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Gauging introduces gauge fields in order to localize an existing global sym-
metry, resulting in a dual global symmetry on the gauge fields that can be
gauged again. By iterating the gauging process on spin chains with Abelian

group symmetries and arranging the gauge fields in a 2D lattice, the local
symmetries become the stabilizer of the XZZX-code for any Abelian group. By
twisting the gauging map, we obtain codes that explicitly confine anyons,
whose local creating operators violate an odd number of plaquettes. Their
fusion results in either mobile dipole excitations twisting only half of the
plaquette terms, or complete immobile Sierpiniski-like excitations if we twist all
the terms. Our construction naturally realizes any gapped boundary by taking
different quantum phases of the initial (1+1)D globally symmetric system. In
addition, our method also establishes a promising route to obtain high-
erdimensional topological codes from lower ones and to identify their gapped
boundaries and their tensor network representations.

Gauging is fundamental in the Standard Model to comprehend and
unify forces. It transforms a system, promoting its global symmetry to
a local symmetry by introducing new degrees of freedom known as
gauge fields. While the initial motivation for gauging was Lagrangians
supported on the continuum with Lie group symmetries, the gauging
of quantum lattice Hamiltonians with finite group symmetries has
gained significant attention'”.

The power of gauging lies in the fact that it connects very distinct
phases of matter, which makes it the standard tool to classify quantum
phases and to prove the existence of anomalies*®. Since gauging
global (1+1)D symmetries results in emergent dual global symmetries
(which could be non-invertible for non-Abelian groups’®) this turns
gauging into the source of dualities in (1+1)D°. In (2+1)D, the emergent
symmetries give rise to a very rich phenomena including 1-form and
surface symmetries'®. Gauging has also been generalized to other
settings beyond on-site global symmetries, including non-on-site glo-
bal symmetries” and higher form symmetries®>™, leading to the
creation of fractal phases™'.

All previous gauging and duality setups relate systems in the same
physical dimension. In this work, we use gauging to establish a
bulk-boundary correspondence: the construction of a (2+1)D topolo-
gically ordered system (with local symmetries) from (1+1)D globally
symmetric systems.

To achieve this, we iteratively gauge the emergent 1D global
symmetries of the new gauge fields for finite Abelian groups. Since
the corresponding matter fields are not discarded at every step, we
arrange them as the horizontal layers of the newly constructed 2D
lattice. Unexpectedly, the local symmetries from each gauging,
modified by the composition of the subsequent maps, become the
stabilizers of the generalization of the XZZX-code" (a realization of
the toric code™ proposed in'?) for any Abelian group. By twisting the
gauging map by a 2-cocycle’®”, we explicitly confined anyons that
now violate an odd number of plaquette terms and whose fusion
results in mobile dipoles or completely immobile Sierpinski-like
excitations.

The different gapped boundaries (and hence the condensable
anyons at the boundary) of our construction depend on the quantum
phase of the initial (1+1)D globally symmetric system. We show this by
establishing a connection between boundary Hamiltonian terms and
(1+1)D string order parameters evaluated on the initial system. Such
connection illuminates the fact that both settings, gapped boundaries
of quantum doubles of G and (1+1)D quantum phases with global
symmetries, are classified by the same mathematical object.

Since the gauging operator is a tensor network, our 2D con-
struction inherits that structure, giving rise to a subfamily of projected
entangled pair states (PEPS)* that we refer to as projected entangled
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pair emergent states (PEPES) that satisfy a different version of the
virtual symmetry leading to topological ordered PEPS™*.

While preparing this manuscript, Ref. 25 appears where D + 1-
dimensional qubit Hamiltonians are constructed by coupling D-
dimensional Hamiltonians with multiple Z, symmetries and their dual
models by using generalized Kramers-Wannier dualities. We are not
limited to qubit systems nor to order two symmetries.

Results

Gauging

The procedure of gauging maps globally symmetric operators and
states {O,|¢)}, to local symmetric ones (O,|9)) such that it preserves
their expectation values: (¢|O|y) = (¢|O|g). It has been proven*” that
the gauging of a Hamiltonian with its zero gauge coupling limit can
preserve the gap and the ground subspace.

The map is implemented by a gauging operator G,?, that maps the
initial matter Hilbert space H,, to H, ® H,, introducing new degrees of
freedom (dof) supported in ;, called the gauge fields. Given a global
symmetry of a finite Abelian group G represented as ®,<u;;, in H,, where
g € G and i denotes the vertices of a 1D chain, the new introduced
Hilbert space is H; = ®; C[GY', where i denotes the edge between i and
i +1and C[G]=span{|g),g € G}. We define in C[G] the unitary repre-
sentation of G{X glgec 38X, |h> lgh) t that allows to construct the local
symmetry prOJectors Pi= G Zggc ®u’ ®X' Then the global
projector to the local symmetric subspace is P=I;P such that the
gauging operator is defined by G, =P(®;le);), where e denotes the
trivial group element and it satisfies

(XI;},I . ugo 'XQ) Go=Gy, Vg eGVYi, 1)

where j = 0, 1 denotes the action on H;.

Finally gauged states are given by |([) =G, ly) and gauge operators
by 0-Gy=G, - O. As an example let us consider the transverse-field
Ising model H = - JQ.X:X;1 + g7;) with global symmetry ®;Z; that it is
mapped under gauging to H= — J(3,X;Z:X;., +&Z;) with local sym-
metry X;_,Z,X; and an emergent global symmetry ®;Z; only supported
on the gauge ﬁelds Importantly, as we will show next this emergent
global symmetry is always present after gauging.

The emergent global dual symmetry
Let us define the operator Z;=3",8(h) )|h)(h|, associated to an irrep
g:G6G— UQ)ofG, satlsfymgX Z,=8(8 1y. Zg4 - Xg. Then, the global
operator ®: Z;l commutes wrth the local symmetry of (1), so it does
with P4, and it is a global symmetry of ®;le);. Therefore, the gauged
operators and the gauged states endow the following emergent dual
global symmetry:

®;-Zl -Go=Go Vg€ G, @
where the unitary operators {Z,} are a representation of the dual
group G of the irreps. In the Supplementary Note 1 we show that for
non-Abelian groups the emergent global symmetry is Rep(G) and it
comes from the zero gauge flux configuration.

In the literature, gauging also involves decoupling and projecting
out the matter, resulting in just gauge fields with a global symmetry,
which can be understood as a duality process. In the example, the
decoupling process maps H — H= —J(3,Z;+gX;_X;), since Z; —
X;_X; using the local symmetry XZX, which corresponds to the
Kramers-Wannier duality®.

Iterative Abelian gauging

The emergent global G symmetry can be gauged as well. To do so we
construct the gauging map G, : H; — H; ® H, by first mtroducrng
Hy= ®; C[G] defining the unitary representation of G(X, }g - as

G
Xg|h |gh and then projecting ®;/é),, onto the local symnﬁetric

i2

() z 2Z ZzZ Z Go X ZX
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Fig. 1| Sketch of the iterative gauging for G=7,. a The global symmetry gen-
erated by Z®Vis gauged to alocal X ® Z® X symmetry and a global Z®" on the gauge
fields. b Emergent local symmetries after applying the second gauging map.

subspace of X%, ®Zg1 ® X42. After composing both gauging maps
G10Go : Ho — fto ® H; ® H,, the initial local symmetry of G, see (1),
changes to

(XA 722, XY - G1oGo = 6o 3)

whereZ, Zhh(g)m y(hisa representation of G on C[G] and it satisfies
Zg- X4 g(g) - Xz - Z4- Toget Eq. (3) we just have to check that G, (X ® 1

g) (XT ® Z ®X )g1 which is how two point symmetric correlatlon
functlons (of the global symmetry G) maps through gauging to string
order parameters (of the global symmetry G):

g g (T 2) o n
i<k<i
See Fig. 1 for an sketch. Again, there is an emergent global sym-
metry of G after gauging with G, realized by Z; acting on H,.
Therefore, we can iterate the gauging of the emergent global
symmetries defining G; : H; — H; ® H;,; and compose M gauging
maps:

M
G=G0p_10 - 0G109g : Hg — ‘®OH" 5)
j=

where G, is related to G; =
whenj odd.

Ge by ug © Z, withj even and G, =G; = G,

2D lattice from iterative 1D gauging

We place every new Hilbert space H;,; coming from G; : H; — H; ®
H; .1, on the next layer of a 2D array. Every local Hilbert space C[G] wrll
be on the vertices {i}, and C[G] on the edges {i} (placed between i and
i +1). This creates a rotated squared lattice with the following sym-

metries:

(Xlg_,}'j Z;{;rl 'Z;j—l Xg]) . g:g,jodd
(.20 2 ) -

see Fig. 2. These local symmetries commute since
[Z; ® Xg,X; ® Z5]=0. Remarkably, for G=Z, they are the stabilizers
of the XZZX"code", which is a different realization of the toric code'®".

So our state G is a common (+1) eigenstate of the aforementioned
commuting stabilizer terms which can be seen as the ground state of
the topological code Hamiltonian:

Z

E .q g
HEE =S X Cx, - X1 X, ©

geG ac(y .

e#g g Zi(’ Zg
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( )

Fig. 2 | Main operators on the emergent 2D system. a Commuting bulk Hamil-
tonian terms. b Generic boundary term. ¢ Vertical anyon given by g € G that could
condense on the boundary. d Concatenation of horizontal and vertical anyons
givenby g € G.

Therefore, we have constructed the generalization of the XZZX-code
for any Abelian group G by using the emergent symmetries of the
concatenation of (1 +1)D gauging_%[)erators. §

Hg'l‘;irli- commutes with {®;.Zg }jo and {®,Z¢  even’ the emergent
global symmetries of the ground state G, which ‘correspond to the

g
i

g

horizontal logical operators. The vertical logical operators are {®jxg}

and {®,xg}f’, that applied to G generate the |G* ground states

Emerg.
of He buik -

Twisting the bulk
The gauging map can be twisted, as introduced in ref. 21, by a 2-cocycle
a € H[G, U(D)]. To do so we introduce the & and & projective repre-
sentations X and )?g defined by Xglh)=a(g, h)lgh) and
)?Z|h> =a(hg~'.g)lhg™'). These two representations commute so we
construct P, = \G\*lzgecf(g ®Z,®Xg and define G, = H,-Pfx®;|e);.
Importantly the twisted gauging operator also realizes the same
emergent dual symmetry of G: ®;.Z£, -G, =G, since the operators
satisfy Z, - Xg=g(8) - Xg - Z5-

For untwisted gauging maps on odd layers, the emergent Hamil-

tonian resulting from concatenating G,G,, shares the G-plaquette
terms of (6). However, G-plaquette terms are now:

Z}
a_ X2 Xg a_ @)
Bgi gz] 7 :>HB97®ZM7(’"
9 1,

. _ a@h
where 14, (the so-called slant product) belongs to G since i,,(h) = %.g;

and where we have used X - )?Z =Z, a The fact that the product of all

G-plaquette terms is the product of the horizontal G-logical operators,
Eq. (7), and not the identity has several consequences. First, the only

21 g L.
logical vertical operators are {®X g }i , since {®;X ng }lfg do not commute
with Bg. Then the former generate just a |G|-fold ground space: the

topological order has changed. Second, there are local operators, Xg
and )?g, that violate (depicted as a red dot) an odd number of
plaquettes, see Fig. 3a.

These excitations are confined creating strings whose energy
. . . X .
grow with their length. But gluing them together X, ® X, a dipole

(a) (b) (c)

Fig. 3 | Twisted operators and their excitations. a G-twisted operators violating
three plaquette terms depicted in red. b G-twisted operators violating three pla-
quette terms depicted in red. ¢ Combining twisted operators with the shape of the
Sierpinski triangle, acting on the blue vertices, excitations on the red plaquettes are
created.

excitation is created that moves free vertically. One can bend the
dipole excitation by acting with Z; horizontally, leaving an excita-
tion on the corner or splitting the excitation on to right and left.
Notice that the dipole commutes with the horizontal Z,-string
excitations: so these two kind of excitations braid trivially. The only
remaining anyons are vertical X,-strings and horizontal Zg-strings
that braid non-trivially.

We can also twist the odd layers by S € H2[G,U(1)] where the
local excitations are created by X2 and )?g, depicted in Fig. 3b. The
combine action ofX’gf and Xg with the shape of the Sierpinski fractal
generate excitations at its corners, see Fig. 3c. We note that twisting
all the layers reduces drastically the topological order (depending
on a and f).

Boundary conditions

In this section we consider periodic boundary conditions (PBC) in the
horizontal direction by using PBC gauging operators—see Supple-
mentary Note 3 on how to define the gauging map with open boundary
conditions (OBC). We also take u, = Z, for simplicity. The vertical
boundaries of G, see Eq. (5), correspond to the input Hilbert space H,,
and the last gauge fields introduced H,,.

The case of PBC on the vertical boundaries correspond to the
state Try, 5, [G] € ®}'H;, whenever M is even, which results in a
square rotated lattice in a torus.

For vertical OBC, we close the boundaries with the states [¥) € Ho
and |¢) € H,, which are globally symmetric under G (or G for the case
of |¢) if Mis odd). Therefore, the resulting state is (¢/|Gl¢)) € ®M'H;.

There are two kind of boundary terms that commute with the bulk
stabilizers. The first one can be chosen to be (see Fig. 2)

ﬁ ®Zl® Xg, B e HAG,U)), )

and the second one corresponds to single Z; acting on the first layer.
The first type affects the anyons labeled by G and the second influences
the anyons indexed by G.

The appearance of the boundary terms as symmetries of (¢'|G|¢)
will be determined by the quantum phases of [¢¢) and |¢'). Let us first
describe the situation for the first type of boundary terms. If we con-

catenate £ of these terms its action on |¢) through G is )N(g ® Zif; ® Xg.
So the term of Eq. (8) is a symmetry of Gjg) only if
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<(p|)?g ®Z 22 ® X§|ll)> =1. This corresponds to the expectation value of

this string order parameter for the global symmetry ®,Z:, whose value
depends on the quantum phase of |¢) viewed as one of the ground
states of a 1D symmetric Hamiltonian Hl,,,D. Therefore, the quantum
phase of the 1D boundary determines which boundary stabilizer are

present and then which anyons condense at the boundary (by com-
muting with all Hamiltonian terms in the boundary).

Remarkably our construction unifies the fact that the mathema-
tical object that classifies both gapped boundaries of quantum double
models of G*° and globally G symmetric 1D systems®**! is the same:
module categories over Vecs” given by pairs (H € G, € H2[H, UQD))).

Incorporating the second type of boundaries, the condition to be
a symmetry of (¢/|G|¢) is that Z, is also a local symmetry for |¢)
(provided that it generates its global symmetry ®,-Zé,).

Let us analyze in detail the case of 8 = 1 where the boundary
terms are X;f, ® Zg ® X; so we evaluate <(/)|X;;;'" ® Xy '), a two point
symmetric correlation function that characterizes the pattern of
symmetry breaking. If H < G is the unbroken symmetry group char-

acterizing the quantum phase of Hj), generically (¢|(X} ® X;)|¢p>¢0
if g(h)=1 for all h € H. We further impose that <([)|(Xf;, ®Xg)|([)> =1

which is achieved at the RG fixed point, see the Supplementary
Note 2 for an explicit construction. So the boundary symmetries of

the first type correspond to the elements g in the subgroup resﬁ cG,
where resG =g € G| g(H)=1).
Finally, we can construct the associated boundary Hamiltonian as:

Z Z5
(H,1) 5
v X, xi " o
e4£g g g prers g
QET’csg Zg|h)=|1)

whose first kind of terms are violated only by anyons created by string
operators ®;.,X;/ ending in the boundary with g € G\H, see Fig. 2c.
The second kind of terms are violated by anyons indexed by g € G such
that g(g) #1 for all g € G satisfying that Z,,|y) = |¢).

As an example we can take |¢) = ®;|é)' which belongs to the
trivial symmetric phase: (H = G, f = 1) and it is also locally symmetric
under Z; for all g € G. In this case only G-anyons condense at the
boundary.

The same discussion could have been applied if we would have
started from a G global symmetry and also to last layer @) of (¢/IGI¢).

Tensor network description

The gauging operators, G, . in odd and even layers, are matrix product
operators constructed from two tensors (see Supplementary Note 3)
of bond dimension |G|:

go,e -

Ajo e

T’o,(‘, ]\'jo,(‘, Z),o A/[o,n T‘()A(:

Then, the state G in (5) is a projected entangled pair state (PEPS)*
emerging from the concatenation of 1D gauging operators. Subse-
quently, we dub this subfamily of PEPS as projected entangled pair
emergent states (PEPES). The two different tensors, corresponding to
the two types of vertices in the rotated squared checkboard lattice of

the PEPES (see Fig. 2) have the following symmetries:

M, X XS 2\ %
0 Z, Z X7,
D G S O
ﬂi Z,7 Nzh XYONX,

The first three relations of each tensor correspond to the virtual G
and G-invariance characterizing 2D topological order in PEPS?***
and the last relations makes compatible those symmetries. Note
that the virtual loop symmetries propagates only in the horizontal
direction.

Another view on our construction
We can interpret G as the projection of stacked layers of 1D product
states. By using that G;=7; ®; |e); we can write

g= (H Py - 732,1> Po(I9) & @jleiy@ie)y ),
i=1

where ®;|e>i is locally invariant under any ng and the projectors P»;and
P,j_1 do not commute. The two previous properties differ from the
common approach of creating topologically ordered models from
stacking lower dimensional ones (where the coupling generally
commutes)® 5,

Discussion

In this work we have established a bulk-boundary correspondence
between 1D global symmetric systems and 2D topologically ordered
models. We do so by sequentially gauging the emergent 1D global
symmetries that maps the local 1D symmetries after gauging to 2D
plaquette operators. As a result we obtain a family of 2D Hamilto-
nians:

=% +H[|‘IJ>]

G
H bulk bdry."

Emerg.
This family covers the generalization of the XZZX-code for any Abelian
group G. Also, these Hamiltonians are able to realize interesting anyon
confinement phenomena where there are local excitations violating 3
plaquette terms. Moreover, the boundary terms are given by the
quantum phase of the 1D Hamiltonian of |) and determines which
anyons condense at the boundary. Such connection illuminates the
fact that both settings are classified by the same mathematical object.

The question of how our construction can be generalized to non-
Abelian topological orders remains open. We left for future work the
emergence of non-trivial (3+1)D phases from the gauging of (2+1)D
symmetries.

Methods

The main relations used in the analytical calculations are Z -
Xz=8(8) Xz -Zyand X, - Z,=8(g™")-Z; - X, foranyge Gand g € G.
These relations allow us to compute how the different operators
translate through the gauging maps.

Data availability
The author declares that the data supporting the findings of this study
are available within the paper.
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