g., the
rate-limiting step is the conversion of malate into glyoxylate (as expected in our
experimental setup), that step will dictate the growth rate of the strain.
G Quantification of the growth rates for the different candidates under selective
and non-selective conditions. Experiments were conducted in 96-well plates in
duplicates andwere averaged. The error bars correspond to the standard deviation
calculated on those replicates. Created with Biorender.com. Source data are pro-
vided as a Source Data file.
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rewiring of the host’smetabolism.Through thisworkflow,wecreated a
set of six sensor strains available off-the-shelf for the same screening
purpose. We showcased their application in two practical cases where
growth rate or final optical density served as a proxy for prototyping a
segment of an engineered metabolic pathway and for environmental
monitoring, respectively. Having access to multiple strains allowed us
to successfully accomplish both these screening investigations.

To implement the sensor construction workflow, we used a
medium-scale metabolic model14 to predict enzyme inactivations that
forcegrowth tobedependent onglyoxylate. Theprocedure forfinding
suitable deletion candidates had been previously applied to design
strains that depend on CO2 fixation via RuBisCO12, glycerate sensor
strains25, or synthetic methylotrophs48,49. Yet, in all these cases, com-
putational analysis relied on a metabolic core model50 which covered
only glycolysis/gluconeogenesis, the pentose phosphate pathway, the
TCA cycle, and oxidative phosphorylation. In contrast, the larger size
of the model used in this study allowed us to explore more designs
than with the core E. colimodel while reducing computation time and
unfeasible solutions typical of genome-scale models51. Thanks to the
algorithm, we could identify three groups of design strategies

(glycolytic disruptions, interruption of TCA anaplerosis, and transa-
mination of glyoxylate to glycine) which we further engineered in the
sensor strains. In particular, the glyoxylate to glycine transamination
group of solutions was possible thanks to this medium-scale model
because it relied on enzyme inactivations within the amino acid bio-
synthetic network.

We needed to supplement the algorithm’s list of candidate
enzymes with additional gene deletions to effectively implement
robust AMS. While the algorithm allowed us to rapidly identify non-
trivial growth-coupling strategies, our reliance on further manual
interventions underscores a limitation of the current pipeline that
could be subjected to further optimization in the future. Most of these
interventions were inspired by data available in databases such as
EcoCyc (https://ecocyc.org/)52. We applied the following types of
manual interventions to complement the model: deletion of latent
metabolic pathways which may become activated, e.g., ΔmgsA27,28 in
LOW-AUX; addition of heterologous modules to relieve metabolic
demands, i.e., C1 moieties, as in the case of the C1 module from the
reductive glycine pathway33 in GLY-AUX; limitation in reaction anno-
tations from a thermodynamic perspective, as in the case of maeAB,
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Fig. 5 | Applicationof the auxotrophicmetabolic sensors for the determination
of an extracellular metabolite (glycolate) in the spent medium of cultivation
(photoautotrophic growth). AWorkflow depicting the steps required for the use
of metabolic sensors for the determination of the extracellular metabolite in the
spent medium of phototrophic Synechococcus elongatus strains grown under
photorespiratory regimes. Created in BioRender. Orsi (2025) https://BioRender.
com/x91g989. B Growth profile of three metabolic sensors (GLY-AUX, 2OXO-AUX,
and TCA-AUX) on the spent medium for the S. elongatus strains. The measured
glycolate concentrations are shown for each of the conditions tested (cultivation at
a constant 3%CO2, or transition from 3% to 0.5% CO2 to induce photorespiration in

a wild-type (WT), or carboxysome mutant (Δccm) background. Experiments were
conductedwithin 96-well plates andwereperformed in triplicates, which displayed
identical growth curves (±5%), and hencewere averaged.CCorrelationbetween the
data obtained from HPLC analyses (x-axis) and the concentrations determined by
observing the final biomass concentration of different metabolic sensors (y-axis).
The plotted data corresponds to the average of the three biological replicates, and
the error bars represent the standard deviation on those measurements. A good
correlation should correspond to a slope close to 1. Source data are provided as a
Source Data file.
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since ME1 and ME2 were considered irreversible in metabolic models;
limitation in annotations as an effect of promiscuous reactions, such as
in the case of ltaE (in C1 +GLY-AUX and GLY-AUX) and prpC (in 2OXO-
AUX), which can complement inactivation of glyA32 and gltA30,
respectively. Ultimately, in vivo characterization of the designed
strains confirmed the model predictions in terms of the ranked sen-
sitivity of the strains towards glyoxylate (and glycolate).

The main application of AMS is for testing enzyme modules by
measuring growth as a proxy for their activity3,4, where growth reflects
a trade-off between the module’s flux capacity and the metabolic
burden for its synthesis. The two-carbon molecule glyoxylate is a
product of CO2 fixation pathways, such as the serine cycle or the
in vitro crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH)
cycle and the HOPAC cycle21,53, and can be synthesized through the
reverse glyoxylate shunt from pyruvate bypassing its decarboxylation
to acetyl-CoA22,54. We tested MtkAB andMcl as key components of the
reverse glyoxylate shunt and HOPAC cycle21,22, with indications that a
stronger expression of MtkAB is required compared to Mcl. Experi-
mental data from testing different modules suggested that the choice
of the selection scheme (and therefore metabolic sensor) also has an
impact on the ability to screen for modules. We demonstrated that
strains with high metabolic demands or competitive nodes for sub-
strate utilization might not be suitable for module testing. The next
steps in this research direction include adding upstream modules of
the HOPAC cycle to the selection strains, such as those that enable the
conversion of methylmalonyl-CoA to malate, to facilitate in vivo
testing21. Shifting the focus to other CO2 fixation or C1-assimilation
pathways to engineer, the generation of sensor strains for, e.g., pyr-
uvate, acetyl-CoA, glycerone phosphate, and glyceraldehyde
3-phosphate would provide the community with additional platforms
where to test natural and synthetic designs in surrogate hosts. In
principle, this approach could also be used for product formation.

Furthermore, we demonstrated how the estimation of extra-
cellular metabolites (glycolate) in spent cultivation medium is most
precise when using AMS whose linear range of detection overlapped
with the target molecule concentration in the medium. In the litera-
ture, a similar approach was used to determine mevalonate in spent
medium but that approach used growth rate as the benchmark55.
Instead, here we demonstrated how the final biomass concentration
can also be used as a proxy for determining the concentration of the
target molecule in the spent medium, when interpolated with the
compound-to-OD600 correlation, as also recently demonstrated using
whole cell biosensors56. The glycolate AMS we created exhibited a
linear range of detection within the concentration range 0.01–20mM,
thus adding to a list of transcription-based [0.1–200mM range57 or
0.01–20mM range58] and enzyme-based [0.01–1mM range59] bio-
sensors previously described in the literature. We argue that this
simple setup formeasuring themolecule of interest canbeof usewhen
performing high-throughput screening using multi-well-plate setups.
Assuming an average duration of 0.5 h per sample for anHPLCmethod
targeting organic acid detection, screening at least 60 samples with
our detection method results in faster analysis turnover. Our sensors
reached theirfinal biomass in approximately 30 h,making this the total
analysis duration for glycolate detection in spent fermentationmedia—
equivalent to the time required to analyze 60 samples sequentially via
HPLC. Additionally, using cell turbidity rather than fluorescence sig-
nals, as in transcription-based biosensors, simplifies the readout
process.

We postulate that using a computational algorithm com-
plemented by manual interventions will streamline the creation of
growth-coupled designs for various metabolites of interest. The AMS
generated in the presented studywill allow us to explore novel designs
for synthetic pathways leading to the synthesis of glyoxylate. More-
over, the auxotrophic phenotype can be exploited in this way for the
evolution of (new) key enzymatic steps leading to the synthesis of the

target metabolite60–63, as well as in high-throughput automated
setups64–66. Since glyoxylate is described as a key intermediate of some
protometabolic pathways15–18, we believe our sensor strains could
create new possibilities for explorative studies within this field of
research. Finally, with glycolate as a marker for photorespiration, we
encourage the use of such AMS for the high-throughput study of
photorespiration byother organisms,whichhas broad implications for
agriculture67–69 and environmental studies41,70.

Methods
The stoichiometric model
In order to identify promising knockout strategies in E. coli that create
glyoxylate auxotrophy at different dependency levels, we used the
recently published iCH360 model14. iCH360 is a subnetwork of the
much larger genome-scale model, focusing on central metabolic sub-
systems that carry relatively high flux, are central to maintaining and
reproducing the cell, andprovideprecursors andenergy to engineered
metabolic pathways. This medium-sized model, by doing away with
low-flux and secondary pathways and enzymes, facilitates applications
like ours since these redundant reactions typically create bypasses that
are unlikely to be relevant in vivo and greatly complicate the search.
However, since we wanted to design auxotrophic strains to a non-
standard carbon source (glyoxylate), we had to augment the iCH360
model with two metabolites and 5–6 reactions for it to be able to deal
with glyoxylate metabolism:

Metabolites:
• Extracellular glyoxylate (glx_e): formula =C3H3O4

• 2-Hydroxy-3-oxopropanoate (2h3oppan_c): formula =C2H1O3

Note that 2-Hydroxy-3-oxopropanoate and tartronate semi-
aldehyde are synonyms.

Reactions:
• Glyoxylate exchange (EX_glx_e): glx_e⇔
• Glyoxylate transport (glx_t): glx_e + h_c⇔ glx_c + h_c
• Aspartate-glyoxylate transaminase (BHC): asp__L_c + glx_c⇔
oaa_c + gly_c

• glyoxylate carboligase (GLXCL): glx_c + h_c⇔ 2h3oppan_c + co2_c
• tartronate semialdehyde reductase (TRSARr): 2h3oppan_c + h_c +
nadh_c⇔ glyc__R_c + nad_c

• formate-tetrahydrofolate ligase (FTHFLi*): for_c + atp_c + thf_c⇔
10fthf_c + adp_c + pi_c

* The FTHFLi reaction was added only in the strain named C1 +
GLYAUX which utilizes formate as the source for all the C1 carbon
metabolism.

Systematic search for growth-coupled designs
After establishing a suitable stoichiometric model as described in the
previous section, we applied a search algorithm for identifying auxo-
trophic knockout strategies.

First, ATP maintenance reaction, as the algorithm is designed to
only calculate the marginal dependence on glyoxylate (at low growth
rates) and themaintenance reaction is not relevant for that calculation.
Then, we set the bounds of the glucose exchange flux to 0 (instead of
the default lower bound of −10mmol/gCDW/h), and replaced it with
succinate or glycerol as the abundant carbon source, by setting the
lower bound to −1000mmol/gCDW/h.

The next step is to iterate through all possible single or double
knockouts of reactions from the list of central reactions—i.e., reactions
that exist in the core model of E. coli50 and the ones added to iCH360
(excluding the glyoxylate uptake itself). In some cases, we lumped
together two reactions (denoted as REACTION1|REACTION2), either
because they are arranged in one linear pathwaywith no branchpoints,
catalyzed by the same enzyme, or the same chemical reaction with
different cofactors (catalyzed by two isoenzymes):

Article https://doi.org/10.1038/s41467-025-57407-3

Nature Communications |         (2025) 16:2168 11

www.nature.com/naturecommunications


• G6PDH2r
• PGL
• PGI
• PFK
• FBP
• FBA
• TPI
• PGK
• GAPD
• PGM
• ENO
• PYK
• PPS
• PDH
• PFL
• GND
• RPE
• RPI
• TKT1|TKT2
• TALA
• PPC
• PPCK
• ME1|ME2
• SUCDi
• FUM
• CS
• ACONTa|ACONTb
• ICDHyr
• ICL
• MALS
• AKGDH
• SUCOAS
• MDH
• ALCD2x
• ACALD
• GLXCL|TRSARr
• GHMT2r
• BHC

For each possible single or double knockout, we ran a series of
flux-balance analyses (FBA) using the cobrapy toolbox71.We first tested
whether it can grow at all on succinate. If it could, we ran another FBA
with a high abundance of succinate, and a limiting amount of glyox-
ylate. The ratio between the maximal growth rate and the glyoxylate
uptake rate represents that GBR. The same is repeated with glycerol
instead of succinate.

We thennormalized theGBR value bydividing themby theGBRof
a wild-type cell growing on glyoxylate alone (without succinate nor
glycerol). This brings the values to generally be between 0 and 1,
except for a few cases where the KOmakes the cell require even more
glyoxylate (typically, this is not directly related to the glyoxylate itself,
but rather a disruption that makes biosynthesis less efficient and
therefore requiring more ATP). The results are summarized in Sup-
plementary Fig. 1. Based on these results, we selected 5 designs that
span the range of relevant GBR values (Supplementary Table 1).

We found it sufficient to consider only single and double knock-
out strains with either succinate or glycerol as an additional carbon
source, as the 5 chosen strains spanned a large enough range of GBR
values.Nevertheless,we ran the sameprocedure also for sets of 3 and4
knockouts, and the results can be found in files stored in the Git
repository (see Data and materials availability).

Strains and plasmids used in this study
All strains and plasmids employed in this study are listed in Supple-
mentary Data 1. E. coli SIJ488 (bacterial strain with catalog number

#68246 on addgene), which carries recombinases downstream an
arabinose inducible promoter and a flippase downstream a rhamnose-
dependent promoter72, was the base strain for all engineering efforts
and was used as wildtype reference whenever required. NEB5α cells
were used for cloning. When testing the strains on glyoxylate, in some
cases we generated ‘glyoxylate-only’ variants in which the glycolate
dehydrogenase complex (GlcDEF) was removed. Although not essen-
tial for the strain’s function, this deletionwasmade to prevent possible
futile cycles in the interconversion of glyoxylate to glycolate when
growing on glyoxylate.

Gene deletions
Gene deletions were performed by λ-red recombineering or through
Cas9-mediatedbase editing to introducepremature STOP codons73. For
λ-red recombineering, knockout cassettes were constructed by ampli-
fying the antibiotic resistance cassette from pKD3 (chloramphenicol
resistance, specified by “Cap” in primer name) or pKD4 (kanamycin
resistance) (both vectors were a gift from Barry L. Wanner; Addgene
plasmids #45604 or #45605) with ‘KO’-primers introducing 50bp
overhangs with homology to the respective target locus using PrimeS-
tar GXL polymerase (Takara Bio) or OneTaq polymerase (New England
Biolabs). These ‘KO’-primers were designed following the KEIO knock-
out collection homology arms sequences74. After purifying the cassette
by PCR purification using the GeneJet PCR purification kit (Thermo
Scientific, Dreieich, Germany), the target strain was electroporatedwith
the fragment. For this, the cells were inoculated in LB medium and
grown to an OD600 of 0.3–0.5, when recombinase expression was
induced by adding 15mM L-arabinose and further incubation for 45min
at 37 °C. After harvesting the cells by centrifugation (13,000×g, 30 s,
2 °C) and washing them three times with ice-cold 10% glycerol, the cells
were electroporated with ~300ng of the deletion cassette (1mm cuv-
ette, 1.8 kV, 25 µF, 200Ω). The cells were plated on LB plates containing
the relevant antibiotic. Successful gene deletion in grown colonies was
confirmed by verifying the target locus size in a PCR using ‘ver’-primers
(Supplementary Table 2) and DreamTaq polymerase (Thermo Scien-
tific, Dreieich, Germany). To remove the antibiotic resistance cassette, a
2mL strain culture was grown to an OD600 of 0.5, when 50mM L-
rhamnose was added to induce flippase expression, followed by incu-
bation for ≥3 h at 30 °C. To confirm successful cassette removal, the
colonies were tested for antibiotic sensitivity and the target locus size
was confirmedby PCRwith ‘KO-Ver’primers andDreamTaqpolymerase
(Thermo Scientific, Dreieich, Germany).

For Cas9-mediated base editing, we followed the protocol pro-
vided by the original work73. We constructed pMBEC plasmids con-
taining up to six single-guide RNAs (sgRNAs) for targeting up to three
genes (two sgRNA/gene) per round ofmutation. The spacer sequences
for premature STOP codon introduction were identified using the
CRISPy-web tool (https://crispy.secondarymetabolites.org/,75) and are
listed in Supplementary Table 3.

Gene integration by P1 transduction
To reintroduce glcDEF in the TCAAUX strain29, glcB was deleted by P1
transduction76, thus transferring the glcB deletion locus with a kana-
mycin resistance from a ΔglcB donor strain (JW2943) from the KEIO
collection74 and the adjacent glcDEF wildtype genes. After the trans-
duction, the cells were plated on LB-kanamycin plates containing
20mM sodium citrate. Successful reintroduction of glcDEF was con-
firmed by PCR using the verification primers previously used to verify
the deletion of glcDEFGB (Supplementary Data 1). Furthermore, the
growth of the strainwith glycolate insteadof glyoxylatewas confirmed
in tubes.

Plasmid-based gene expression
For plasmid-basedgene expression, thepZ-ASSplasmid (p15Aoriginof
replication and strong promoter) was used3. Malate thiokinase (mtkAB
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from Methylococcus capsulatus, as described by Liao et al.22.) and the
codon-optimized variant of malyl-CoA lyase (mcl from Rhodobacter
spaeroides) was obtained from pTE3262 (unpublished, both plasmids
were provided by Dr. Shanshan Luo, for gene sequences see Supple-
mentary Data 2). All genes were amplified with primers introducing
ribosomal binding sites “A”, “B” or “C”77 as indicated by the primer
name, the coherent overlapping primers were used to amplify the pZ-
ASS backbone (Supplementary Data 1). In front of all genes, a spacer of
the sequence “TAATAGAAATAATTTTGTTTAACTTTA”was introduced.
In addition, between mtkB and mtkA another spacer of the sequence
“TCTAGAGCTAGCGTTGATCGGAGGTTCTGTTAAGTAACTGAACCC”
was introduced, while betweenmtkA andmcl a spacer of the sequence
“TGTCGTTAGTGACGCTTACCTCTT” was introduced to achieve non-
redundant fragment overhangs. The fragments needed to obtain pZ-
ASS-MtkBA-Mcl plasmids with combinations or different ribosomal
binding sites were assembled by a HiFi DNA assembly as described for
the HiFi assembly protocol (New England Biolabs, Ipswich, Massa-
chusetts). After transforming theHiFi NEB5α cellswith theplasmid, the
cells were plated on LB Streptomycin plates. Successful plasmid
assembly was confirmed by whole-plasmid sequencing (plas-
midsaurus, Eugene, Oregon).

Routine strain cultivation
For routine strain handling, Lysogeny broth (LB) medium (composed
of 1% NaCl, 0.5% yeast extract, 1% tryptone) was used. When appro-
priate, antibiotics (kanamycin (25μg/mL), ampicillin (100μg/mL),
streptomycin, (100μg/mL), or chloramphenicol (30μg/mL))
were added.

Plate reader experiments
For growth tests, M9 minimal medium without antibiotics was used
(50mM Na2HPO4, 20mM KH2PO4, 20mM NH4Cl, 2mMMgSO4, 1mM
NaCl, 134μM EDTA, 100μM CaCl2, 13μM FeCl3·6H2O, 6.2μM ZnCl2,
1.62μM H3BO3, 0.76μM CuCl2·2H2O, 0.42μM CoCl2·2H2O, 0.081μM
MnCl2·4H2O). Carbon sources were added as indicated in the text. For
“relaxing” conditions of overnight precultures, 1.5mM glyoxylate or
glycolate was supplemented, depending on the experiment. For the
experiment, 2mL cultures were harvested by centrifugation
(10,000×g, 30 s) and washed three times with “selective” M9 minimal
medium in the absence of glyoxylate or glycolate. Then, the washed
cells were diluted to a final OD600 of 0.01 in 96-well microtiter plates
(Nunclon Delta Surface, Thermo Scientific). The medium composition
(relaxing, selective, or relaxing with dilutions of glyoxylate or glyco-
late) was adjusted for each experiment. Each well of the 96 well plates
contained 150μL of culture and 50μL mineral oil (Sigma-Aldrich) to
prevent evaporation but allow gas exchange. A BioTek Epoch 2 plate
reader (BioTek, Bad Friedrichshall, Germany) was used to monitor the
growth of technical duplicates at 37 °C by measuring the absorbance
(at 600 nm) every ~10min with intermittent orbital and linear shaking.
During the analysis with MATLAB, blank measurements were sub-
tracted and OD600 values were converted to cuvette OD600 values by
multiplyingwith a factor of 4.35which hadpreviouslybeen established
for the instrument.

13C labeling experiments
For stationary isotope labeling of proteinogenic amino acids 13C2-
glyoxylate ([1,2-13C]-glyoxylic acid monohydrate, LGC Standards) was
used as a tracer. As a control, sodium glyoxylate monohydrate (Sigma
Aldrich) was used as an unlabeled substrate. All experiments were
performed in biological triplicate (n = 3) as follows. Strains were grown
in 4mL LB. Subsequently, 40 µL of culturewas transferred into 4mLof
fresh M9medium supplemented with labeled or unlabeled tracer plus
the additional co-substrate (glycerol or succinate). To reduce the
effect of LB carryover, once the OD600 reached a level of 0.8, 40 µL of
grown culture were transferred again into 4mL of the same M9

medium, and at the late exponential phase, the equivalent of 1mL of
culture at OD600 of 1 was harvested. Samples were then processed to
analyze proteinogenic amino acid mass-isotopomers through GC-
MS78. For analysis of amino acid isotopomer data, we considered
fragments containing the full carbon backbone of the amino acids of
interest79. Raw data from the GCMS was integrated using SmartPeak80.
Processed data was further corrected for the natural abundance of
isotopes in the derivatization agents used for GCMS analysis81.

Proteomics
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD054993. C1 +GLY-AUX and a wild type were
cultivated in 10mL of M9 + 20mM glycerol + 1.5mM glyoxylate or
M9 + 20mM glycerol + 5mM glycine at 37 °C shaking at 180 rpm. Cells
from three biological replicates were harvested at an equivalent of
1mLofOD3 in the late exponential phaseby centrifugation for 1minat
11,000×g. The cells were washed two times with phosphate buffer
(12mM phosphate buffer, 2.7mM KCl, 137mM NaCl, pH = 7.4) before
being flash-frozen in liquid nitrogen for subsequent storage at −70 °C.
To isolate the proteome, cell pellets were resuspended in 2% sodium
lauroyl sarcosinate (SLS, in 100mM ammonium bicarbonate) and heat
incubated at 95 °C for 15min. For DNA shearing, the cells were then
sonicated for 30 s (Vial Tweeter, Hielscher). After quantifying the total
protein in a BCA assay, the samples were treated with 5mM Tris (2-
carboxy-ethyl) phosphine (TCEP) at 90 °C for 15min, followed by
protein alkylation using 10mM Iodoacetamide for 30min in the dark
at 25 °C. For protein digestion, 50 µg of total protein was incubated
with 1 µg of porcine trypsin (Promega) in the presence of 0.5% SLS at
30 °Covernight. After digestion, SLS was precipitated by adding a final
concentration of 1.5% trifluoroacetic acid (TFA, Thermo Fischer Sci-
entific). Peptides were desalted by using C18 solid phase extraction
cartridges (Macherey-Nagel). Cartridges were prepared by adding
acetonitrile (ACN), followed by equilibration with 0.1% TFA. Peptides
were loaded on equilibrated cartridges, washed with 5% ACN and 0.1%
TFA containing buffer, eluted with 50% ACN and 0.1% TFA, and finally
dried. The peptides were resuspended in 100 µL 0.1% TFA and the
peptide mixtures were then analyzed by LC-MS on an Exploris 480
instrument connected to an Ultimate 3000 RSLC nano and a nanos-
pray flex ion source (Thermo Scientific). A capillary column (75μm×
42 cm) packed in-house with C18 resin (2.4μm, Dr. Maisch) was used
for peptide separation. The following separating gradients were used:
94% solvent A (0.15% formic acid) and 6% solvent B (99.85% acetoni-
trile, 0.15% formic acid) to 35% solvent B over 60min at a flow rate of
300nL/min. DIA-MS acquisition method was performed with: spray
voltage set to 2.3 kV, funnel RF level at 45, and heated capillary tem-
perature at 275 °C. For DIA experiments MS1 resolution was set to
120.000 at m/z 200 and the full MS AGC target was 300% with max.
injection time (IT) of 50ms. Themass range was set to 350–1400. AGC
target value for fragment spectra was set at 3000%. 49 windows of
15 Da were used with an overlap of 1 Da. Resolution was set to 15.000
and IT to 22ms. Stepped HCD collision energy of 25%, 27.5%, and 30%
was used. MS1 data was acquired in profile, and MS2 DIA data in
centroid mode.

Analysis of DIA data was performed using DIA-NN version 1.882,
using the UniProt protein database from Escherichia coli K12, and
added sequences for the SIJ488 λ-red recombineering machinery
(Phage recombinase gam (UniProt ID NP_040618.1), Phage recombi-
nase beta (UniProt ID WP_000100844), Phage recombinase exo (Uni-
Prot ID 1AVQ_A), Flippase (UniProt ID P03870.1)). Full tryptic digest
was allowed with three missed cleavage sites, and oxidized methio-
nines and carbamidomethylated cysteines. Match between runs and
remove likely interferences were enabled. The neural network classi-
fier was set to the single-pass mode, and protein inference was based
ongenes. Thequantification strategywas set to any LC (high accuracy).
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Cross-run normalization was set to RT-dependent. Library generation
was set to smart profiling. DIA-NN outputs were further evaluated
using a SafeQuant version modified to process DIA-NN outputs83.

Determining extracellular glycolate in spent medium using LC-
MS/MS
Chromatographic metabolite separation was performed on an Agilent
Infinity II 1290 HPLC system using a Kinetex EVO C18 column
(150× 2.1mm, 3μm particle size, 100Å pore size, Phenomenex) con-
nected to a guard column of similar specificity (20 × 2.1mm, 3μm
particle size, Phenomenex) at a constant flow rate of 0.1mL/min with
2 µL injection volume and 0.1% formic acid in water as mobile phase A
and 0.1% formic acid inmethanol (Honeywell, Morristown, New Jersey,
USA) as phase at 25 °C. The mobile phase profile consisted of the fol-
lowing steps and linear gradients: 0–4min constant at 0% B; 4–6min
from 0% to 100% B; 6–7min constant at 100 % B; 7–7.1min from 100%
to 0% B; 7.1–12min constant at 0% B. An Agilent 6495 mass spectro-
meter was used in negative mode with an electrospray ionization
source and the following conditions: ESI spray voltage 2000 V, nozzle
voltage 500V, sheath gas 300 °C at 11 L/min, nebulizer pressure
50 psig and drying gas 80 °C at 16 L/min.

Compounds were identified and quantified based on their mass
transition, retention time, and peak area compared to an external
standard curve using the MassHunter software (Agilent, Santa Clara,
CA, USA). The parameters mass transitions, collision energies, Cell
accelerator voltages, and Dwell times have been optimized using
chemically pure standards and are given in Supplementary Table 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings of thiswork are availablewithin the paper
and its Supplementary Information files. The mass spectrometry pro-
teomics data (PXD054993) is accessible through the link https://www.
ebi.ac.uk/pride/archive/projects/PXD054993. A reporting summary
for this Article is available as a Supplementary Information file. Source
data are provided in this paper. All strains presented in themanuscript
can be obtained for academic research from the corresponding author
upon request. Source data are provided in this paper.

Code availability
All scripts, data files, and result plots can be found on our GitLab
repository: https://gitlab.com/elad.noor/glyoxylate-auxotrophy.
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