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Metabolic imaging across scales reveals
distinct prostate cancer phenotypes

Nikita Sushentsev 1,13 , Gregory Hamm2,13, Lucy Flint2, Daniel Birtles 2,
Aleksandr Zakirov3, Jack Richings4, Stephanie Ling 2, Jennifer Y. Tan4,
Mary A. McLean 1,5, Vinay Ayyappan1, Ines Horvat Menih1, Cara Brodie5,
Jodi L. Miller 5, Ian G. Mills 6,7, Vincent J. Gnanapragasam8,9,10,
Anne Y. Warren 11, Simon T. Barry 12, Richard J. A. Goodwin 2,14,
Tristan Barrett1,14 & Ferdia A. Gallagher1,14

Hyperpolarised magnetic resonance imaging (HP-13C-MRI) has shown promise
as a clinical tool for detecting and characterising prostate cancer. Here we use
a range of spatially resolved histological techniques to identify the biological
mechanisms underpinning differential [1-13C]lactate labelling between benign
and malignant prostate, as well as in tumours containing cribriform and non-
cribriform Gleason pattern 4 disease. Here we show that elevated hyperpo-
larised [1-13C]lactate signal in prostate cancer compared to the benign prostate
is primarily driven by increased tumour epithelial cell density and vascularity,
rather than differences in epithelial lactate concentration between tumour and
normal. We also demonstrate that some tumours of the cribriform subtype
may lack [1-13C]lactate labelling, which is explained by lower epithelial lactate
dehydrogenase expression, higher mitochondrial pyruvate carrier density,
and increased lipid abundance compared to lactate-rich non-cribriform
lesions. These findings highlight the potential of combining spatial metabolic
imaging tools across scales to identify clinically significant metabolic pheno-
types in prostate cancer.

Hyperpolarised [1-13C]pyruvate MRI (HP-13C-MRI) is an emerging non-
ionising metabolic imaging technique to probe tumour metabolism1.
The method offers several advantages over routine [18F]2-fluoro-2-
deoxy-D-glucose ([18F]FDG) positron emission tomography (PET),
including discrimination of the injected substrate from its metabolic

products to quantify cellular metabolism within specific tumour
compartments such as the epithelium2, as well as sensitivity to lesions
with low glucose uptake including prostate cancer (PCa)3. Several
clinical reports have shown the potential of HP-13C-MRI to detect PCa,
assess disease aggressiveness, and detect tumour response to
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therapy2–7. Importantly, some of these studies have attempted to
explain the mechanism of the observed tumour [1-13C]lactate labelling
patterns by correlating imaging data with tissue-based metabolic
biomarkers2,8–10. However, amore comprehensive biological validation
of HP-13C-MRI is required to assess its translational potential and
navigate its use in specific clinical scenarios11.

In addition to detection of PCa by differentiating it from the
healthy prostate, an area of particular unmet need is the non-invasive
phenotyping of intermediate-risk disease12, which includes tumours
comprised of Gleason pattern 4 (GP4) glands of cribriform and non-
cribriform morphology. In 2019, both the International Society of
Urological Pathology (ISUP) and Genitourinary Pathology Society
(GUPS) recommended the reporting of invasive cribriform carcinoma
(ICC) in biopsy specimens due to its higher recurrence rate and
increased PCa-specific mortality compared to non-cribriform
lesions13,14. While recent studies in this area have mostly focused on
transcriptomic features of ICC15–17, little is known about its metabolic
properties in contrast to other PCa phenotypes. In addition, the
appearances of this tumour variant onHP-13C-MRI are unknown, which
is of high translational relevance since up to 80% of pure cribriform
tumours can be missed on conventional MRI18.

The current understanding of the biological determinants of
[1-13C]lactate labelling detected with HP-13C-MRI is that it reflects a
complex interplay between biological factorswhich are summarised in
Fig. 1. The primary determinant is hyperpolarised [1-13C]pyruvate
delivery to the tissue of interest, which is a function of perfusion,
microvascular density, and endothelial permeability19–21. The second
major factor is the cellular capacity for [1-13C]pyruvate uptake, which is
primarilymediatedby themonocarboxylate transporter 1 (MCT1)4,22–24.
The third factor relates to the intracellular metabolic fate of [1-13C]
pyruvate, which is a function of its enzymatic exchange into [1-13C]
lactate, and mitochondrial flux as measured through the formation of
13C-bicarbonate25. The fourth factor represents the natural abundance
of the endogenous intracellular lactate pool which accepts the 13C label
from the imported [1-13C]pyruvate26: previous clinical studies have
inferred this indirectly from lactate dehydrogenase (LDH) expression2,5

but it can also be measured directly using tissue-based spatial meta-
bolomics within specific cellular regions of the tumour27. Finally, the
fifth factor is the capacity of the tissue-of-interest to generate a suffi-
cient [1-13C]lactate signal-to-noise ratio (SNR) for detectionwithHP-13C-
MRI, which in part is influenced by the density ofMCT1-expressing and
lactate-abundant cells, as well as the extracellular lactate accumulation
in the voxel of interest.

Here, we applied this five-factor biological framework to pro-
spectively collect imaging and spatially resolved multi-modal data
from two matched intermediate-risk PCa patient cohorts. We show
that tumour [1-13C]lactate labelling is primarily driven by the
increased epithelial cell density and vascularity of PCa areas com-
pared to the benign prostate, while the endogenous epithelial lactate
concentration is similar between the two tissue types. However, we
also demonstrate that some cribriform tumours lack [1-13C]lactate
signal on HP-13C-MRI despite sufficient cellularity and vascularity, a
finding potentially explained by their lower LDH expression and
higher mitochondrial pyruvate flux compared to equally cellular and
well-perfused non-cribriform lesions. Using spatial metabolomics
acquired from mass spectrometry imaging (MSI), we then show
that the epithelium in ICC has a low endogenous lactate pool in the
presence of abundant unsaturated fatty acids, presenting a distinct
metabolic phenotype compared to lactate-rich non-cribriform GP4
glands. These findings indicate that although [1-13C]lactate labelling
may be a powerful tool for non-invasively imaging tumour metabo-
lism, itmayprovide negative contrast for ICCdetection, representing
a limitation for the characterisation of intermediate-risk PCa. This
study also highlights the potential of tissue-based spatial metabo-
lomics to guide future developments in clinical metabolic imaging

techniques that are specific to the metabolic features of selected
tumours.

Results
As described in Fig. 1, this study included two prospective cohorts of
PCa patients who underwent robot-assisted radical prostatectomy
(RARP) in our centre. The HP-13C-MRI cohort included 8 patients
(median age, 65 years) who underwent successful HP-13C-MRI prior to
RARP and represented a subset of a previously described patient
population2. Histopathological examination of formalin-fixed paraffin-
embedded (FFPE) whole-mount slides revealed the presence of 15
lesions, and the detailed morphological characteristics of these are
presented in Table 1.

To complement the use of tissue-based biomarkers for inferring
cellular metabolic phenotype, we sought to directly assess endogen-
ous epithelial metabolite abundance by means of spatially resolved
desorption electrospray ionisation mass spectrometry imaging (DESI-
MSI). To avoid the potentially detrimental effect of using FFPE with
DESI-MSI28,29, fresh-frozen RARP samples from a cohort of 13 patients
(median age, 64 years) were used for this analysis (spatial metabo-
lomics cohort in Fig. 1). A total of 117 tissue cores were obtained, of
which 61 and 56 were derived from 15 tumours and 15 benign tissue
areas, respectively. For comparability, tumours from the two cohorts
were matched for the key histopathological parameters presented in
Table 1.

Increased tumour epithelial cell density, not lactate abundance,
explains the ability of HP-13C-MRI to distinguish PCa from the
benign prostate
Our first step in the biological validation of HP-13C-MRI was aimed at
dissecting the specific mechanisms behind its ability to detect PCa by
distinguishing it from the healthy prostate. In the HP-13C-MRI cohort,
both hyperpolarised [1-13C]pyruvate and [1-13C]lactate were measured
in histopathologically-proven tumour areas (n = 13) (P <0.001 forboth;
Fig. 2b) which corresponded to local metabolic hotspots on kPL maps
(P < 0.001; Supplementary Fig. 1a) andwere in linewith similar findings
described in prior clinical reports3,4,30. A similar trend was noted in the
DESI-MSI cohort, where the whole-core measurements of absolute
lactate abundance were significantly higher in tumour samples com-
pared to benign specimens (P <0.0001; Fig. 2c), in keeping with prior
studies using bulk MSI31,32. However, these results can be partially
explained by tissue density, which is known to increase in PCa com-
pared to the benign tissue due to the obstruction of empty glandular
spaces by neoplastic epithelium33. Hence, when the whole-core lactate
abundance was corrected for tissue density, which was significantly
higher in tumour samples (P =0.007; Fig. 2c), the difference in endo-
genous lactate between the two tissue types reduced but remained
significant (P =0.043; Fig. 2c).

Given the established metabolic compartmentalisation within the
human prostate2,34–36, it was then important to identify the cellular
source for the increased lactate abundance in PCa samples. We first
trained a DenseNet model to segment each tissue section into stromal
and epithelial compartments, allowing their proportions to be quan-
tified in our specimens. As expected in this age group37, benign cores
harboured a significantly higher proportion of stromal tissue, whereas
tumour samples were predominantly epithelial (P <0.01 for both;
Fig. 2d). While the epithelial lactate abundance was similar between
benign and tumour cores (P =0.54; Fig. 2e and Supplementary Fig. 2a
for patient-to-patient variation), it was the significant increase in the
stromal lactate (P < 0.0001; Fig. 2e) that explained the difference in
whole-core lactate measurements observed in Fig. 2c. However,
despite the high concentration of lactate in the stroma, this is unlikely
tomake a significant contribution to the imagedHP-13C-MRI signal due
to negligible MCT1 expression2 and therefore slow pyruvate uptake.
Consequently, the imaged tumour [1-13C]lactate labelling noted in the
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Fig. 1 | Study design. This clinical study included two prospective surgical cohorts
of PCa patients whose imaging data and surgical specimens were analysed to
measure five biological factors that can influence clinical [1-13C]lactate labelling. In
the Hyperpolarised MRI cohort (n = 8 patients), quantitative 1H-MRI, immunohis-
tochemistry (IHC), and RNAscope data were used to infer tissue delivery, epithelial
uptake, and the intracellular metabolic fate of [1-13C]pyruvate in 15 tumour and 15
benign areas. This was complemented by spatial metabolomic analysis of a set of
histologically matched fresh-frozen benign (n = 61) and tumour (n = 56) samples

from a DESI-MSI cohort (n = 13 patients), which enabled us to assess the endo-
genous lactate pool as a measure of the cellular capacity for [1-13C]labelling. Digital
pathology data from both cohorts were used to quantify the density of epithelial
cells as a measure of tissue capacity for generating detectable [1-13C]lactate signal.
Tumour characteristics and methods are detailed in Table 1 and Methods. This
figure was created with BioRender.com and released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license.
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HP-13C-MRI cohort is likely to be heavily determined by the increased
epithelial cell density within the malignant regions. In the HP-13C-MRI
cohort, tumour epithelial cell density was significantly increased
compared to the benign areas (P = 0.1; Fig. 2f) and was positively cor-
relatedwith [1-13C]lactate SNR (ρs = 0.76; P =0.1; Supplementary Fig. 3).
On standard-of-care 1H-MRI, this high tumour epithelial cell density
was reflected by a significantly decreased tumour apparent diffusion
coefficient (ADC) on diffusion-weighted imaging (P < 0.0001; Fig. 2g),
with a strong negative correlation observed between the two para-
meters (ρs = −0.67; P =0.0006; Fig. 2h). Given the previously reported
negative correlation between tumour ADC and [1-13C]lactate SNR2,
these data further support the hypothesis that increased epithelial cell
density is an important biological driver of increased [1-13C]lactate
labelling in PCa compared to the benign prostate.

Another potential driver of tissue [1-13C]lactate labelling is the
delivery of hyperpolarised [1-13C]pyruvate to the organ of interest.
Tumours in the HP-13C-MRI cohort had a significantly higher CD31-
derived microvessel density (MVD) on immunohistochemistry (IHC;
P =0.034; Fig. 2i), which was associated with a significant increase in
tumour-derived Ktrans (P =0.003; Fig. 2j), a 1H-MRI-derived measure of
vascular perfusion and permeability acquired after the intravenous
administration of contrast media38. Ktrans and CD31 showed amoderate

positive correlation between each other (ρs = 0.55, P =0.02; Fig. 2k),
which is in agreement with the established link between vascularity
and contrast agent delivery to the tissue-of-interest39. Neither of these
markers showed a significant relationship with tumour [1-13C]pyruvate
or [1-13C]lactate SNR2 (Supplementary Fig. 4), possibly due to the
relatively homogeneous vascularity of low- and intermediate-risk
tumours in this cohort2. However, increased tumour vascularity may
further contribute to the [1-13C]lactate labelling identified in the
malignant compared to the benign prostate.

Finally, given the importance of MCT1 for cellular [1-13C]pyruvate
uptake and subsequent [1-13C]lactate labelling4,22–24, we compared its
expression between the benign and tumour samples in the HP-13C-MRI
cohort. While MCT1 staining was predominantly epithelial2, it was also
heterogeneously distributed, with the resulting epithelial MCT1 den-
sity being similar between the benign and tumour areas (P =0.3;
Fig. 2l). While this agrees with some prior studies investigating pros-
tate MCT1 expression using IHC40,41, the TCGA-PRAD derived mRNA
data42 showed a significant overexpression of SLC16A1 (MCT1) in
tumour samples compared to benign surgical specimens (P =0.009;
Fig. 2m). The differences between the IHC and TCGA-PRAD results
could be explained by limitations in the sample size of the former, and
discrepancies between mRNA and protein expression which are well

Table 1 | Key histopathological characteristics of tumours included in this study

Hyperpolarised MRI cohort

Patient PSA, ng/ml Tumour Final ISUP grade group Final %GP4 Dominant GP4 subtype Final pT stage

1 8.5 1 2 <5 Non-cribriform pT3a

2 2 <5 Non-cribriform

2 19.1 3 2 30 Non-cribriform pT2

4 2 20 Non-cribriform

3 4.7 5 2 5 Non-cribriform pT2

6 1 0 -

4 13.9 7 2 15 Non-cribriform pT2

5 3.1 8a 3 50 Non-cribriform pT3a

9a 1 0 -

6 12.5 10 2 <5 Non-cribriform pT3b

11b 3 60 ICC

7 7.6 12 2 <5 Non-cribriform pT3a

13b 3 60 ICC

8 6.6 14 2 10 Non-cribriform pT3a

15 3 60 ICC

Spatial metabolomics cohort

1 9 1 2 <5 Non-cribriform pT2

2 4.5 2 2 <5 Non-cribriform pT3a

3 2.5 3 2 30 Non-cribriform pT2

4 17.2 4 2 20 Non-cribriform pT3a

5 14 5 2 5 Non-cribriform pT2

6 3.4 6 1 0 - pT2

7 16.6 7 2 15 Non-cribriform pT2

8 7.2 8 3 50 Non-cribriform pT3a

9 9.9 9 2 <5 Non-cribriform pT2

10 6.6 10 2 <5 Non-cribriform pT2

11 16.5 11 3 50 Non-cribriform pT3a

12 3 60 ICC pT3b

12 6.2 13 1 0 - pT3a

14 3 60 ICC

13 9 15 3 60 ICC pT3a
aThese lesions were excluded from the tissue-based analysis due to interval ADT prior to RARP2.
bThese lesions were HP-13C-MRI occult, with [1-13C]lactate SNR < 5.0 in both cases.
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established43. Nonetheless, as no correlation between tumour MCT1
expression and [1-13C]lactate SNR was noted in the HP-13C-MRI cohort2,
epithelial MCT1 expression is unlikely to explain the increased tumour
[1-13C]lactate labelling observed in this study.

Increased pyruvate mitochondrial import supports PCa meta-
bolic reprogramming and correlates negatively with clinical
[1-13C]lactate labelling
Having dissected the potential influence of some of the aforemen-
tioned biological factors on differential [1-13C]lactate labelling between
the benign and malignant prostate, we then explored the dominant

intracellularmetabolic fate of [1-13C]pyruvate in the two tissue types.As
shown in Fig. 3a, glycolytic pyruvate formation is followed by either its
enzymatic conversion to lactate or mitochondrial flux resulting in the
synthesis of acetyl-CoA, which undergoes a condensation reaction
with oxaloacetate to form mitochondrial citrate. In the benign pro-
static epithelium, further citrate oxidationwithin the tricarboxylic acid
(TCA) cycle is truncated, with the accumulating citrate transported
outside the cell through its mitochondrial and plasma membrane
transporters44,45. Conversely, early-stage PCa shows fully restored TCA
cycle, which has the capacity to generate sufficient NADH for mito-
chondrial ATP production44,46. Instead of being exported outside the

ADC
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cell, cytosolic tumour citrate is cleaved by ATP citrate lyase to form
acetyl-CoA and fuel lipogenesis, to sustain membrane biosynthesis in
the proliferating cells47–50. The molecules involved in the rate-limiting
reactions of thismetabolic reprogramming include the mitochondrial
pyruvate carriers (MPCs), mitochondrial pyruvate dehydrogenase
(PDH), and cytosolic fatty acid synthase (FASN)47–50, and their expres-
sion is directly induced by the androgen receptor (AR). Given the
similar lactate concentrations in benign andmalignant prostate tissue,
we hypothesised that the key change in the tumour intracellular pyr-
uvate fate is its increased mitochondrial import, rather than cytosolic
reduction to lactate.

To test this hypothesis, a random forest tissue classifier2,51 was
applied to the same segmented benign and tumour ROIs on histo-
pathology used for HP-13C-MRI data extraction (Fig. 2a): total epithelial
LDH mRNA density was derived, which we have previously shown to
correlate strongly with tumour [1-13C]lactate labelling in the primary
cohort2. We found that this total epithelial LDH density was sig-
nificantly reduced in tumour ROIs compared to the benign areas
(P = 0.024; Fig. 3b, c), which is in keeping with findings derived from
open-source TCGA-PRAD bulk mRNA sequencing data42 (Fig. 3e), the
epithelial single-cell mRNA sequencing data obtained from two recent
publications by Tuong et al.52 and Song et al.53 (Fig. 3f), and spatial
transcriptomics data from a study by Erickson et al.54 (Fig. 3g). While
this did not have an apparent effect on the intracellular lactate pool, a
reduction in the total LDH expression in tumour epithelium may be
functionally consistent with its increased capacity for mitochondrial
[1-13C]pyruvate import.

To evaluate the role of mitochondrial import, we used IHC to
measure the expression ofMPC1 andMPC2, with the latter previously
shown to be significantly overexpressed in the human prostate under
the direct transcriptional control of nuclear AR49. Here, we show
almost exclusive epithelial MPC1 and MPC2 localisation in both
benign and malignant prostate (P < 0.05 for both; Fig. 3d), with
tumour epithelial MPC2 density being significantly higher compared
to the healthy tissue (P = 0.005; Fig. 3b, c), an observation also sup-
ported by bulk42, single-cell52,53, and spatial54 mRNA sequencing data
presented in Fig. 3e–g. Importantly, tumour epithelial MPC2 density
showed a strong negative correlation with clinical [1-13C]lactate
labelling (ρs = −0.80, P = 0.005; Fig. 3d), which aligns with a prior
preclinical report showing an increase in glycolytic intermediates
following MPC inhibition55. Taken together with our previous work
which showed strong positive associations between tumour [1-13C]
lactate SNR, total epithelial LDH density, and epithelial LDHA/PDHA1
ratio2, these results indicate that tumour [1-13C]lactate labelling is
likely to be a function of both the epithelial capacity for cytosolic
LDH-catalysed pyruvate reduction, and MPC-driven mitochondrial
pyruvate import.

We then explored the potential role of MPC2 in supporting AR-
driven tumour reprogramming towards a lipogenic phenotype, by
measuring the expression of both AR and FASN in our samples. As
expected, tumour areas exhibited a significant increase in epithelial
FASN density (P =0.003; Fig. 3b, c; supported by Fig. 3e–g), which
correlated strongly with the epithelial MPC2 density (ρs = 0.93,
P =0.001; Fig. 3d). Both MPC2 and FASN also showed strong positive
correlations with epithelial nuclear AR density (ρs = 0.89 and 0.68,
respectively; P <0.05 for both; Fig. 3d), corroborating prior preclinical
reports49,50 identifying MPC2 and FASN as AR transcriptional targets.
Overall, these findings suggest the potential role of mitochondrial
pyruvate flux for enabling PCa metabolic rewiring and highlight its
importance for clinical HP-13C-MRI interpretation.

Spatial metabolomics combined with a deep learningmetabolic
classifier suggest differences in pyruvate metabolism between
glycolytic benign prostate and lipogenic cancer
To further assess the role of mitochondrial pyruvate import in sup-
porting lipogenic PCa metabolic reprogramming, we interrogated the
DESI-MSI data derived from benign (n = 695) and tumour (n = 468)
epithelial ROIs drawn manually on haematoxylin-and-eosin (H&E)
slides obtained from the DESI-MSI cohort (Figs. 2e and 4e). We used
the ROIs to extract DESI-MSI-derived metabolites from three relevant
pathways within the KEGG database: glycolysis/gluconeogenesis, TCA
cycle, and fatty acid biosynthesis pathways (Supplementary Table 1).
Subsequent metabolic pathway enrichment analysis (MPEA) showed
significant enrichment of the TCA cycle pathway in the benign ROIs
(P = 0.01; Fig. 4a), which at the level of individual metabolites was
primarily driven by citrate and phosphoenolpyruvate (PEP; P <0.001
for both; Fig. 4b, c). Significant citrate enrichment in the benign
prostate is well established44,46 and therefore serves as a validation of
the DESI-MSI approach. In turn, PEP enrichment in the benign tissue
may be explained by both its glycolytic production and anaplerotic
synthesis fromcytosolic oxaloacetate, a process aimed at regenerating
the TCA cycle carbons56. In addition, benign prostatic epithelium
showed a non-significant enrichment of the glycolysis/gluconeogen-
esis pathway relative to PCa (P =0.27; Fig. 4a), with PEP and glu-
cose being significantly different (P < 0.0001; Fig. 4b, c). As in the case
of citrate, the observed significant enrichment of glucose in the benign
epithelium compared to intermediate-risk organ-confined PCa aligns
with the published literature and explains the well-known limited
diagnostic utility of [18F]FDG-PET in PCa57. Importantly, of the three
pathways analysed, only metabolites involved in fatty acid biosynth-
esis were significantly enriched in tumour epithelial ROIs (P <0.0001;
Fig. 4a), including tetradecanoic, oleic, and palmitoleic acids being the
three metabolite hits (P <0.0001 for all; Fig. 4b, c). Notably, another
significantly enriched tumour epithelial metabolite was S-

Fig. 2 | Biological validation of the ability of HP-13C-MRI to detect PCa by dif-
ferentiating it from the healthy prostate. a Representative whole-mount H&E
section of a surgical FFPE sample obtained from a patient who harboured a single
focus of ISUP GG2 PCa (red outline) that showed increased [1-13C]pyruvate and
[1-13C]lactate signal on corresponding HP-13C-MRI maps compared to contralateral
benignprostate (greenoutline).bPlots comparing [1-13C]pyruvate and [1-13C]lactate
SNR derived from the ROIs encompassing areas of HP-13C-MRI-visible PCa (n = 13
samples from n = 8 patients) and contralateral benignprostate (n = 13 samples from
n = 8 patients) from the hyperpolarised MRI cohort. c Representative fused H&E
and DESI-MSI lactate maps of benign and tumour FF cores from the spatial meta-
bolomics cohort. Plots on the left compare the absolute and tissue-density-
corrected whole-core DESI-MSI derived lactate abundance between the benign
(n = 61) and tumour (n = 38) cores; plots on the right compare thewhole-core tissue
density between the two specimen types. d DenseNet tissue classifier outputs
overlaid on the H&E images of representative benign (n = 61) and tumour (n = 38)
cores, with the below plots comparing epithelial and stromal cell fractions both
within and across the benign and tumour cores. e H&E maps of representative

benign (n = 61 samples from n = 13 patients) and tumour (n = 38 samples from n = 13
patients) cores with manually segmented areas of benign epithelium (green),
tumour epithelium (red), and stroma (blue) used to derive DESI-MSI measured of
endogenous lactate abundance compared in the below plots between and across
benignand tumour cores. Plots and representative images comparing epithelial cell
density (f), 1H-MRI-derived ADC (g), CD31 density (i), 1H-MRI-derived Ktrans (j), and
epithelial MCT1 density (l) between the benign (n = 11) and tumour (n = 11) areas
from the hyperpolarised MRI cohorts. Present Spearman’s correlation plots com-
paring ADC values with epithelial cell density (h), as well as CD31 with Ktrans (k)
derived from both benign and tumour areas. m Plot comparing TCGA-PRAD
derived SLC16A1 mRNA expression between the benign (n = 45) and tumour
(n = 293) prostatectomy samples from n = 293 patients. All plots are scatterplots
with bars (lines are median values, bars are interquartile ranges) with P derived
using the two-sided Mann–Whitney U test or Wilcoxon signed-rank test, as
appropriate. Scale bars in a, c–e, and f–l denote 5mm, 1mm, and 50μm, respec-
tively. Source data are provided as a Source Data file.
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Acetyldihydrolipoamide-E, which is a pyruvate-derived precursor of
mitochondrial acetyl-CoA formed as part of the PDH-catalysed
reaction58. Increased tumour epithelial S-Acetyldihydrolipoamide-E
enrichment supports the notion of increased mitochondrial oxidation
as the primary metabolic fate of epithelial pyruvate in human PCa,
which has not been reported previously.

An alternative approach to testing the same hypothesis in a more
clinically applicable way was to assess a list of differentially enriched

metabolites by building a DESI-MSI metabolic classifier of benign and
malignant epithelial regions. Using metabolite data from the same
three KEGG pathways, we first noted a clear unsupervised separation
between the benign and tumour epithelial cell clusters shown in
Fig. 4d. We then trained and tested a deep-learning-based metabolic
classifier (Fig. 4e; Code Availability) that achieved a median perfor-
mance of 0.91 for differentiating between benign and tumour epithe-
lial ROIs following five-fold cross-validation (Fig. 4f). Using Shapley
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additive explanations59, we identified the list of the tenmost important
metabolites for the classification, all presented in Fig. 4e. In keeping
with the MPEA results, six of these were fatty acids, and these were
more abundant in correctly classified tumour epithelial ROIs (see
Supplementary Fig. 2a, showing consistently increased tumour pal-
mitoleic acid abundance across all patients). The remaining four
metabolites were glucose, malate, citrate, and malonate, and in com-
parison, were in high abundance within benign ROIs. Unsurprisingly,
lactate had little impact on the developed classifier, ranking 28/31 in
the list of themost important metabolites, with amean absolute SHAP
value of 0.009 (for comparison, the same value for oleic acid was
0.056). Overall, these results complement both theMPEA findings and
tissue biomarker expression from the HP-13C-MRI cohort, suggesting
that increased tumour mitochondrial pyruvate flux is an important
metabolic feature of human PCa that can be probed both in vivo and
ex vivo using metabolic imaging techniques. However, the impact of
epithelial mitochondrial pyruvate import on hyperpolarised [1-13C]
lactate labelling can only be assessed in tumour but not benign tissue,
due to the lack of discernible HP-13C-MRI signal in the less cellular and
vascular benign prostate.

Cribriform PCa may show no [1-13C]lactate signal due to high
MPC density and low LDH expression
Having explored the mechanisms behind the ability of clinical
HP-13C-MRI to detect PCa by distinguishing it from the healthy tissue,
we then assessed the differential [1-13C]lactate labelling between
tumours harbouring cribriform and non-cribriform GP4 disease. As
shown in Table 1, Fig. 5a–c, and Supplementary Fig. 1b, 2/3 ISUP grade
group (GG) 3 ICC lesions from theHP-13C-MRI cohorthadnodetectable
[1-13C]lactate signal ormeasurable kPL despite sufficient [1-13C]pyruvate
delivery and restricted diffusion on 1H-MRI ADC, indicating high cel-
lularity. Notably, these lesions were found in patients who also har-
boured two contralateral small-volume ISUP GG2 non-cribriform
tumours, which were both detectable on HP-13C-MRI (Fig. 5a, b and
Supplementary Fig. 1b), therefore suggesting that the absenceof [1-13C]
lactate signal or measurable kPL in these large cribriform lesions was
not due to technical issues.

To explain these findings within the same biological validation
framework applied to the prior research questions above, we com-
pared the metabolic and non-metabolic drivers of [1-13C]lactate label-
ling between the HP-13C-MRI-visible and HP-13C-MRI-occult tumours.
Interestingly, while epithelial cell density, CD31-derived MVD, and
epithelialMCT1 expressionwere similar between the two tumour types
(Fig. 5d, e), ICC lesions with no discernible [1-13C]lactate labelling or
measurable kPL showed almost negligible epithelial LDH density
together with a marked increase in epithelial MPC2, FASN, and AR
expression (Fig. 5d, e). These findings provide additional support for
the hypothesis that tumour [1-13C]lactate labelling reflects the differ-
ential intracellular metabolic fate of pyruvate between LDH-catalysed

reduction to lactate, and MPC-driven mitochondrial import to facil-
itate oxidative metabolism. Moreover, this observation highlights the
multifactorial nature of signal generation with HP-13C-MRI, including
both metabolic and physical or physiological tissue characteristics.
Specifically, if non-metabolic factors such as epithelial cell density and
vascularity can be corrected for, then tumour [1-13C]lactate labelling
patterns may reflect the true metabolic differences between lesions of
different histological phenotypes.

Gleason pattern 4 PCa consists of lipogenic cribriform and gly-
colytic non-cribriform metabolic phenotypes
Given the absence of HP-13C-MRI signal in some cribriform lesions in
this cohort, we conducted a granular comparative metabolic analysis
of different Gleason pattern glands included in this study. We pre-
viously demonstrated a significant positive correlation between
tumour [1-13C]lactate labelling and the percentage of GP4 (%GP4) dis-
ease in the HP-13C-MRI cohort2. However, since all but one HP-13C-MRI-
visible lesion consisted of non-cribriform GP4 glands, this reported
relationship actually existed between [1-13C]lactate SNR and the per-
centage of non-cribriform GP4 disease. When all 15 lesions were divi-
ded using the %GP4 cut-off of 10%, no difference in [1-13C]lactate
labelling was noted between high %GP4 and low %GP4 tumours
(P = 0.46; Fig. 6a). Conversely, when the high %GP4 group was further
subdivided by the dominant GP4 subtype, ICC or non-cribriform, the
three resulting tumour types all showed significantly different [1-13C]
lactate labelling (P < 0.05 for all; Fig. 6a) in the absence of notable
changes in tumour ADC,Ktrans, and epithelialMCT1 density (P >0.05 for
all; Fig. 6a).

We subsequently measured the expression of key metabolic bio-
markers at the level of individual GP3 (n = 50), GP4 non-cribriform
(n = 22), and GP4 ICC (n = 17) glands. Total epithelial LDH expression
was highest in non-cribriform GP4 glands compared to both GP3 and
GP4 ICC (P < 0.0001 for both; Fig. 6b, c), with no difference noted
between the latter two morphological subtypes (P = 0.4; Fig. 6b, c),
mirroring the trends noted in Fig. 6a for [1-13C]lactate labelling across
histological types. At the transcriptional level, this observation was
also in line with a similar pattern of nuclear HIF-1α expression, which
was also significantly increased in non-cribriform GP4 glands com-
pared to the other glands (P <0.05 for both; Fig. 6b, c). Conversely,
both MPC2 and FASN increased significantly in a stepwise fashion
across the threeGleasonphenotypes,with a similar trendnoted for the
epithelial nuclear AR expression (P <0.05 for all; Fig. 6b, c). Overall,
these results confirm that clinical [1-13C]lactate labelling reflects the
tumour-specific pyruvate metabolic fate, which appears to favour a
reduction to lactate in non-cribriform lesions and towards mitochon-
drial flux in cribriform GP4 glands.

These tissue-based metabolic metrics were then compared with
endogenous metabolite measurements by dividing lesions from the
DESI-MSI cohort into similar groups depending on the percentage and

Fig. 3 | The role of mitochondrial pyruvate import in PCa metabolic repro-
gramming and its impact on clinical [1-13C]lactate labelling. a Schematic
representation of the proposed differences in the metabolic fate of [1-13C]pyruvate
between the benign and malignant prostatic epithelium, with the latter showing
increased mitochondrial pyruvate uptake via AR-regulated MPCs to fuel both the
restored TCA cycle and FASN-catalysed fatty acid biosynthesis. b Representative
fluorescent RNAscope images of epithelial mRNA LDHA (gold) and LDHB (white)
expression, along with IHC images of epithelial MPC2, FASN, and AR expression in
the benign and malignant glands. c Scatterplots with bars comparing the expres-
sion of epithelial LDH, MPC2, FASN, and AR density between the benign
(n = 11 samples) and tumour (n = 11 samples) areas from theHP-13C-MRI cohort (n = 7
patients). d Top: Plots comparing the log-transformed epithelial and stromalMPC1
andMPC2densities in the benign (n = 11 samples) and tumour (n = 11 samples) areas
from the HP-13C-MRI cohort (n = 7 patients). Bottom: Spearman’s correlation plots
comparing tumour epithelial MPC2 density against tumour epithelial FASN and AR

densities, aswell as HP-13C-MRI-derived [1-13C]lactate SNR. eMixed box-and-whisker
and scatterplots comparing TCGA-PRAD derived bulk mRNA expression of LDHA,
LDHB, total LDH,MPC2, FASN, andAR between benign (n = 45) and tumour (n = 293)
prostatectomy samples from n = 293 patients. f Average expression dot plots
comparing single-cell RNA-seq epithelial expression of the same genes from pub-
licly available EGAS00001005787 (left) and GSE176031 (right) datasets. gH&Emap
of a surgical specimen including areas of benign and malignant prostate with
corresponding spatial transcriptomicsmaps demonstrating the expression of total
LDH, MPC2, and FASN obtained from a publicly available EGAS00001006124
dataset. In c–e, lines are median values and bars are interquartile ranges, with P
derived using the two-sidedMann–Whitney U test or Wilcoxon signed-rank test, as
appropriate. Scale bars denote 5–10μm. Source data are provided as a Source Data
file. d was created with BioRender.com and released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license.
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morphology of GP4 disease. In line with the [1-13C]lactate labelling
pattern shown in Fig. 6a,DESI-MSI-derived epithelial lactatewas similar
between cores derived from low (n = 19) and high (n = 19) %GP4 lesions
(P = 0.93; Fig. 7a). Moreover, when the cribriform and non-cribriform
lesions were separated, the epithelial lactate pool was also found to be
significantly increased in non-cribriform high %GP4 lesions compared
to both high %GP4 ICC tumours and low %GP4 disease (P <0.05 for all;
Fig. 7a, b and Supplementary Fig. 2b where patient-to-patient variation

illustrates the differences between the three phenotypes). In contrast
to the HP-13C-MRI cohort, high %GP4 ICC lesions had the lowest epi-
thelial lactate abundance and showed decreased epithelial cellularity,
which was significantly reduced compared to high %GP4 non-
cribriform tumours and was similar to low %GP4 PCa (P = 0.04 and
0.26, respectively; Fig. 7a). Compared to cribriform lesions from the
HP-13C-MRI cohort, which required a sufficient epithelial cell density to
be 1H-MRI-visible and therefore eligible for study inclusion2, this is
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more representative of routine clinical practicewhere only 17% of pure
cribriform lesions are detected on conventional imaging due to their
loose cellular composition18,60. Hence, considering the importance of
epithelial cell density in generating clinical HP-13C-MRI signal, as well as
the low epithelial LDH density in 2/3 cribriform lesions in the primary
cohort, the low tissue lactate pool in ICC lesion highlights the potential
limitation of using HP-13C-MRI for detecting cribriform PCa and dis-
tinguishing it from less aggressive tumour subtypes.

Conversely, in line with the FASN expression trend, epithelial
palmitoleic acid showed a similar stepwise increase across the three
tumour phenotypes that was independent of epithelial cellularity
(P < 0.05 for all; Fig. 7a, b and Supplementary Fig. 2b for patient-to-
patient assessment). This observation aligned with the MPEA results
(Fig. 7c), which compared the enrichment of KEGG glycolysis, TCA
cycle, and fatty acid biosynthesis pathways across individual benign/
GP3 glands (n = 360), non-cribriformGP4 glands (n = 70), and GP4 ICC
glands (n = 36). Specifically, fatty acid biosynthesis was consistently
enriched in more aggressive disease, and highest in GP4 ICC glands
(Fig. 7c), in line with a recent study involving transcriptomic profiling
of cribriform lesions16. Conversely, epithelial lactate as part of the
glycolytic pathway was significantly enriched in non-cribriform GP4
tumours compared to both benign and GP3 glands, as well as GP4 ICC
lesions (P < 0.05 for both; Fig. 7c). As summarised in Fig. 7d, these
results indicate that GP4 PCa is comprised of two distinct metabolic
phenotypes: lactate-rich, less aggressive non-cribriform tumours and
lipid-rich, more aggressive ICC lesions.

Discussion
HP-13C-MRI is an emerging clinical tool to non-invasively image tissue
metabolism. This exploratory clinical study deployed an array of in
vivo and ex vivo metabolic imaging techniques to explore the biolo-
gical mechanisms underpinning the ability of HP-13C-MRI to study
human PCa. This has demonstrated how metabolic signatures within
PCa can vary between histological subtypes and has revealed two
metabolically distinct phenotypes within intermediate-risk GP4 dis-
ease. Our results highlight several important considerations for future
clinical translation of HP-13C-MRI both in PCa and in other tumour
types and could have important implications for characterising
tumours in the future.

First, we show that clinical [1-13C]lactate labelling offers a mea-
sure of absolute tissue lactate abundance, which canbe influenced by
both metabolic and non-metabolic (e.g., cell density and blood flow)
tissue properties. For example, the increase in the absolute tissue
lactate pool in HP-13C-MRI-visible PCa compared to either occult PCa
or benign prostate can be partly explained by the increased number
and density of tumour epithelial cells. However, further factors play a
role as two cribriform lesionswere occult on imaging suggesting that
epithelial cell density and vascularity are insufficient for generating
clinical [1-13C]lactate labelling in tumours in the context of low epi-
thelial LDH expression, reduced endogenous lactate pool, and
increased capacity for mitochondrial pyruvate uptake. These results
highlight the importance of using a similar biological validation fra-
mework in future clinical HP-13C-MRI studies to understand the exact

mechanisms underlying the observed changes in [1-13C]lactate
labelling in different cancers and various clinical scenarios. For
example, since MPC2 is directly regulated by AR, early metabolic
response to androgen deprivation therapy (ADT) could involve
increased tumour [1-13C]lactate labelling due to reduced [1-13C]pyr-
uvatemitochondrial uptake;we have previously shown a similar early
increase following treatment in human breast cancer9,61. Conversely,
a later reduction in tumour [1-13C]lactate signal demonstrated in a
case report by Aggarwal et al.6 may reflect a combination of impaired
tumour perfusion due to ADT-induced endothelial damage62, and
decreased tumour epithelial cell density63 due to the loss of glandular
architecture and apoptotic cell death64. Similarly, if HP-13C-MRI is
used for imaging response to poly (ADP-ribose) polymerases (PARP)
inhibitors, early post-treatment scans may show increased [1-13C]
lactate labelling due to replenished NAD+ levels, 90% of which
is consumed by DNA-damage activated PARPs9,65. Importantly, the
ability to resolve the mechanism of post-ADT [1-13C]lactate labelling
changes could be further improved by optimising the capacity for
imaging hyperpolarised 13C-bicarbonate in the tumour. While in this
study we did not reliably detect 13C-bicarbonate formation in the
benign and malignant prostate, future work could maximise the
detection of bicarbonate by truncating the imaging time to retain
sufficient polarisation to allow for slice-localisedmagnetic resonance
spectroscopy (MRS) following imaging, along with utilising a higher
flip angle acquisition to increase the 13C-bicarbonate SNR.We are not
aware of any published clinical study reporting the detection of
13C-bicarbonate in the human prostate, and therefore detecting it
using MRS would provide evidence to optimise existing spiral or
echo-planar spectroscopic imaging (EPSI) sequences in future stu-
dies. Important work in this area could also be facilitated by the
recently published clinically translatable method of 13C-bicarbonate
imaging that showed good performance in preclinical models of
PCa66. Successfully translating these efforts into clinical studies will
expand the clinical potential of HP-13C-MRI considering the impor-
tant role of altered mitochondrial pyruvate flux in human PCa
development. In addition, increasing spatial resolution would also
allow us to eliminate unnecessary variability in the [1-13C]pyruvate
signal derived from the vascular and extracellular compartments,
thereby improving the quantification of kPL as a more reliable
HP-13C-MRI metric that is independent of polarisation levels.

The lack of [1-13C]lactate signal in some aggressive cribriform
lesions, which are known to harbour increased genomic
instability67, may also be explained by a decreased NAD+ pool in
addition to low LDH expression, and an increase in MPC-driven mito-
chondrial [1-13C]pyruvate uptake.While non-invasive assessment of the
percentage of lactate-rich non-cribriformGP4 glandsmay behelpful in
some clinical settings such as active surveillance (AS), accurate
detection and quantification of cribriform disease is of high diagnostic
importance for several reasons. First, it has been shown that patients
with non-cribriform ISUPGG2 disease have the sameprognosis asmen
with ISUP GG1 lesions, whereas those with an ICC component had
more frequent surgical and radiotherapy failure68,69. The European
Association of Urology PCa guidelines recommend against offering AS

Fig. 4 | Spatially resolved metabolic profiling of the benign and malignant
prostatic epithelium. a Outputs of the DESI-MSI-derived MPEA demonstrating
comparative enrichment of KEGG glycolysis, fatty acid biosynthesis, and TCA cycle
pathways in benign (n = 695) and tumour (n = 468) ROIs from the spatial metabo-
lomics cohort (n = 13 patients). b Volcano plot showing individual differentially
enriched metabolites from the three KEGG pathways between the benign and
tumour ROIs; P were derived using the FDR-corrected Wilcoxon rank sum test.
c Mixed box-and-whisker and scatterplots comparing epithelial abundance of the
key differentially enrichedmetabolites between benign and tumour epithelial ROIs;
the data are presented asmedian and interquartile range; Pwere derived using the
two-tailed Mann–Whitney U test; the sample size in each plot varies depending on

the number of outliers excluded using the ROUT method (Q= 5%). For illustrative
purposes, outliers were removed using the ROUT method104 with Q = 5%. d tSNE
plot of DESI-MSI data acquired from the benign and tumour ROIs focusing on ions
corresponding to metabolites related to the three KEGG pathways. e Summary
diagram describing the key steps in developing a deep learning based metabolic
tissue classifier using DESI-MSI derivedmetabolites from the three KEGG pathways
to discriminate between benign and tumour epithelial ROIs; the SHAP plot lists the
ten most important metabolites used by the final model to achieve a median per-
formance of 0.91 presented in an AUC plot in f. Source data are provided as a
Source Data file.
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to patients with even small amounts of ICC detected on diagnostic
biopsies70,71. The absence of [1-13C]lactate signal in high-probability
lesions as shown in Fig. 5a, b might raise the suspicion for the under-
lying cribriformmorphology. However, as most cribriform lesions are
difficult to visualise on standard 1H-MRI18,72, the potential reduction in
their [1-13C]lactate labelling may limit the utility of HP-13C-MRI for
increasing their detection rate. Furthermore, in cases of mixed lesions

with other Gleason patterns present, as well as intraductal carcinoma
(IDC) that is often composed of a cribriform component, lactate-poor
ICC glandsmay artificially decrease tumour [1-13C]lactate labelling with
potential implications for reducing the accuracy of lesion character-
isation. Conversely, the results here suggest that future development
of novel 13C-labelled probes targeting fatty acid metabolism may yield
important results given the continuous upregulation of lipid
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Fig. 5 | Comparative assessment of biological factors underpinningHP-13C-MRI-
visibility of biopsy-proven PCa. a, b Whole-mount H&E, ADC, along with [1-13C]
pyruvate and [1-13C]lactate SNRmaps demonstrating the presence of large, cellular
ISUP GG3 lesions with dominant ICC component that were HP-13C-MRI occult
compared to contralateral small-volume foci of ISUP GG2 disease with <5% non-
cribriform GP4 glands. c Comparator case of a HP-13C-MRI-visible large cribriform
ISUP GG3 tumour that was also visible on 1H-MRI ADC. dRepresentative H&E slides,
along with corresponding IHC-derived CD31, MCT1, MPC2, FASN, AR, and
RNAscope-derived total LDH images obtained from HP-13C-MRI-visible and HP-13C-

MRI-occult lesions shown in a–c. e Mixed box-and-whisker and scatterplots com-
paring [1-13C]pyruvate and [1-13C]lactate SNR, epithelial cell density, CD31density, as
well as epithelial MCT1, LDH, MPC2, FASN, and AR density between HP-13C-MRI-
visible (n = 13 samples) and HP-13C-MRI-occult (n = 2 samples) lesions from the
hyperpolarisedMRI cohort (n = 8patients).a–d include images from three separate
patients; imaging and staining were not repeated. In e, the data points for the
13C-visible ICC tumour are coloured in black. Scale bars in a–c and d denote 5mm
and 5–50μm, respectively. Source data are provided as a Source Data file.
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Fig. 6 | Comparative metabolic characterisation of intermediate-risk PCa with
varying percentage and phenotype of GP4 disease. a Scatterplots with bars
comparing clinical [1-13C]lactate labelling between tumours divided based on the
percentage (far left; n = 7 samples for low %GP4 and n = 8 samples for high %GP4
lesions, respectively) and histological subtype (second from left; n = 7 samples for
low %GP4, n = 5 samples for non-cribriform high %GP4, and n = 3 samples for cri-
briform high %GP4 lesions, respectively) of GP4 disease from n = 8 patients. Inter-
group comparisons of 1H-MRI-derived tumourADC andKtrans, aswell as tissue-based
epithelial MCT1 density are also presented. b Mixed box-and-whisker and

scatterplots comparing tissue-based total epithelial LDH, nuclear HIF-1α, MPC2,
FASN, and nuclear AR between ROIs harbouring individual GP3 (n = 50), non-
cribriform GP4 (n = 22), and GP4 ICC (n = 17) glands from n = 8 patients.
c Representative H&E, RNAscope, and IHC images illustrating differential expres-
sion of tissue-based metabolic biomarkers between the three Gleason pattern
glands. In a, b, the data are presented as median (denoted by the bars or boxes)
with interquartile range (denoted by the bars orwhiskers). Pwerederived using the
two-sided Mann–Whitney U test. Source data are provided as a Source Data file.
Scale bars denote 5–50μm.
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metabolism noted throughout PCa development46,73 and the sub-
sequent increase in endogenous fatty acid abundance compared to
small metabolites such as lactate. Future studies could further assess
the role of PET agents such as 11C-acetate and 11C-choline for detecting
ICC and IDC, as well the applicability of prostate-specific membrane
antigen (PSMA) PET for detecting cribriform PCa where there are
currently conflicting results74–76.

This study adds a new dimension to the rapidly growing body of
literature investigating the molecular heterogeneity of different GP4
phenotypes by demonstrating the clinical potential for metabolic
characterisation of intermediate-risk disease. Recent studies including
bulk16,17 and single-cell15 mRNA sequencing have not focused on
metabolic gene sets, and clinical studies involving spatial metabo-
lomics techniques35,77–80 havenotdistinguishedbetweenGP4 subtypes.
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Our future work will build on the current results by identifying tran-
scriptomic drivers behind the described metabolic reprogramming in
different GP4 phenotypes, as well as GP3 and GP5 glands. If correlated
with clinical outcomes and imaging findings, this work may yield
important insights into metabolic characteristics of clinically sig-
nificant PCa, thereby navigating the development of more specific
metabolic imaging probes beyond [1-13C]pyruvate.

The limitations of this study include the lack of a direct corre-
lation betweenHP-13C-MRI and spatialmetabolomics data in the same
cohort, which was due to the challenges in using formalin-fixed and
paraffin-embedded tissue for DESI-MSI. The current study has com-
pensated for this by careful histopathological matching between the
two prospective patient cohorts, with the key results being con-
sistent both with the two patient groups and with previously pub-
lished data. While the HP-13C-MRI cohort had a limited sample size,
this was in keeping with recent clinical reports by other centres that
have the capacity to perform clinical HP-13C-MRI studies in patients
withPCa4,30,81. In addition, this study didnot includepatientswithGP5
disease or IDC as these rarely undergo surgical treatment, which will
be assessed in future work. Importantly, future studies will include
larger patient cohorts to assess the generalisability of our explora-
tory findings and can be statistically powered based on the results
here. In addition, future studies can also investigate the role of other
metabolic pathways in differentiating PCa subtypes. Moreover, while
functional validation of the impact of MPC expression on mito-
chondrial pyruvate flux in PCa cells was outside of the scope of this
clinical study, future work using stable isotope tracing in cell lines,
organoids, or patient-derived xenografts (PDXs) of cribriform and
non-cribriform disease would be key for confirming and explaining
themechanisms underlying themain findings outlined in this study82.
While similar work has been conducted in cardiomyocytes55, taking
this forward in the PCa setting along with advanced lipidomic ana-
lysis could provide a more comprehensive understanding of the
metabolic changes associated with mitochondrial pyruvate flux in
terms of TCA reactivation compared to the lipogenic phenotype.
Finally, while this study relied on whole-mount sections for three-
dimensional matching between clinical HP-13C-MRI and tissue-based
digital pathology, IHC, and spatial transcriptomics, future work in
non-surgical patient populations should consider alternative
approaches (e.g. fiducial marker placement) to ensure that targeted
biopsy samples truly represent the tissue biology underlying
HP-13C-MRI annotations.

In conclusion, this study demonstrates the impact of metabolic
and non-metabolic tissue characteristics on the characterisation of
PCa using HP-13C-MRI. Using a combination of macroscopic and
microscopic imaging techniques, we show that clinical [1-13C]lactate
labelling is a function of epithelial cell density, vascularity, cellular
capacity for pyruvate reduction to lactate, and MPC-driven mito-
chondrial pyruvate import. We have demonstrated that these char-
acteristics differ significantly between both benign and malignant
prostate tissue, and between intermediate-risk tumours containing
cribriform and non-cribriform GP4 glands. If validated in larger

cohorts and expanded to other tumour subtypes, these results have
important implications for the development and clinical translation of
PCa metabolic imaging techniques.

Methods
Patient selection and ethics
This clinical study complies with all relevant ethical regulations and is
approved by the National Research Ethics Service Committee East of
England, Cambridge South, with the relevant study protocol numbers
listed below. First, we analysed prospectively collected clinical, ima-
ging, and tissue-based data obtained from patients from two separate
surgical cohorts, as shown in Fig.1. The HP-13C-MRI cohort was a subset
of a previously reported2 population of consecutivemale patients with
at least one MR-visible (>1 cm, Likert/PI-RADS 4–5) histologically pro-
ven PCa focus (ISUP GG ≥ 2) scheduled for RARP in our centre. All
patients provided written consent to participate in the original pro-
spective study (Molecular Imaging and Spectroscopy with Stable Iso-
topes in Oncology and Neurology—Imaging metabolism in prostate
[MISSION-Prostate] protocol), retrospective analysis of which was
approved by the institutional review board (National Research Ethics
Service Committee East of England, Cambridge South, Research Ethics
Committee number 16/EE/0205). Of the ten patients recruited origin-
ally, eight were included in the current analysis due to technical failure
of HP-13C-MRI in the remaining two patients2. Following a review of
post-surgical whole-mount histological specimens, 15 lesions were
reported, with their key morphological characteristics reported in
Table 1.

To validate the key findings obtained in the HP-13C-MRI cohort by
directly measuring tissue metabolite concentrations in fresh-frozen
prostatectomysamples,we then retrospectively identified a secondary
cohort of treatment-naïve surgical patients who had been originally
recruited into an ethically-approved prospective national study (DIA-
MOND, National Research Ethics Service Committee East of England,
Cambridge South, Research Ethics Committee number 03/018) fol-
lowing the provision of written consent. To ensure comparability with
the HP-13C-MRI cohort, a total of 13 patients with 15 lesions matching
the key histopathological characteristics of tumours from the primary
cohort (Table 1) were selected for analysis as part of this study. Further
description of tumour histopathological assessment and matching is
provided in the corresponding section below. All patients in both the
MISSION-Prostate and DAMOND cohorts had male sex noted in their
clinical records.

HP-13C-MRI acquisition and analysis
In the primary cohort, pre-surgical HP-13C-MRI was acquired on a
clinical 3.0 T MR system (MR750, GE Healthcare, Waukesha WI, USA)
using a bespoke 1H/13C endorectal receive coil83 following the pro-
tocol detailed in the original MISSION-Prostate report2. In brief,
samples containing 1.47 g of [1-13C]pyruvic acid (Sigma Aldrich, St
Louis MO, USA) and 15mM electron paramagnetic agent (EPA) were
hyperpolarised using a clinical hyperpolariser (SPINlab; 5 T Research
Circle Technology, GE Healthcare, Waukesha WI, USA) by microwave

Fig. 7 | Spatially resolved metabolic phenotyping of intermediate-risk
humanPCa. aMixed box-and-whisker plots comparing DESI-MSI derived epithelial
lactate abundance between cores derived from lesions with low %GP4
(n = 19 samples) and high %GP4 (n = 19 samples) (far left), as well as between cores
sub-stratified by the division of high %GP4 lesions into those with dominant non-
cribriform (n = 10 samples) and cribriform (n = 9 samples) GP4 component (second
left) from n = 13 patients. Plots demonstrating intergroup comparison of epithelial
palmitoleic acid pool and epithelial cell fraction are also presented; the data are
presented as median (boxes) with interquartile ranges (whiskers); P were derived
using the two-sided Mann–Whitney U test. b Representative fused H&E and DESI-
MSI lactate and palmitoleic acid images demonstrating differential metabolite

abundance between GP3 (yellow), GP4 non-cribriform (red), and GP4 cribriform
(black) glands. c MPEA outputs demonstrating differential enrichment of glyco-
lysis, TCA cycle, and fatty acid biosynthesis KEGG pathways and individual meta-
bolites between ROIs classified as benign and GP3 (n = 360), non-cribriform GP4
(n = 70), and cribriform GP4 (n = 36) glands from n = 13 patients; P were derived
using the FDR-corrected Wilcoxon signed-rank test. d Diagram summarising the
key results of this study and highlighting the presence of lactate-rich non-cribri-
form and lactate-poor, fatty acid-rich cribriform GP4 phenotypes within
intermediate-risk PCa. Source data are provided as a Source Data file.dwas created
with BioRender.com and released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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irradiation at 139GHz at∼0.8 K for∼3 h followedby rapid dissolution
in 38mL of superheated sterile water and filtration to remove EPA to
a concentration below ≤3 μM2,8. Radiofrequency pulses with a nom-
inal flip angle of 15° were applied using a clamshell RF coil (GE
Healthcare, Waukesha WI, USA) to acquire a 20 × 20 cm2 FOV with a
matrix size of 32 × 32 and a temporal resolution of 4 s for 20 time
points. Images had a true in-plane resolution of 12.5 × 12.5mm2 and
were reconstructed with a resolution of 128 × 128. The imaging data
were reconstructed inMATLAB (MathWorks, NatickMA, USA)2,8, with
[1-13C]pyruvate and [1-13C]lactate SNR derived from ROIs containing
areas of histopathologically-proven PCa (n = 15) and contralateral
benign (n = 15) tissues. The ROIswere originally drawn onH&Ewhole-
mount pathology (WMP) maps by an experienced genitourinary
pathologist (A.Y.W.) (Supplementary Fig. 3). Corresponding lesions
were then outlined on HP-13C-MRI metabolite maps (Supplementary
Fig. 3) in consensus by two consultant/attending radiologists (T.B.,
F.A.G.) and a research fellow (N.S.) with 13-, 14-, and 5-years’ experi-
ence in prostate MRI, respectively84. In addition, we calculated the
apparent reaction rate constant for the exchange of the HP 13C-label
between pyruvate and lactate (kPL) using a two-site exchange model
using a frequency-domain approach and linear least-squares fitting2.
kPL quantification was important given the independence of this
parameter from the polarisation level, which in this cohort varied
between 7–33.8%, as indicated previously2.

1H-MRI acquisition and analysis
Either before or immediately after the HP-13C-MRI acquisition, all
patients in the primary cohort underwent standard-of-care multi-
parametric MRI of the prostate. The protocol, detailed in the prior
cohort description2, included axial T1-weighted fast spin echo (FSE),
high-resolution T2-weighted 2D fast recovery fast spin echo (FRFSE,
echo time [TE] 98–107ms, field-of-view [FOV] 22 × 22 cm2, acquisition
matrix 320–384 × 256, slice thickness 3mm with 0mm gap, 3 signal
averages, repetition time [TR] 3000–5000ms, echo train length 16,
receiver bandwidth ± 31.25 or ± 41.67 kHz), diffusion-weighted imaging
(DWI, spin-echo echo-planar imaging pulse sequence with b values of
150, 550, 750, 1000, and 1400, with a separate high b value acquisition
of 2000 s/mm2), and dynamic contrast-enhanced MRI (DCE-MRI, axial
3D fast spoiled gradient echo [FSPGR], TR/TE 4.1/1.8ms, FOV
24 × 24 cm2, following bolus injection of gadobutrol [Gadovist, Bayer
Healthcare, Berlin, Germany] via a power injector, rate 3mL/s [dose
0.1mmol/kg], temporal resolution 7 s). ADC maps were calculated
automatically, representing the quantitative assessment of tissue
density.

The mean ADC values corresponding to the areas of benign
(n = 15) andmalignant (n = 15) prostate were extracted from the same
ROIs used for the previously described HP-13C-MRI analysis (Supple-
mentary Fig. 5). The same ROIs were also used for extracting Ktrans

values as measures of vascular perfusion and permeability (Supple-
mentary Fig. 3), with DCE-MRI analysis performed in an in-house-
developed MATLAB software that was used to generate B1 maps2,8.
These maps were then transferred to MIStar (Apollo Medical Ima-
ging, Melbourne, Australia) to generate B1-corrected T1 maps, to
perform motion correction of the DCE-MRI data using a 3D affine
model, and for pharmacokinetic modelling using the standard Tofts
model2,8. In patient 6 (Table 1), DCE-MRI was not performed for
technical reasons.

Histopathological assessment and digital pathology analysis
In the HP-13C-MRI cohort, prospectively obtained whole-mount surgi-
cal sections were formalin fixed and paraffin-embedded following the
routine clinical procedure. The resulting FFPE slides were stained with
H&E and digitised for subsequent histopathological assessment at 40x
using Aperio CS2 Digital Pathology Scanner (Aperio Tech., Oxford,
UK)85. The latter was performed by a fellowship-trained genitourinary

pathologist who was a member of the 2019 ISUP Consensus Working
Group on PCa grading14 and has more than 20 years’ experience of
clinical PCa histopathological assessment. First, whole-mount slides
were assessed for the presenceof PCa foci and assigning their ISUPGG,
quantifying %GP4, and identifying the dominant GP4 subtype in ISUP
GG 2–3 lesions. As described in the previous sections, tumour (n = 15)
and contralateral benign tissue ROIs (n = 15) were used for HP-13C-MRI
and 1H-MRI segmentation (Supplementary Fig. 5). The same ROIs were
subsequently transposed onto IHC and RNAscope whole-mount slides
for analyses described in the corresponding sections below. In addi-
tion, as described in the prior publication2, whole-mount H&E maps
were used to draw standardised random ROIs encompassing tumour
foci represented by clear GP3 (n = 50), non-cribriform GP4 (n = 22;
poorly formed glands, fused glands, glomeruloid glands), and cribri-
form GP4 (n = 17; invasive cribriform carcinoma) glands (Supplemen-
tary Fig. 6); the identification of the latter was performed according to
the 2021 ISUP consensus definition of cribriform pattern PCa86. These
ROIs were also transposed onto IHC and RNAscope slides for the
corresponding analyses. Importantly, to ensure adequate matching of
ROIs drawn on the whole-mount H&E samples these were matched to
the corresponding benign and malignant areas noted on HP-13C-MRI:
whole-mount H&E slides were co-registered with 1H-MRI-derived ana-
tomical T2-weighted images according to previously described
methodology87. Specifically, the two types of images were matched by
four readers (three urological imagers, N.S., T.B., and F.A.G., and one
genitourinary pathologist, A.Y.W.) using anatomical landmarks, such
as prostatic zonal boundaries, urethra, and pseudocapsules of benign
hyperplastic nodules if present, while correcting for the distorting
effects of specimen preparation where possible, as shown in Supple-
mentary Fig. 7. This registration, as well as the whole-mount nature of
surgical H&E samples and whole-organ MR images, enabled us to
capture heterogeneity of both tumour and benign areas including in
this analysis.

The key histopathological characteristics of tumours from the
HP-13C-MRI cohort (ISUP GG, %GP4, dominant GP4 subtype) were used
to guide the search for a matching set of 15 lesions to form the sec-
ondary DESI-MSI cohort. The original fresh-frozen surgical sample
collection and preparation was performed by the same expert geni-
tourinary pathologist (A.Y.W.) according to the previously described
protocol88. In brief, RARP specimens were transferred on ice to the
laboratory within 30min of surgical resection, with multiple punch
biopsies removed using a standard 4–6mm skin punch. The sites of
the punched cores were marked on a “map” diagram (Fig. 1), from
which cores including benign (n = 61) and tumour tissues (n = 56) were
selected for this study. H&E staining was performed following the FF
sample preparation described in the DESI-MSI section below, with the
resulting slides scanned at 40x using the same Aperio Digital Pathol-
ogy Scanner. To ensure adequate preservation of tumour hetero-
geneity, all available tumour punch biopsies were included in this
study, as shown in Fig. 1.

As in the HP-13C-MRI cohort, tissue assessment and annotation
were performed in QuPath 0.2389 by the same genitourinary patholo-
gist (A.Y.W.). First, depending on the presence and amount of tumour
tissue, each core was labelled as either benign (no tumour tissue,
n = 61), mixed (<50% of tumour tissue, n = 23), and tumour (≥50% of
tumour tissue, n = 38) (Supplementary Fig. 8) to ensure accurate
comparison between benign and malignant prostatic tissues during
the whole-core lactate abundance assessment detailed below. Second,
the epithelial component of each individual core was annotated
manually as shown in Fig. 2e and labelled according to its morpholo-
gical characteristics (benign, GP3, GP4 non-cribriform, and GP4 ICC).
This enabled us to assign the overall ISUP GG and %GP4, as well as
identify the dominant GP4 subtype both at the level of an individual
core and for the combination of cores obtained from a single large
tumour focus. Both whole-core (n = 69) and individual epithelial ROIs
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(n = 695 benign and n = 468 tumour)were used to extract theDESI-MSI
data as described in the relevant section below.

In both cohorts, spatially resolved tissue analysis at the level of
epithelial and stromal compartments was critical due to the known
metabolic compartmentalisation between the two tissue types in the
human prostate. In the HP-13C-MRI cohort, we used a previously
described random forest tissue classifier2 embedded into the HALO
v3.2.1851.266 (Indica Labs, Albuquerque, NM, USA) software. In short,
the classifier was trained using manual annotations of epithelial and
stromal areas (Supplementary Fig. 9) according to the previously
described methodological pipeline51. In the DESI-MSI cohort, we used
theHALOAI platform to train a similar deep neural network (DenseNet
V2, path size: 100 × 100 pixels) tissue classifier to again distinguish
between epithelial and stromal cellular compartments. Since the DESI-
MSI data was extracted frommanually drawn epithelial ROIs, here the
classificationwasonly required for quantifying the relative distribution
of epithelial and stromal compartments within a given core (quantified
as the area of epithelial/stromal cells per the total tissue area, both in
mm2). To train the classifier, we used a subset of pathologist-defined
annotations (Supplementary Fig. 6) of epithelial, stromal, and back-
ground regions from n = 133 separate tissue regions with a total area of
171.4mm2. Classification outputs were visualised as mark-up images
(Supplementary Fig. 6) and sent back to the expert pathologist
(A.Y.W.) for corrections as part of an active learning process. The
classifier performance was cross-validated against ground truth
annotations using the unseen dataset of the validation cohort.

Immunohistochemistry
To assess biological factors such as epithelial capacity for [1-13C]pyr-
uvate uptake, tissue vascularity, and inferred [1-13C]pyruvatemetabolic
fate, we used IHC to stain the HP-13C-MRI cohort samples for the fol-
lowing targets: MCT1 (membrane pyruvate importer; Cat. No.
HPA003324, Atlas Antibodies, Bromma, Sweden), MPC1 and MPC2
(mitochondrial pyruvate carriers; Cat. No. PAB28306, Abnova, Taipei,
Taiwan for MPC1; Cat. No. D417G, Cell Signalling Technology, Danvers
MA, USA forMPC2), FASN (cytosolic fatty acid synthase; Cat. No. 3180,
Cell Signalling Technology, Danvers MA, USA), AR (nuclear receptor
regulating the expression of MPCs and FASN; Cat. No. NCL-AR-318,
Novocastra, Newcastle, UK), HIF-1α (nuclear transcription factor reg-
ulating the expression of LDHA; Cat. No. ab51608, Abcam, Cambridge,
UK), and CD31 (endothelial biomarker; Cat. No. M0823, Dako, Santa
Clara CA, USA). All antibodies have been previously validated in our
centre using positive and negative tissue controls under the super-
vision of specialist pathologists, as described in the Reporting
Summary.

The staining was performed on FFPE prostatectomy tumour
blocks using Leica’s Polymer Refine Detection System (DS9800) in
combination with their Bond automated system (Leica Biosystems
Newcastle Ltd, Newcastle, UK) following a previously published
protocol2. Briefly, sectionswere cut to 4μmthickness andbaked for 1 h
at 60 °C ahead of deparaffinisation and rehydration, as standard, on
the ST5020 Multistainer (Leica Biosystems). Subsequent immunohis-
tochemical staining was carried out on Leica’s automated Bond III
platform (Leica Biosystems) in conjunction with their Polymer Refine
Detection System (Cat. No. DS9800, Leica Biosystems). Sections
stained for HIF-1α were pre-treated with Epitope Retrieval Solution 1
(Cat. No. AR9961, Leica Biosystems) and those stained for other anti-
bodies were pre-treated with Epitope Retrieval Solution 2 (Cat. No.
AR9640, Leica Biosystems). Incubation was for 20min at 99 °C. Anti-
bodies were diluted to 23.36 µg/mL (MCT1), 0.3 µg/mL (MPC1), 4.5 µg/
mL (MPC2), 1:100 (FASN), 1:50 (AR), 0.6 µg/ml (HIF-1α), and 4.1 µg/ml
(CD31), respectively. Endogenous peroxidase activity was quenched
using 3–4% (v/v) hydrogen peroxide and primary antibody was
detected using Anti-rabbit Poly-HRP-IgG (<25μg/mL; part of Leica
Biosystems Polymer Refine Detection System) containing 10% (v/v)

animal serum in tris-buffered saline/0.09% ProClin 950. The complex
was visualised using 66mM3,3’-Diaminobenzidine tetrahydrochloride
hydrate in a stabiliser solution and ≤0.1% (v/v) Hydrogen Peroxide.
DAB Enhancer (Cat. No. AR9432, Leica Biosystems) was used to
intensify the signal. Cell nuclei were counterstained with <0.1%
haematoxylin.

As described previously2, HALO v3.3.2541.405 (Indica Labs, Albu-
querque, NM, USA) Membrane v1.7 (MCT1), multiplex IHC v2.3.4
(MPC1, MPC2, HIF-1α), area quantification v2.2.1 (CD31), multiplex IHC
v3.1.4 (AR), and multiplex IHC v2.3.4 (FASN) modules were used for
automated analysis of scanned sections. Optical densities for weak,
moderate, and strong stains were: MCT1, 0.1602, 0.2302, 0.4037; HIF-
1α nuclear 0.1958, 0.7522, 0.885; CD31, 0.2164, 0.2721, 0.3832; AR
nuclear, 0.0987,0.3761,0.544; FASN, 0.1881, 0.5949, 0.8407; MPC1,
positive optical density threshold 0.0759; MPC2, positive optical
density threshold 0.0758. Given the prior identification of the epithe-
lial compartment as the source of clinical [1-13C]lactate labelling in the
HP-13C-MRI cohort2, we first quantified epithelial cell density of each of
the above proteins by dividing the number of positive epithelial cells
by the ROI areas measured inmm2. This approach helped us achieve a
closer comparison between the limited spatial resolution of absolute
[1-13C]lactate signal quantification on HP-13C-MRI and the density of
cells that could contribute to the observed signal. In addition, we also
assessed the percentage of positive epithelial cells (MPC2, FASN) and
nuclei (HIF-1α, AR) in individual epithelial glands harbouring GP3, non-
cribriformGP4, andGP4 ICCdisease to obtain amore refinedmetric of
the biomarker expression at a cellular level.

All IHC antibodies used in this study were previously validated in
our Histopathology Core Facility as described in the Reporting Sum-
mary. Here, in addition to routinely used MCT1, HIF-1α, FASN, and AR
antibodies, we additionally validated antibodies for MPC1 and MPC2
within a dedicated Histopathology Core Facility (led by J.L.M.) under
the supervision of an expert genitourinary pathologist (A.Y.W.), with
further details and representative images from control tissues pro-
vided in Supplementary Fig. 10.

Spatial transcriptomics
To infer epithelial capacity for LDH-catalysed [1-13C]pyruvate-to-[1-13C]
lactate conversion, we used RNAscope to derive the total epithelial
LDH density, measured as the total number of epithelial LDHA and
LDHB mRNA copies per mm2. The analysis was performed using the
RNAscope spatial transcriptomics technique according to the pre-
viously described protocol2. Briefly, FFPE sections were cut to 4μm
thickness and baked for 1 h at 60 °C before loading onto a Bond RX
instrument (Leica Biosystems Newcastle Ltd, Newcastle, UK). Slides
were deparaffinized and rehydrated on board prior to pre-treatments
using Epitope Retrieval Solution 2 (Cat No. AR9640, Leica Biosystems)
at 95 °C for 15min, and ACD Enzyme from theMultiplex Reagent kit at
40 °C for 15min. Probes (LDHA, LDHB) were visualised using Opal
fluorophores diluted to 1:1000 using RNAscope LS Multiplex TSA
Buffer. Probehybridisation, signal amplification, anddetectionwereall
performed on the Bond Rx according to the ACD protocol. Slides were
removed from the BondRx andmounted using ProlongDiamond (Cat.
No. P36965, ThermoFisher Scientific, Waltham, MA, USA). In all
patients, simultaneous detection of human LDHA and LDHB was per-
formed using Advanced Cell Diagnostics (ACD, Bio-Techne, Abingdon,
UK) RNAscope 2.5 LS Multiplex Reagent Kit (Cat No. 322800), and
RNAscope 2.5 LS probes (ACD, Hayward, CA, USA) validated by the
manufacturer according to previously described procedures90. In
addition, prior to the analysis, we used spare tissue sections to run the
negative control slides (4 Plex DapB to ensure that DapB is in every
channel) to assess background staining, alongwith the positive control
slides (POLR2A for channel 1 and PPIB for channel 2) to determine good
RNA quality. In the analysis optimisation, we used the negative con-
trols to set the thresholds for positive signal in the test slides. Example
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images are presented in Supplementary Fig. 11. The described routine
in-house RNAscope antibody validation process, along with the sub-
sequent analysis, was performed by an experienced member of our
dedicated Histopathology Core Facility (see Acknowledgments) with
11-years’ of experience of using all RNAscope automated kits available
for the Leica Bond Rx (Single Plex, Duplex, 3 Plex, 4 Plex, BaseScope,
and RNAscope Plus), as well as manual HiPlex kits, for more than
50 separate projects in a variety of tissues and species, including
human and murine breast, brain, kidney, lung, and liver. The slides
were imaged on the AxioScan (Carl-Zeiss-Stiftung, Stuttgart, Germany)
to create whole-slide images. Images were captured at 40x magnifi-
cation, with a resolution of 0.25microns per pixel. HALO v3.2.1851.266
and the FISH v2.2.0 modules were used for the automated analysis of
scanned RNAscope sections by an experienced member of our Core
Facility (C.B.), which included specific steps aimed at overcoming
autofluoresence as previously described51.

Spatial metabolomics acquisition and analysis
Fresh-frozen RARP specimens obtained from the DESI-MSI cohort
were transferred on ice to the laboratory within 30min of surgical
resection, with multiple punch biopsies collected as described
above. For the DESI-MSI experiment, the punched cores (n = 117)
were embedded and prepared according to a previously reported
sample preparation workflow91. In brief, the punched cores were co-
embedded in a (Hydroxypropyl)-methylcellulose (HPMC) and Poly-
vinylpyrrolidone (PVP) hydrogel to enable time-efficient sectioning
under comparable conditions for all specimens analysed in one
experiment. A total of 18 punched cores were placed upright in peel-
away moulds (Thermo Scientific, Waltham, MA, USA) pre-filled with
ice-cold embedding medium. Snap freezing of the filled mould was
performed in dry ice-chilled isopropanol followed by a wash in dry
ice chilled iso-pentane to wash off the excess of isopropanol. The
frozen moulds were kept on dry ice to allow evaporation of the
adherent iso-pentane before sectioning. The resulting blocks (n = 10)
were sectioned to 10 µm thickness using a CM3050 cryo-microtome
(Leica Biosystems, Nussloch, Germany) and thaw-mounted onto
Superfrost slides (Fisher Scientific, Loughborough, UK) for DESI-MSI
and H&E histological examination.

DESI-MSI was carried out using an automated 2D DESI source
(Prosolia Inc, Indianapolis, IN, USA) with home-built sprayer
assembly mounted to a Q-Exactive FTMS instrument (Thermo Sci-
entific, Bremen, Germany). Analyses were performed at spatial
resolutions of 65 μm in negative ion mode and mass spectra were
collected in the mass range of 80–600Da with mass resolving
power set to 70000 at m/z 200 and an S-Lens setting of 100.
Methanol/water (95:5 v/v) was used as the electrospray solvent at a
flow rate of 1.0 μL/min and a spray voltage of −4.5 kV. Distance
between DESI sprayer to MS inlet was 7mm, while distance between
sprayer tip to sample surface was 1.5 mm at an angle of 75°. Nitrogen
N4.8 was used as nebulising gas at a pressure of 6.5 bar. Omnispray
2D (Prosolia, Indianapolis, USA) and Xcalibur (Thermo Fisher Sci-
entific) software were used for MS data acquisition. Individual line
scans were converted into centroided. mzML format using
MSConvert (ProteoWizard toolbox version 3.0.4043) and subse-
quently into.imzML using imzML converter v1.3.

Raw metabolite spectra were extracted using the pyimzML
python package and aligned to a commonmass axis using a fixed bin
size of 0.01 Da. Spectra were normalised by the root mean square of
the intensity across the entire mass range, to compensate for signal
instabilities and to facilitate comparison between experiments. The
analysis of metabolites within pathologist-annotated H&E ROIs
required the co-registration of whole-slide histological images with
DESI-MSI data. To do so, we first extracted a low-resolution version of
each whole-slide H&E-stained image, downsampling it by a factor of
32. A binary tissue-background mask was computed for each H&E

slide by thresholding the saturation of the image using Otsu
thresholding. We then removed all objects and holes in the binary
mask smaller than 64 pixels. For the DESI-MSI data, we computed a
total ion current (TIC) image, normalised to lie in the range 0–1. The
H&E binary mask was then resized to have the same dimensions as
the MSI TIC image. Using the resized H&E mask and the MSI TIC
image, we computed an affine transform using the Elastix package,
treating H&E mask as the moving image and the MSI image as the
fixed image. Pathologist annotations were converted to binary
masks, resized to the same dimensions as the MSI total ion current
image, and then transformed using the previously calculated affine
transformation. This yielded a mask identifying the pixels in the MSI
image corresponding to the region annotated by the pathologist on
the whole slide H&E image. We then computed a single spectrum per
ROI by taking the mean of all MSI pixels inside the region. Impor-
tantly, DESI-MSI was chosen over other spatial metabolomics tech-
niques, such as matrix-assisted laser desorption ionisation (MALDI)
MSI, as it rapidly acquires data and is particularly sensitive for the
detection of small molecules which is the focus of this study92.
However, to validate our DESI-MSI findings against an orthogonal
technique, we performed MALDI-MSI in negative ion mode on serial
sections of samples representing benign and malignant prostatic
cores, which showed comparable mass accuracy for metabolite
detection (Supplementary Table 2) and the key metabolites of
interest showed a similar spatial localisation (Supplementary Fig. 12).
In addition, we used tandemmass spectrometry (MS/MS)93 to further
validate the DESI-MSI derived targeted metabolite detection against
metabolite standards. As shown in Supplementary Fig. 13, similar
characteristicmetabolite fragment peakswere observed in both pure
control standards and human prostate test samples used in
this study.

To resolve the metabolic phenotype of benign and tumour pro-
static epithelial cells within the framework of this study, we used
individual benign (n = 695) and tumour (n = 468) epithelial ROIs to
derive relative abundance values of endogenous metabolites con-
tributing to the three key metabolic pathways of interest (glycolysis,
TCA cycle, fatty acid biosynthesis; individual KEGG metabolites are
listed in Supplementary Table 1). The relative abundance values of all
metabolites that have been mapped to the reference m/z values
(within 5 ppm accuracy) in the KEGG database were compared
between the groups of interest. The corresponding P values have been
calculated for each metabolite using non-parametric Wilcoxon rank
sum test. To perform the metabolic pathway enrichment analysis
(MPEA), themetabolites enriched (P > 0.05; Log2FC > 1) in either of the
comparison groups were subjected to overrepresentation analysis.
Only the pathways with an overall size of more than two metabolites
and having more than two enriched metabolites contributing to the
named pathway (or “hits”) were retained. The produced output of
MPEA contains a P value based on a hypergeometric test, as well as the
pathway enrichment score (PES) for each pathway. PES represents a
log2 transformed ratio between the number of observed enriched
metabolites in the dataset and the number of metabolites expected to
be enriched by random chance.

In addition to MPEA, we also sought to ascertain the individual
contribution of constituent KEGG metabolites on the ability of DESI-
MSI to distinguish between benign and tumour epithelial cells. To do
so, we trained a small neural network to distinguish the spectra of
epithelial ROIs annotated as either tumour or benign (Fig. 4e). The full
dataset consistent of a total of 1163 ROIs (n = 695 benign and n = 468
tumour) that had also been used for the MPEA. Each sample, corre-
sponding to an ROI, consisted of the mean value of 31 selected meta-
bolites corresponding to KEGG glycolysis and glyconeogenesis, TCA
cycle, and fatty acid synthesis metabolic pathways (Supplementary
Table 1). As a first step, we normalised the data, such that the mean
intensity of each metabolite across all ROIs was equal to 0, with a
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standard deviation of 1. A suite of models using 5-fold cross validation
were trained. The splits were determined at the patient level, such that
no samples frompatients in the test setwerepresent in the training set.
This was done to ensure that the model learned features which dis-
tinguished benign regions from tumour regions and did notmemorise
patient-specific features common to both tumour and benign regions.
The neural network had a multi-layer perceptron architecture, with 64
neurons in each of the two hidden layers. We used ReLu activations in
the hidden layers, with a single neuron in the final layer which used a
sigmoid activation. We used a binary cross entropy loss function, the
Adamoptimiser with a learning rate of 10−4 andwe used a batch size of
32. To prevent overfitting, we applied data augmentation during
training by adding a small amount of Gaussian noise to each sample.
The amplitude of the noise was set to be 10% of the absolute value of
eachmetabolite. In addition, we employed an early stopping protocol
to determine the number of epochs for training, based on the valida-
tion loss. To evaluate the importance of its constituent features on the
final model performance, we combined Shapley additive explanations
(SHAP) for each test set in our 5-fold cross validation training scheme59.
The median performance of the tissue classifier for discriminating
between benign and tumour ROI classes across the five different net-
works was assessed using the area under the ROC curve.

Open-source spatial transcriptomics data analysis
To evaluate the generalisability of the key findings from theHP-13C-MRI
cohort, we analysed publicly available mRNA data related to the
expression of SLC16A1, LDHA, LDHB,MPC2, FASN, andAR in benign and
tumour surgical specimens. First, bulkmRNA sequencing outputs (log-
transformed FPKM values) of the TCGA-PRAD study43 were accessed
through the NCI GDC Data Portal88 and compared between the two
sample classes using theMann–WhitneyU test. To allow comparability
with the HP-13C-MRI cohort, only data from patients with primary
Gleason patterns of 3 and 4 were analysed.

In addition, single-cell and spatial RNA-sequencing analyses were
performed on two datasets (EGAS00001005787 and GSE176031). For
each, data were all processed using the Seurat toolkit (https://satijalab.
org/seurat/)94–97. Data, obtained asmatrices comprising feature (gene)
counts as rows and barcoded cells as columns (with annotations
regarding cell type and other metadata as available), were first pre-
processed by filtering out cells with over 2500 or under 200 unique
feature/gene counts as well as those with >5% of counts including
mitochondrial DNA. Data were then log-normalised and scaled by a
factor of 10,000. Highly variable features were selected using Seurat’s
‘vst’ selection method, and a linear scaling transformation was per-
formed before dimensionality reduction was performed via principal
component analysis (PCA). Jackstraw plots were generated98 to select
an appropriate number of dimensions, which was also validated by
ranking principal components by the percentage of variance explained
by adding each principal component. The “appropriate” number of
dimensions was that at which no appreciable increase in signal/per-
centage of variance explained was obtained by adding an additional
dimension. Cells were subsequently clustered using the Louvain clus-
tering algorithm99, set to a clustering resolution of 0.5. Nonlinear
dimensionality reduction was performed with the UMAP method100.
Differential expression among clusters was analysed using Seurat’s
default differential expression analysis function, ‘FindAllMarkers’.
Finally, for analysis of gene signatures comprising multiple genes, a
new “meta-feature” was created using Seurat’s ‘MetaFeature’ function,
which calculates the relative contribution of a gene set to each cell in
the dataset.

For integration of spatial transcriptomics data, 10x Visium data
were used and loaded to R as an object comprising an image of the
tissue slice along with spot-by-spot gene expression data. As above,
data were preprocessed by normalisation to account for spot-by-spot

differences in sequencing depth. SCTransform101 was used to normal-
ise data and detect high-variance features.

Statistics and reproducibility
Statistical analyses were conducted using GraphPad Prism (version
9.0.2, GraphPad Software, San Diego, CA, USA). Normal distribution of
the data was assessed using the D’Agostino-Pearson test (threshold
P ≥0.05). All intergroup comparisons were performed using the two-
sided Mann–Whitney U test or Wilcoxon signed-rank test as appro-
priate. Correlation analysis was conducted using the Spearman’s rank
correlation test since at least one variable was always non-normally
distributed. In the HP-13C-MRI cohort, intergroup comparison of
HP-13C-MRI-derived [1-13C]pyruvate and [1-13C]lactate labelling was
conducted between n = 13 HP-13C-MRI-visible tumours (total carbon
SNR threshold >5.0 according to the Rose criterion84,102) and n = 13
contralateral areas of benign tissue. Simultaneously, due to interval
androgen deprivation therapy (ADT) administered to patient 5 in
Table 1, their two lesions were excluded from intergroup comparison
of tissue-based parameters, with the remaining sample size including
n = 11 tumour and n = 11 benign areas. In addition, values of MPC1 and
MPC2 epithelial density were log-transformed due to their high range.
In theDESI-MSI cohort, the comparisonofwhole-core epithelial lactate
abundance, tissue density, epithelial and stromal cell fractions, as well
as compartmentalised lactate pool wasmade between cores including
purely benign (n = 61) and >50% tumour (n = 38) tissues (Supplemen-
tary Fig. 5). MPEA and deep-learning-based tissue classifier were built
using the ROIs derived from all tissue cores included in the study,
including n = 23 mixed cores. For intergroup comparisons and corre-
lation analyses, no multiplicity correction was applied, and therefore
all significant tests should be interpreted as exploratory rather than
confirmatory. Given the lack of previous clinical studies addressing the
key research questions presented in this work, no statistical power
calculations could be performed in advance of commencing the study.
All experiments were independent and standalone.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the clinical and imaging data supporting the
findings of this study are available within the article and its Supple-
mentary Information. The open-source TCGA-PRAD data used in this
study are available through the NCI GDC Data Portal, with additional
single-cell and spatial RNA-sequencing analyses performed on two
publicly available datasets, EGAS00001005787 and GSE176031,
respectively. Data used to generate plots in Figs. 2–7 along with the
DESI-MSI metabolite data are provided in the Source Data file. The
authors defer raw DESI-MSI and clinical MRI data deposition to ensure
compliance with legal requirements of the University of Cambridge
and Cambridge University Hospitals NHS Foundation Trust and avoid
compromising privacy of the study participants. Requests for raw data
can be referred to the corresponding author (N.S.); these will be
reviewedwithin ten working days in consultation with the institutional
R&D which will determine the terms of a data transfer agreement
between the recipient institution, the University of Cambridge, and
Cambridge University Hospitals NHS Foundation Trust. Source data
are provided with this paper.

Code availability
The code to build a metabolic tissue classifier103 is available at (https://
github.com/AstraZeneca/metabolic_classifier). The code to conduct
metabolic pathway enrichment analysis is available at (https://github.
com/AleksZakirov/MPE-analysis-for-prostate-cancer-study).
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