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Similarity and economy of scale in urban
transportation networks and optimal
transport-based infrastructures

Daniela Leite 1 & Caterina De Bacco 1

Designing and optimizing the structure of urban transportation networks is a
challenging task. In this study, we propose a method inspired by optimal
transport theory and the principle of economy of scale that uses little infor-
mation in input to generate structures that are similar to those of public
transportation networks. Contrarily to standard approaches, it does not
assume any initial backbone network infrastructure but rather extracts this
directly from a continuous space using only a few origin and destination
points, generating networks from scratch. Analyzing a set of urban train, tram
and subway networks, we find a noteworthy degree of similarity in several of
the studied cases between simulated and real infrastructures. By tuning one
parameter, our method can simulate a range of different subway, tram and
train networks that can be further used to suggest possible improvements in
terms of relevant transportation properties. Outputs of our algorithm provide
naturally a principled quantitativemeasure of similarity between twonetworks
that can be used to automatize the selection of similar simulated networks.

Transportation networks are a fundamental part of a city’s infra-
structure. Their design impacts the efficiency with which the system is
operated, hence, they should follow optimal principles while being
constrained by limitations like budget or physical obstacles. Existing
approaches for studying the quality of network design often rely on the
analysis of the topological network properties, and relate them to
optimal features like transportation cost, efficiency or robustness.
These analyses are usuallymade a posteriori, only once the network has
been constructed, and thus only resulting properties can be analyzed1,2.
A different approach is that of posing a priori a principled optimization
setup, where one defines a cost function that a network should mini-
mize under a set of constraints, and then searches for optimal solutions
in terms of network topologies. Numerous studies have explored this
approach in biological networks, transportation networks, etc3,4. How-
ever, most of these methods rely on an existing backbone of a network
infrastructure that canbeoptimized in termsof trafficdistribution5,6 but
do not consider the possibility of building the network from scratch,
starting from a limited set of nodes. Alternatively, as optimizing over all
possible topologies is difficult, one can investigate only various simple
shapes from a predetermined set of possible geometries7–9 or rely on

heuristics10,11. In fact, proposed solutions for the network design pro-
blem (also known as transit design problem) often rely on heuristics
that do not necessarily generate equilibrium solutions12,13. Alternatively,
bilevel formulations account for the needs of both passengers and
network manager in a hierarchical way, framing the passengers’ objec-
tive as a constraint on the network manager’s one14,15, but solving them
is NP-hard16. Another approach is that of using models that mimic bio-
logical networks. For instance, ref. 17 presented a two-step agent-based
model that replicates biologically-grown networks and proposes them
as a template for urban design. Nevertheless, the lack of a principled
metric to measure the similarities between an observed network and a
simulated one poses a challenge for making this evaluation effective. In
addition, most of these approaches extract optimal networks starting
from an initial backbone infrastructure, which impacts the resulting
topology. Instead, we take a different approach and generate a network
fromscratch, startingonly froma feworigins anddestinationpoints in a
continuous space, identifying where nodes and edges should be
located.

In this work, we show that urban transportation systems can
exhibit underlying network topologies similar to those that follow
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optimality principles as defined in optimal transport theory. Specifi-
cally, we propose amodel to characterize real transportation networks
based on a simple optimal transport framework, similar to what is
observed in biological systems like the slime mold Physarum poly-
cephalum, which adapts its network structure to reach food patches in
an optimal way. A previous study by ref. 18 shows how thismold forms
networks with comparable optimal transportation properties, e.g.,
efficiency and cost, to those of the Tokyo rail system, but provided no
rigorous quantitative definition of network similarity beyond mea-
suring these properties. We empirically validate our approach with a
systematic characterization of the structure of several urban trans-
portation networks and propose a rigorous definition of similarity in
terms of optimal transport theory.

Urban transportation networks often exhibit different network
structures basedon the goals of network designers. For instance, some
networks focus on connecting people living in the outer layers of the
city to the city core, while others prefer to develop a robust infra-
structure servicing the core19. Several studies have focused on ana-
lyzing properties like scaling laws and network connectivity20–22, which
are indications of an underlying optimality mechanism that these
networks might follow to make a city efficient, both in reduced infra-
structure costs per capita and in increased productivity. However, our
understanding of what optimality principles are captured in real
transportation networks is incomplete. In fact, studying network
properties could only partially explain the underlying mechanisms
regulating network design, as each property captures a different
aspect. Here, we take a different approach and build the network from
scratch while comparing it with the real ones observed from data,
starting with only a few shared nodes in input. Specifically, we model
network structures observed in urban transportation networks by
adapting a classical optimal transport framework to simulate a
network-design problem dependent on realistic travel demand set-
tings and using little information in input. We then compare the
resulting networks with those observed from real data and assess their
similarity. Importantly, the model can simulate different optimal
strategies by tuning a parameter β, which interpolates between mini-
mizing infrastructural and operating costs, in a similar fashion as in the
principle of economyof scale, a fundamental concept in economy that
establishes the relationship between growth and production costs.
This principle affirms that, as the quantity of produced units rises, the
average cost per unit of production declines23. This impacts the bal-
ance between the costs of producing and that of maintaining and
operating the network. On one hand, this allows to simulate optimal

networks that resemble those observed in real transportation systems
more closely, as we tune β. On the other hand, by comparing the
networks resulting for various values of β with those observed from
real data, we can also assess the impact of the two types of cost in the
design of various urban infrastructures.

We use this model to analyze several transportation networks
from 18 cities and a national rail network24–26. Despite the complex
nature of the mechanisms driving the design of transportation net-
works, we observe that multiple of the studied urban transportation
networks followa surprisingly similar topological pattern, asnoticed in
biological systems. We observed that in several cases, the optimal
networks obtained with our approach have similar cost and perfor-
mance to those observed in real ones.

Results
Modeling network design in transportation networks
Consider an urban area where a set of points of interest (POI) are
located in certain positions in space. These may correspond to a
combination of central and peripheral points where people work and
live. The goal is to connect them by building a transportation network
under the perspectives of an optimality criterion, based on the mini-
mization of a cost-based energy functional. At this point, we do not
observe any network but are rather free to use the whole space where
the urban area is located, i.e., a 2D surface. From this, we need to select
a set of points and edges connecting them, in other words, a network.
In Fig. 1a, b we illustrate the problem setup for the subway network in
Rome, where green and red markers denote an example set of such
reference points and the lines denote edges in the observed metro
network infrastructure. In the same figure, we show how existing sta-
tions are placed across urban areaswith different population densities,
as the evolution of subway networks often reflects the evolution of
population and activity densities27.

In general, there are many choices for designing the network. For
instance, in Fig. 1c–e we show three examples of intuitive shortest-
path-like minimization solutions for the settings shown in Fig. 1a.
These are however quite different from the observed network in
Fig. 1b. The question we address is what network design principle is
producing simulated networks that aremore similar to thoseobserved
in real urban networks. Optimality could be defined in various ways
depending on the network engineers’ and designers’ goals, but gen-
erally, it is not known what principles they used when building the
network. Instead, we want to assess this by observing real data of
transportation networks and fitting them with a flexible and

Fig. 1 | Problem setup for the subway network of Rome. a Given a set of real
latitude-longitude coordinates denoting origins (green) and destinations (red), we
aim to build a network structure that resembles well the observed public trans-
portation network connecting those points, as in (b). c–e Intuitive ways to build a
network structure by connecting origins and destinations, versus networks
extracted with our optimal transport-based method in f–h. The only known

information is the set of six origins (O) and one destination (D). We capture dif-
ferent optimization mechanisms by tuning the β parameter: in (f), the network is
the shortest path-like structure, while in (g) and (h) we show examples of branched
transportation schemes. This information is added to the populationdensity across
multiple urban areas (2019)60, where darker (lighter) colors indicate higher (lower)
densities. L denotes the total length of the network, measured in kilometers.
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computationally efficient optimization setup guided by optimal
transport theory. In this context, a well-defined cost-based functional
combines aspects that are critical for a transportation network: the
cost of building the infrastructure and that of operating thenetwork, in
terms of power dissipation. This is relevant in scenarios where we
expect infrastructures to be regulated by energy-saving requirements
and the principle of economy of scale, where it is more convenient to
consolidate traffic into fewer and larger edges. We expect this to be a
reasonable assumption in urban transportation networks. As with any
other natural or urban system, we do not know a priori what (if any) is
the functional being optimized in the network under study. In fact,
many of these systems (e.g., metro and tram) are built in phases19,
where the design of an initial backbone structure is followedby several
expansion steps, which may lead to suboptimal structures. However,
our model allows considering, among the many possible choices, a
simple but yet principled mechanism of optimality. By measuring the
degree of similarity of networks that follow these principles with
existing urban transportation networks, we can assess if the observed
ones can be explained by this simple mechanism. And if not, we can
point out alternative infrastructures that can be better in terms of
certain relevant network properties, e.g., total path length. Our setting
is simple because we consider only a limited input (few nodes that
need to exist, e.g., main origin and destination stations), but otherwise
do not consider any other constraint, besides main physical laws such
as conservation of mass, and let the model select nodes and edges
from a two-dimensional space where it can be optimal to drive pas-
sengers, tuning only one parameter. For this, we adopt the formalism
recently developed by ref. 28–30 that generalizes to a continuous
space the original idea of ref. 31. In particular, this allows starting with
only a set of relatively few origin and destination nodes in input and
then designing a network by exploring the 2D surface, i.e., without the
need of an initial existing backbone. The idea is inspired by the
behavior of the slime mold P. polycephalum, which dynamically builds
a network-like body shape when foraging. One can thus consider a
dynamics for the two main quantities involved, flows and con-
ductivities, that implements this mechanism at any point in space. The
stationary solution of this dynamics corresponds to theminimizer of a
Lyapunov cost in a standard optimization setup, which has a nice
interpretation in terms of infrastructure and operating transportation
costs. From these solutions, one can then automatically extract opti-
mal network structures using the approach presented in ref. 32. From
now onwards, we refer to the algorithmic implementation of this
approach as “Nextrout”.

Having introduced the main problem and ideas, we now briefly
describe the model. Consider a surface in 2D and a set of points on it.
Specifically, we denote a set of origins and destinations as f + and f −,
respectively. These contain the reference points where people enter
and exit the transportation network. By defining f = f +−f −, mass con-
servation can be enforced with the constraint ∫ fdx =0. The two main
quantities of interest are denoted with μ(x, t), the transport density (or
conductivity), and u(x, t) the transport potential. The former can be
seen as a quantity proportional to the size of a network edge, while the
latter determines the fluxes traveling along them. The dynamical
equations in this continuous setting are

�∇ � ðμðt,xÞ∇uðt,xÞÞ= f , ð1Þ

∂μðt,xÞ
∂t

= μðt,xÞ∇uðt,xÞð Þβ � μðt,xÞ, ð2Þ

μð0,xÞ=μ0ðxÞ>0: ð3Þ

Equation (1) determines the spatial balance of the flux, assumed to be
governed by the Fick–Poiseuille flux as q = −μ ∇ u; Eq. (2) enforces

optimal solutions, and represents the P. polycephalum dynamics in the
continuous domain; Eq. (3) is the initial condition. The parameter β
captures different optimization mechanisms: β < 1 enforces congested
transportation, β = 1 is the shortest path-like and β > 1 is branched
transportation. In Fig. 1f–h we show examples of different optimal
configurations, with β = 1, β = 1.5 and β = 2.0. Here, we consider the
cases 1 < β ≤ 2, where the approximate support of the conductivity μ
displays a network-like structure. Under the lenses of a network, the
conductivities can be viewed as the traffic capacities on the edges,
hence Eq. (3) defines how the initial traffic capacities are distributed
along the network, while Eq. (2) describes how these capacities evolve
in response to the fluxes. As timeevolves (i.e., limt!1), the equilibrium
solution pair (μ*, u*) is reached. In refs. 30,33 the authors show that
under certain assumptions, this equilibrium solution is a minimizer of
the functional

Lðμ,uÞ= 1
2

Z
μj∇uj2dx +

Z
β

2� β
μ

2�β
β : ð4Þ

This can be interpreted as the network transportation cost, where the
first term is a network operating cost (or power dissipation, it is the
Dirichlet energy to the solution of the first partial differential equa-
tion), while the second is a non-linear cost to build the infrastructure.
When β > 1, this second term corresponds to a principle of economyof
scale, where it is more convenient to consolidate traffic into fewer (but
larger) edges. This is the scenariowe consider here. By changing β, one
can tune their relative contribution to the total transportation cost,
thus tuning the impact of the principle of economy of scale and how
much concentrated path trajectories are. Besides being relevant for
urban transportation, this strategy seems to be a fundamental
mechanism in various natural systems, e.g., tree branches and roots,
blood vessels or river networks34,35.

Alternative approaches can be considered to design a network
infrastructure from simple mechanisms. Examples are cost-benefit
analysis36, maximizing for efficiency37 accounting for paths and flows
of passengers, or minimizing the total length, as in the Euclidean
minimum spanning tree problem. In discrete settings, when an initial
network backbone is given, the cost in Eq. (4) has been shown to be
implicitly related to the total path length minimization accounting for
the passengers’ trajectories38. One main difference between ours and
these types of approaches is that we focus on a continuous space (as
opposed to discrete settings) where the only necessary input is a set of
origins and destinations, but otherwise no initial backbone network is
given. This enables the design of a network from scratch, simulating
where nodes and edges should be located in space to minimize
the cost.

Once the optimal (μ*, u*) are obtained, one can then use themodel
described in ref. 32 to extract a final network structure, i.e., a set of
nodes, a set of edges connecting them, and their weights proportional
to the conductivities. This can then be compared with the one
observed from real data and repeated for various values of β. It is
important to remark that in our setting, besides the parameter β, the
other input quantities that need to be specified are origins and desti-
nations via the function f. By imposing non-zero entries to this func-
tion, a user automatically selects a set of nodes that will be necessarily
present in the output network. Otherwise, no other set of nodes or
edges needs to be given but is rather automatically learned by solving
the optimization problem described above. This implies that similarity
between simulated andobservednetworks trivially increases aswe add
more non-zero terms in f. Here we consider the non-trivial scenario
where we fix only a small number of origins and destinations, as
described in more detail below.
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Selecting origin and destination points
As we aim at extracting a network, our problem starts by defining a set
of origins and destinations (O-D) points in the space with coordinates
(x, y), where passengers might enter or exit. This choice necessarily
impacts the output network, as the optimization problem depends on
it. Ideally, one could reframe it by includingO-D pairs as variables to be
optimized along with conductivities and fluxes. But this becomes a
different andmore complex problem and it is not clear how to solve it.
Here instead, we focus on the optimization setting introduced above
and treat O-D pairs as fixed in input. While we limit selection to a small
number of points, specifically one destination and few origins, it is
important to decide where to place these input nodes in space. There
are no universal criteria to define what are the most relevant points
where city planners should add a stop to accommodate traffic when
designing a network. However, existing infrastructures often evolve
reflecting needs such as population increase or land usage39. With this
in mind, we can assume that at least some of the existing nodes have
already been placed in positions relevant to transportation needs.
Hence, we select O-D pairs from important nodes as observed in
existing urban networks. Specifically, we use centrality measures
obtained from the original network: nodes with the smallest and
highest centrality are assigned as origin and destination nodes,
respectively. These measures might reflect the choice on where to
place new stations that are often made by urban planners or trans-
portation engineers, usually based on a variety of factors, such as
population density, land use patterns or available funding40. For
instance, in Fig. 2a we observe higher population density in peripheral
regions, where the stations with lower centrality are located, whereas
those with higher centrality are located towards the center, with lower
population density. In the same figure, we show node sizes as pro-
portional to the annual traffic in each station, as measured in 201941. In
this example, the highest traffic corresponds to the station with the
highest degree centrality, thus reinforcing the choice of that node as a
destination.

Another possibility is to incorporate urban features by using some
measure of attractiveness, which takes into account the densities of
POI and population in a given urban area, an approach also used in
otherworks37. However, this strategymaynot be scalable, as it requires
the integration of several datasets, whereas using network centralities
can be done automatically from the observed network data at no
additional cost. We show an example of this for the metro network of
Rome, to assess the extent to which these two strategies align. Herewe
categorize POIs into various types such as tourism, economy, culture,

utilities, history, education, food, etc... as also done in previous
studies42. We notice that the high centrality nodes found by the two
criteria are located nearby geographically and yield similar simulated
networks, see Fig. 2. Hence, we adopt the centrality criteria as a good
approximation for attractiveness to select origins and destinations in
all the networks investigated here.

Investigating the similarity of optimal simulated networks and
the observed transportation systems
We apply the proposed dynamics to empirical data collected from 18
different cities in multiple geographical regions around the world. For
each city, we selected various available types of public transportation
systems, such as rail, subway and tram, keeping the largest connected
component. The networks considered in this manuscript have a few
loops, as the dynamics can only retrieve loopless structures in the
regimewhere network extraction ismeaningful32. These networks could
be seen as phase I in the classification of ref. 19, i.e., the initial phase
where a backbone infrastructure is built, before a later evolution where
further additional links are added through time. We expect these to be
more likely to follow a global optimization criteria as the one formulated
in our model (as opposed to other greedy heuristics for later extension
phases). We thus measure the loop ratio Lratio =nL/E as the number of
loops divided by the number of edges and select networks with a low
ratio, i.e., with Lratio <0.2 (see Methods for more details). One could in
principle recover loopy structures by employing numerical schemes,
e.g., superpositionofdifferent outputs43, but this is not themain focusof
this work. Instead, we point towards directions on the loop recover
perspective, presented later in thismanuscript, by exploring an example
of a more complex network structure as the New York subway.

The applied Optimal Transport (OT) dynamics successfully
describe the transportation network structures observed in different
cities at a macroscopic level. While the selected transportation net-
works have different topologies and include multiple transportation
modes, the networks reconstructed by Nextrout with only little
information in input show a significant degree of similarity with the
real ones (see Fig. 3a–c) for several of the studied cases, as evidenced
by different similarity measures that we calculated to compare the
topologyof the simulatednetworks against the real ones, see Fig. 4 and
next sections for details. This suggests the existence of simple uni-
versal optimality rules captured by the so-called Dynamic Monge-
Kantorovich (DMK) dynamics for the modeling of urban transporta-
tion rail networks, similar to what has been observed for the behavior
of the slime mold P. polycephalum.

Fig. 2 | Comparing criteria to select origin and destination nodes.We compare
two criteria to select the input nodes that we give to our algorithm, one based on a
topological property (centrality) andonebasedonpopulationandpoint-of-interest
densities (ρPOI). a Stations with the highest and lowest annual traffic (2019), pro-
portional to the node sizes, over the population distribution in Rome (in multiples
of 10,000). The degree centrality of nodes in the observed is related to the traffic at
stations. In particular, the central node with the highest degree (destination), has

also the highest annual traffic.bDensity accounting forpopulation anddistribution
of points-of-interest (ρPOI), darker colorsmean higher values, i.e., regions of higher
relevance for transportation. When accounting for the Points of Interest (POI), we
notice that the city center presents higher density (ρPOI) compared to the periph-
eral areas, therefore using centralities to select destinations is an approximation to
real demands.
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An example of the different simulated networks is shown in
Fig. 5a–d, where, as we increase the values of β, one can notice how the
network infrastructure evolves from a shortest path-like (β = 1) to a
branching topology, where two branches (β = 1.5) are created to lower

the cost of building the infrastructure. In particular, the southern
branch in Fig. 5b resembles an analogous one observed in the real
subway networkof Rome. As β increases to 2, this branch disappears to
build a unique path that connects two destination points in the

Fig. 4 | Performance measures for real and simulated networks. Real and
simulated networks are distinguished by the green and blue colors, respectively,
while yellow markers represent those selected by the Wasserstein similarity mea-
sure. The dashed blue lines are connecting the closest simulated networks with the
real ones based on the givenmetrics, while the yellow dashes connect that given by

theWasserstein. aCost (TL)measured in both simulated and real networks, plotted
against the total path length. b Gini coefficient as a measure of traffic distribution,
versus the total path length. c Traffic distribution in terms of the Cost. dDensity of
bifurcations plotted against the cost.

Fig. 3 | Example of different network topologies generated by Nextrout (yel-
low), plotted against the corresponding real network (blue). Green nodes
represent those chosen as origins (O), whilst red nodes correspond to the

destinations (D). All networks have D = 1. The TLmeasures the number of edges of
eachnetwork. aAdelaide rail network,withN = 87nodes.bBordeaux tramnetwork,
with N = 108 nodes. c Nantes tram network with N = 97 nodes.
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southeast side of the city, further lowering the cost to build the
infrastructure. However, at this extreme value, the network is now less
similar to the real one. Notice that in principle one can increase this
similarity further, by simply addingmore information in input in terms
of origin and destinations (see Fig. 5d for an example with multiple
origins and destinations). However, here we are interested in reco-
vering macroscopic structure in a more challenging scenario where
input information is strictly limited to one central destination and few
peripheral origins.

Beyond a qualitative visual comparison, we explore how our
simulated networks score in terms of core network properties rele-
vant for transportation compared to the real networks. For this, we
consider the cost, the total path length l, the distribution of traffic,
and the density of branching points (or bifurcations; here we use the
two terms interchangeably), for both extracted and original net-
works. Similar to ref. 18, we define the cost as the total length of the
network (TL), i.e., the total number of edges. Passengers may not
always take the shortest path, but may rather consolidate on fewer
main arteries (e.g., to minimize the number of stops or
connections)44, a behavior that can be captured by a DMK discrete
dynamics (built-in the filtering step of Nextrout) by varying β and
extracting the flows ue on edges, quantities proportional to the
number of passengers using an edge. Hence, we consider an alter-
native measure of total path length as l :=

P
e2Ei

lejuej, where le is the
Euclidean distance. This takes into account ue, the flow of passengers
on an edge e, and its absolute value ∣ue∣ is proportional to the number
of passengers traveling on an edge e, i.e., how traffic is distributed,
assuming that passengers follow optimality principles to consolidate
paths. This is a reasonable assumption in rail networks as the ones
studied here, where the cost to build the infrastructure can be high

(and thus should be minimized) and minimizing traffic congestion is
not as relevant as in, e.g., road networks. In our experiments, we
extract optimal flows ue by running the discrete DMK dynamics on
the extracted and real networks, using the same sets of origins and
destinations as used in the original network extraction problem,
setting β = 1.5. This information can also be used to measure the
macroscopic behavior of traffic on edges, which can be measured
using the Gini coefficient45 (Gini(Te)) on the traffic Te = ∣ue∣. This
coefficient ranges from [0, 1], where the closer to 1, themore unequal
is the traffic distribution on the network. Finally, we calculate the
percentage of bifurcations (DBP) as the fraction of nodes with degree
equal to 3. In several cases, the simulated networks display similar
properties as those observed on the real ones, as shown in Fig. 4.
While similarity differs depending on the property and datasets vary
in their range values, we notice that most of the datasets have at least
a pair of properties that have a close value between simulated and
observed networks. For instance, in Fig. 3a we notice that Adelaide
rail has an intuitively similar path length, which is confirmed in
Fig. 4a. Furthermore, the same network shows comparable results for
traffic and cost. As for the tram networks of Bordeaux and Nantes in
Fig. 3b, c, we observe similar behavior for cost and traffic.

Automatic selection of similar simulated networks
Our method allows extracting various simulated networks by varying
the parameter β. One can select the one that more closely resembles
theobservedone in termsof a particularmetric of interest, as shown in
the previous section. However, different metrics may lead to different
most similar simulated networks (i.e., different β), which may not be
ideal for a practitioner willing to consider an individual simulated
network that resembles well the observed one in terms of all metrics.

Fig. 5 |Wasserstein similaritymeasure between graphs for automatic selection
of β. a–cWe select the origin nodes based on those with the smallest degree, and a
unique destination as the onewith the highest degree. In (d) we showhow the same
network changes as we set more stations as initial input (O = 23 origins and D = 4
destinations), resulting in smaller Wasserstein, at the cost of a higher amount of
information given in input. e–h We compare several network properties as mea-
sured in theobserved and simulatednetworks. eThe cost (TL) against the total path
length (l), highlighting thedifferentβ for eachobtainednetwork. fGini(Te) against l.
The optimal network is equivalent to the onewithminimalWasserstein, i.e., β = 2.0.

g TL against the Gini coefficient of traffic on edges (Gini(Te)). In this case, the
optimal network corresponds to the one with β = 1.5. h TL against the density of
branching nodes. The closest network in terms of the number of bifurcations for
β = 1.4. iWasserstein similarity measure for the simulated Grenoble tram networks
as a function of β, in the setting of eight origins and one destination. The most
similar network in terms of thismeasure is atβ = 2,whenW(G1,G2) isminimum. The
peak at β = 1.6 is due to the absence of a few edges in the rightmost part of the
network that results in disconnecting a small branch, thus causing the distance to
increase.
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Hence, the need for a principle automatic selection criteria for
choosing the value of β.

The formalism introduced in the previous section suggests a
natural way to tackle this problem by considering the Wasserstein
similarity measure, a main quantity in optimal transport theory46.
Given two graphs that need to be compared, intuitively, this measure
captures theminimum “effort" required tomove a certain distribution
of mass from one to the other. Similar ideas based on optimal trans-
port tomeasure similarity between graphs have also been proposed in
recent works47,48. Here, we describe our proposal for a similarity
measure and thus automatic selection of β in detail. Denote the
observed network withG1(V1, E1) and the one obtained from themodel
introduced in previous sections with G2(V2, E2), where Vi, Ei denote the
set of nodes and edges, respectively, i = 1, 2. We consider the union
graphGU(VU, EU), with sets of nodes VU =V1∪ V2 and edges EU = E1∪ E2.
One can further assignweightswe∈WU to the edges e∈ E, for instance
using the Euclidean distance ℓe between the nodes i, j ∈ VU, where
e = (i, j), or simplybinaryvalues {0, 1}. Notice that the observednetwork
G1 may contain nodes that do not correspond exactly to nodes in G2,
because in this continuous setting the model uses all the 2D space
where the original network is embedded. Only the input origin and
destination nodes are guaranteed to be present in both graphs, as they
are given in input to the model.

Working on this union network, we then exploit a similar setting
as the one already introduced with the model to obtain a Wasserstein-
based similarity measure between G1 and G2. Specifically, we denote
withB the unsigned incidencematrix ofGUwith entriesBie = +1 if node i
is a start or end point of the edge e and 0 otherwise. Defining qi as an
indicator vector for the edges inGU that are also inGi, i.e., qie= 1 if e∈ Ei,
and qie = 0 otherwise, ∀ e ∈ EU and i = 1, 2, we can set the origin and
destination vectors f = f +−f −, such that f + = B q1 and f − =B q2, so that G1

contributes to f+ andG2 to f−. By running adiscrete dynamics analogous
to the continuous one described in Eqs. (1) to (3), which can be done
using Nextrout32, one naturally obtains our Wasserstein similarity
measure defined as:

W 1ðG1,G2Þ=
X
e2EU

we μe , ð5Þ

where μe are the optimal solutions for the conductivities on GU andwe

is the weight of edge e = (i, j). Here, we fix this to be the Euclidean
distance between nodes i and j. Examples of how the Wasserstein
measure changes depending on the different output networks are
shown in Fig. 5i, where we show simulated networks and report their
Wassersteinmeasure from the observed network of the Grenoble tram
(N = 80 nodes). Intuitively, the Wasserstein similarity captures how
much “cost” is “paid” to move information between G1 and G2. This
means that the more similar these networks are, the lower the Was-
serstein is, i.e., when G1 =G2, W1 = 0, and if there are no nodes con-
necting them,W1→∞. In Fig. 5bwe showan examplewhereW1 is higher
simply because there is a disruption in one of the branches of the
network, thus increasing the cost to move from the real network to
G2 =Gβ=1.6. Notice that if similarity is chosen to be defined in terms of
the cost, the closest network to the real one would be that with β = 1.4,
as shown in Fig. 5e.

We further validate this measure by comparing it with other
selection criteria based on the topological properties described above
and found that the simulated graph selected with the Wasserstein
measure has, on average, higher similarity with the real networks
compared to the other selection criteria, across various properties. In
other words, it shows transportation properties that are consistently
more aligned to those behold by the observed network, see Supple-
mentary Information S1.

The New York subway system: a look into more complex
structures
The New York subway is one of the largest and busiest transportation
systems in the world. Due to its size and complexity, navigating
through such network might be difficult for humans49, but under-
standing its properties and structure could be indicative of improve-
ment to city planners and urban designers.

In the scope of recovering such a complex structure, the strategy
of selecting only a small number of origins and destinations, as done
for the studied networks so far, might produce networks that are far
from similar to the real one, especially given the high complexity of
this particular system (see Fig. S7). We thus use a different approach
that could be a pointer towards recovering structures from major
urban transportation systems. Each line that comprises the subway
infrastructure of New York could be seen as an independent network
itself. With this assumption, we selected four major lines (red, green,
orange and yellow), extracting the nodes with lower degree as origins
and one common destination for all of them, corresponding to the
point with higher density of POI (see Fig. 6).

We notice that in terms of cost (TL), our simulated networks have
similar values in all cases, with equal performance for the red line, and
a small difference for all the other lines. For the density of branching
points (DBP)—besides an intuitive visual similarity—we observe com-
parable results. For instance, the green line (456) has similar branches
both on the north and south sides, and similar considerations apply to
the red line (123) and the north side of the yellow line (NRQW). One can
also investigate howmain differences are distributed in the orange line
(BDFM), where there is not much similarity between observed and
simulated infrastructures. This is because two destinations on the east
side are traversed by a unique branch in our simulated network, while
the real one splits them into two branches. Furthermore, the southern
part of the network also shows a distinct behavior, where our simu-
lated network has two branches, the real one splits into a more com-
plex pattern that cannot be explained by our optimality principles.
While it is not clear whether these differences are due to different
underlying optimization rules or a lack of optimality in the observed
network, our method enables practitioners to identify key insights on
principled alternative designs where optimality is clearly defined in
terms of network operating and infrastructural costs.

Initial network development: the French Railway in the 1850s
Our model builds a network backbone from scratch, with a global
optimization that follows a principle of economy of scale. This could
be particularly suited to study the initial development of a rail network
infrastructure, as opposed to later stages where the network is gra-
dually extended. We thus study a real scenario of the French railway
system where we have access to historical information about network
development in time25, focusing on an initial phase around the year
1850. At that stage, the network topology containsmultiple connected
components but no loops - which only appear in a later stage, around
several years later (see Supplementary Information S6, Fig. S9).

We focus on the four biggest components with more interesting
topologies, as the remaining components are either too small or sim-
ple straight lines, and select the node with the highest degree as a
destination. In the biggest component, for instance, this corresponds
to Paris. In Fig. 7 we show examples of real and simulated networks
highlighting the DBP and the total length (L), the latter measured given
the longitude and latitude coordinates mapped into a [0, 1] system of
coordinates. We note various degrees of similarity in the different
components between observed and simulated network. For instance,
the biggest component has similarDBP but the observed network has a
larger total length, mainly due to branches taking slightly longer
detours to reach the sinks and the two small branches south-west of
Paris being split from Paris onward into two in the observed network,
while they are only later split in the simulated one. A similar behavior is
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observed in component 3 (north-est France), where we see the real
network splitting earlier on than what simulated, thus causing a longer
total length. The other two components have higher similarity in terms
of both metrics, in particular, component 2 (south France) has a main
branching point est of Nîmes similarly located in the observed and
simulated network. The higher path length in this case is due to a
longer detour of the southern branch. These types of detours could be
caused by geographical obstacles that are not included in our more
coarse-grained model.

Understanding the underlying optimization principles that drive
how transportation networks changed and evolved over time might
point towards creating better transportation systems. Our approach is
a pointer towards comprehending the initial stages of such evolution,

particularly suited for systems that follow the principle of economy
of scale.

Improving network properties
Simulating networks that follow optimality principles and resemble
well those observed in real datasets can be used to assess how urban
transportation networks perform in terms of main transportation
properties. This can guide network managers towards potential mea-
sures directed at improving certain properties. This possibility is
conveniently enabled by our approach, as by continuously tuning the
parameter β we can simulate various transportation scenarios, thus
assessinghowanetwork can increaseor decrease a certain property. In
Fig. 8 we show the main properties in all the networks simulated with

Fig. 7 | Simulating the initial French Railways in the year 1850. Left: the original
observed network, with connected components represented in different colors.
Right: the networks simulated with our model for each component, given a set of

origins and one destination. On top we report the density of branching points DBP

and the total Euclidean length L. Origins and destinations have the same coordi-
nates in all real and simulated networks.

Fig. 6 | Comparison for real and simulated networks for major lines of the
subway system in New York, with distribution of POI.We select the four major
lines (left panel), here shown along with the distribution of the density of POI

(density varies as in the colorbar).We report the cost (TL) and density of branching
points (DBP) for both real and simulated networks. Herewe set β = 1.1 for the orange
line, β = 1.5 for both red and green lines, and β = 1.6 for the yellow line.
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our model and compare with those observed in real data, aiming to
compare their trade-offs between various performance metrics. In
general, we notice how simulated networks cover a wider range of
values than the real ones for the four transportation properties
investigated in this work. This allows obtaining, for instance, networks
that have shorter total path length ℓwith a comparable cost, as shown
in Fig. 8a where many simulated networks are located in the regime
0< TL < 200 with ℓ sharply dropping towards 0.1, while many real
networks have ℓ > 0.1. A similar behavior is observed also for the traffic
against TL in Fig. 8c, where simulated networks cover areas of the plot
where traffic is less congested (smaller Gini(Te)), in contrast to several
real networks. Among the simulated networks, those selected
according to the bestWassersteinmeasure tend tohave lower cost and
a smaller percentage of bifurcations DBL, indicating that this measure
encourages not only the usage of a lower amount of edges but also
nodes with low degree.

Discussion
Planning transportation systems in a city is a challenging task.
This study has shown that some urban transportation systems
with a small number of loops can be simulated by simple princi-
ples based on optimal transport theory and economy of scale.
Using empirical data from one national railway and multiple rail
transportation types across 18 cities, our model provides simu-
lated networks obtained with little information in input and no a
priori backbone network structure, exhibiting properties that
resemble those observed in real transportation systems to

various extents. Our model interpolates between various trans-
portation regimes by tuning a single parameter, while allowing
for a natural definition of a similarity measure to compare the
simulated networks with those observed in real systems. We
observed how the selected networks with this criterion can
exhibit transportation properties that on average resemble the
corresponding real networks well or point towards alternative
infrastructures that improve relevant topological properties.

A limitation of this study is that our OT-based model does not
capture infrastructures with loops, thus limiting its applicability to rail
networks, or subway and rail networks with a very small density of
loops. Possible extensions of the formalism presented in this work to
account for loops are an interesting direction for future work. Besides
simple heuristics and beyond the example we presented for the New
York subway, one can make other interesting modeling choices to
effectively tackle this problem. For instance, one could generalize our
approach to situations where travel demands are treated
stochastically50–52 or change in time53, scenarios where in certain
regimes an OT-based approach can naturally lead to the formation of
loops. Similarly, loops could emerge in multicommodity settings
where fluxes of passengers are distinguished by their origin and des-
tination stations, using an OT-based multicommodity framework as
the one proposed in refs. 38,54,55. Both directions, provided they
could be generalized to a continuous setting as the one studied here,
can potentially result in optimal simulated network infrastructures
capturing properties that differ from the ones analyzed here, e.g.,
robustness to disruptions.

Fig. 8 | Comparison of simulated and observed networks.We show the values of
the main transportation properties investigated in this work for real and simulated
networks from (a)–(d). Simulated networks cover a wider range of properties'

values, thus allowing in particular to select network that have lower or comparable
values of these properties than those observed in the corresponding real networks.
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Another limitation is the assumption that networks are static, i.e.,
do not change in time. It would be interesting to compare how dif-
ferences between simulated and observed networksmay arise because
different network branchesmay have been developed in different time
periods. This could be used to study the evolution of transportation
properties in time, as done in refs. 27,56. Similarly, the networks stu-
died in this work are often one layer of a multimode network. Inte-
grating other transportation modes into a multilayer formalism and
suitably adapting ourOT-based approach, e.g., borrowing ideas from57,
could give us a deeper understanding of optimal network design in
interconnected urban systems.

Our model takes a few inputs (origins and destinations), but it
does not consider any geographical obstacle. This can result in fine-
grained mismatches between simulated and observed topologies due
to longer detours in the real infrastructures to avoid these physical
obstacles. In principle, this could be incorporated into our model by
properly adding extra terms in the dynamical equations that drive
flows and conductivities differently based on the location in space.
However, this would require fine-grain details to be specified in input,
an information that may not be easily available.

In our work, we focus on designing a network from scratch. This is
relevant in cases where infrastructures are relatively new or did not
change considerably compared to their initial design, as in the caseswe
investigated here. However, this may be limited to studying infra-
structures that have evolvedover time. For these scenarios, it would be
appropriate to consider how our model can be adapted to study net-
work growth, where an initial backbone is further extended with new
branches. This problem is related to the interplay between an urban
transportation network and the distribution of its underlying popula-
tion, as there could be a co-evolution between the two that should be
taken into account58.

In summary, there are many factors contributing to the develop-
ment of urban transportation networks. Our simple optimization
scheme provides a principled and computationally efficient bench-
mark for comparison with real-world networks. By interpolating
between different transportation regimes, we can vary the degree of
similarity between the networks simulated by optimal transport prin-
ciples and those observed in real systems. In particular, measuring
relevant topological properties on simulated network resulting from
different parameters’ values against those observed in real networks
cangive us indications on how to improve transportation performance
when taking into account principles of optimal transport and economy
of scale.

Methods
Data collection and analysis
We collected network data from various public transportation net-
works from 18 different cities24 and one national railway25. Network
statistics are detailed in Table 1. Each city had one or multiple trans-
portation modes available. Node ids were associated with the long-
itude and latitude coordinates of real stations for multiple means of
transportation, as well as possible connections between them. Our
main goal was to analyze each network individually, therefore we did
not address the multilayer case where connections among the differ-
entmeans of transportation exist. For instance, if rail and subway stops
have the same coordinates, they are treated as distinct in each
network.

To avoid possible redundancies or inconsistencies in the data,
such as duplicated nodes or edges that looked too long, we performed
a preprocessing step. Specifically, we considered a threshold τ that
corresponds to theminimum distance in kilometers between the pairs
of nodes that had the same node ids and no connections between
them,matching features stored in the nodemetadata such as names of
the real stations. If the Euclidean distance d(i, j) between nodes i and j
was smaller than this threshold, we collapsed the two nodes into one,

i.e., i = j. This was used to avoid those entries and exits of each station
would be counted as two distinct nodes in the same network, and
possibly affecting the selection of origins and destinations.

To match the latitude and longitude coordinates of the datasets
with those in the 2-dimensional plane that Nextrout uses to solve the
continuous problem,we re-scaled every pair (lon, lat) to a (0, 1) system
of coordinates. Starting with a total of 64 data points (networks), we
extracted the individual disconnected components and the number of
loops for each of them. Network extraction was performed on the
biggest components only.

We extract networks using Nextrout32, selecting 1 < β ≤ 2 such that
for every pair (origins, destinations) we simulate 10 different networks.
Since the extracted networks may contain redundancies, we remove
themusing the graph filtering step fromNextrout. Outputs of this step
have less redundant structures and are closer to the optimal
topologies.

Selecting origins and destinations with points of interest. For the
16 studied networks, we used origins and destinations based on the
degree and betweenness centrality measures. The degree centrality di
of a given node is defined as the number of edges connected to it. The
betweenness centrality is defined as the frequencywithwhich a node is
on the shortest path between all other nodes,

Bi =
X
i≠j≠k

σikð jÞ
σik

,

where σik is the total number of shortest paths from node i to node k
and σik(j) those shortest paths passing through j.

Terminalswere chosen as follows: nodeswithdi≤ 1 are assigned as
origins, while those with di =maxn dn

� �
or Bi =maxn Bn

� �
as destina-

tions.We selected this set {origins,destinations} to be small, in order to
use the least amount of information in input. In multiple cases the set
of origins was equivalent in both centralities, with the difference being
on the location of the destinations, thus the output networks were
different. In terms of final networks properties, the results are com-
parable for both studied centralities (see SI for more details).

Table 1 | Description of real networks considered

City Transport
mode

N E # Comp Lratio O Dfdi ,Bi g

Adelaide rail 88 116 1 0.25 6 1

Berlin rail 203 258 1 0.21 19 1

Berlin subway 169 181 1 0.072 14 1

Bordeaux tram 110 110 1 0.009 8 1

Brisbane rail 297 367 1 0.193 10 1

Dublin rail 59 73 1 0.03 10 1

Grenoble tram 80 83 1 0.048 8 1

Helsinki subway 17 16 1 0.0 4 1

Lisbon rail 48 49 2 0.041 9 1

Luxembourg rail 43 56 1 0.025 11 1

Melbourne rail 219 290 1 0.248 22 1

Nantes tram 97 96 1 0.0 10 1

New York (full) subway 423 506 1 0.17 22 1

Paris rail 337 445 1 0.244 24 1

Prague subway 24 23 3 0.0 6 1

Rome subway 73 72 1 0.0 6 1

Toulouse subway 37 36 1 0.0 4 1

Venice tram 37 38 1 0.053 4 1

We report the main network statistics as number of nodes N, number of edges E, number of
components # Comp, number of originsO, of destinationsD, and loops ratio Lratio defined as the
number of loops divided by the number of edges, and selecting networks with Lratio < 0.2, as
higher values would require the recovery of loops in the extracted networks.
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In order to account for other measures of attractiveness for the
destinations and investigate the impact of including realistic infor-
mation about urban areas, we explored a different approach for the
cities of Rome andNewYork, by looking at ameasure that accounts for
both population distribution and land usage. To do that, we collected
both population and distribution of POI fromOpen Street Map (OSM)
data and mapped them to an H3 tiling discretization of the space. We
then defined the density of POI as ρPOI = PijWij, where Pij is the popu-
lation density andWij is the number of POI for the corresponding ij cell.
Our hypothesis is that stations with higher centralities correspond to
higher density cells. The destinationis then assigned based on the
center of this H3 cell with highest ρPOI. In Fig. 2b we showhow this new
criterion generates a configuration that leads to a different optimal
network but still preserves similarity compared with the real network.
We also notice that the highest centrality node is connected to regions
with higher densities compared to the peripheral areas, where the
origins are placed.

Data availability
Due to its high volume, the synthetic data generated in this study can
be obtained from the corresponding author upon request. An example
for the generated networks of the Rome subway is available at ref. 59.

Code availability
The open source codes and executables are available at ref. 59.
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