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Generative learning facilitated discovery of
high-entropy ceramic dielectrics for
capacitive energy storage

Wei Li1, Zhong-Hui Shen 1,2 , Run-Lin Liu2, Xiao-Xiao Chen2, Meng-Fan Guo3,
Jin-Ming Guo4, Hua Hao 1, Yang Shen 5, Han-Xing Liu 2,
Long-Qing Chen 5 & Ce-Wen Nan 3

Dielectric capacitors offer great potential for advanced electronics due to their
high power densities, but their energy density still needs to be further
improved. High-entropy strategy has emerged as an effective method for
improving energy storage performance, however, discovering new high-
entropy systems within a high-dimensional composition space is a daunting
challenge for traditional trial-and-error experiments. Here, based on phase-
field simulations and limited experimental data, we propose a generative
learning approach to accelerate the discovery of high-entropy dielectrics in a
practically infinite exploration space of over 1011 combinations. By encoding-
decoding latent space regularities to facilitate data sampling and forward
inference, we employ inverse design to screen out the most promising com-
binations via a ranking strategy. Through only 5 sets of targeted experiments,
we successfully obtain a Bi(Mg0.5Ti0.5)O3-based high-entropy dielectric film
with a significantly improved energy density of 156 J cm−3 at an electric field of
5104 kV cm−1, surpassing the pristine film by more than eight-fold. This work
introduces an effective and innovative avenue for designing high-entropy
dielectrics with drastically reduced experimental cycles, which could be also
extended to expedite the design of other multicomponent material systems
with desired properties.

Dielectric capacitors capable of storing and releasing charges by
electric polar dipoles are the essential elements in modern electro-
nic and electrical applications such as hybrid electric vehicles,
portable electronic devices as well as power pulse systems, owing
to much higher power density than the electrochemical
counterparts1,2. However, both ceramics possessing high dielectric
constant and polymers featured by high breakdown strength face

the dilemma that the energy density Ue is much lower than that of
chemical energy storage devices such as batteries3,4. Meanwhile, the
lower energy density Ue of dielectric materials greatly limits their
applications and developments towards miniaturization and inte-
gration in the new era of the Internet of Things5. Therefore, it is of
great significance to develop dielectric capacitors with higher
energy density.
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For dielectric capacitors, the expression for the energy density is
Ue =

R Pm
Pr
EdP. The simultaneous pursuit of a large maximum polariza-

tion Pm, a small residual polarization Pr and a high breakdown strength
Eb is the key to realizing a high Ue

6. In general, some ferroelectrics with
large spontaneous polarization Ps, such as BaTiO3 (BTO), BiFeO3 (BFO),
PbZrxTi1-xO3 (PZT), have shown great potential for achieving high Pm
(>50μC cm−2)7,8. However, a large number of polar dipoles in those
ferroelectrics bring much stronger hysteresis effect, resulting in extre-
mely large Pr and bad voltage resistance (low Eb)9. Recently, high-
entropy strategy10,11 with local disorder have been proposed to enhance
energy storage performance by modulating the mutual constraints
amongPm,Pr, andEb10,12. Here, the atomic configurationentropySconfig is
defined as Sconf ig = � R½ðPN

i= 1xilnxiÞcation�site + ð
PM

j = 1xj lnxjÞanion�site
�

with R, N (M), and xi (xj) representing the ideal gas constant, atomic
species, and contents at the cation/anion sites, respectively12. As for
high-entropy dielectrics (HEDs) with Sconfig≥ 1.5 R, a local diverse
polarization configuration inspired by ions with various valence states,
ionic radii, and electronegativities can be achieved, resulting in smaller
polar nanoregions (PNRs) with weak coupling and fast polarization
response to an applied electricfield thereby reducing Pr2,13. On the other
hand, an increased lattice distortion can increase the crystalline energy
to a special state that cannot be compensatedby shrinkinggrain surface
areas and inhibiting grain coarsening, which leads to the formation of
fine grains or amorphous phases with enhanced Eb5,14. For example,
ref. 12. reported a Bi2Ti2O7-based high-entropy dielectric film with lat-
tice distorted nano-crystalline grains and a disordered amorphous-like
phase. As a result, the energy storage performance is substantially
improved by the synergistic contributions of the enhanced breakdown
strength and reduced polarization switching hysteresis. Chen et al. 14.
introduced local polymorphic distortions into (K, Na)NbO3-based high-
entropy ceramics to improve Eb and delay polarization saturation,
thereby achieving both largeUe and high efficiency. Thus, high-entropy
design is considered as an emerging and efficient method to improve
the energy storage performance by optimizing the balance among Pm,
Pr and Eb.

However, it is noteworthy that HEDs comprising multiple chemi-
cal elements present an extensive compositional space. Thus far, the
discovery of new HEDs with superior energy storage capabilities in
traditional experiments has predominantly relied on empirical or trial-
and-error methods, which leads to protracted and labor-intensive
development cycles14,15. Consequently, efficiently and accurately
identifying desired HEDs within high-dimensional composition spaces
poses a formidable challenge. In recent years, the emergence of the
fourth data-driven paradigm based onmachine learning has thrived in
accelerating the discovery and design of new materials16,17. By
extracting and learning physical or chemical descriptors based on
material characteristics, machine learning could predict and discover
new knowledge and patterns to guide materials research16,18. But sev-
eral challenges still persist. One of the main contradictions is the huge
materials exploration space and the limited available data. When data
is scarce, machine learningmodels would encounter problems such as
poor generalization ability, overfitting, and high bias19–21. Generative
learning, different from discriminative model, offers a method of
generating new data by learning the underlying patterns or distribu-
tions from a given set of data. Thus, the power and significance of
generative learning lies in its ability to create new data with similar
characteristics, which has great potential in reinforcing limited mate-
rials data in an unsupervised or partially supervised way17,21. Therefore,
drawing on this idea,we introduce generative learning into the process
of machine learning-driven materials development to solve the major
challenge of insufficient data volume by generating new dataset.

In this work, we construct a generative learning-based framework
based on small experimental data to accelerate the discovery of HEDs
with high energy density. To figure out the effect of configurational
entropy on polarization response, we perform phase field simulations

to calculate polarization-electric field (P-E) loops and corresponding
energy density of HEDs with different entropy values22–24. As an
experimental example, we choose Bi(Mg0.5Ti0.5)O3 (BMT) because
of its strong ferroelectric features and relatively good stability as
pristine matrix to design HEDs by simultaneous multi-element doping
of its A-site and B-site25–27. Taking 77 sets of experimental results as
initial data, we build a generative learning model based on an
encoding-decoding architecturewith data reconstruction and artificial
neural network (ANN) to find the potentially optimal high-entropy
combinations28,29. The existing small sample data is then augmented
with probabilistic sampling, where the elemental content of the A-
and B-positions are retained to two decimal places and each position
is summed up to equal 1. Thus, a possible space of nearly 1011 combi-
nations is constructed to search for optimal combinations that
satisfy the high entropy criterion. Then, we screen out top five com-
positions of prediction results among more than 2000 candidates,
and five groups of targeted experiments are conducted to verify
their potential in energy storage performance. Finally, a greatly
improved Ue of 156 J cm−3 at 5104 kV cm−1 has been obtained in
Bi0.87La0.08Sr0.05Ti0.41Mg0.39Mn0.15Zr0.05O3 dielectric film, which is
about eight times as much as that of pristine BMT (~18 J cm−3). Our
generative learning paradigm to design high-entropy dielectrics can
also be extended to the design of other high-entropy functional
materials with limited available data.

Results
Phase-field simulations of high-entropy effect
To theoretically evaluate the high-entropy engineering on improving the
energy storage performance of dielectrics, we first perform phase-field
simulations to study the local polarization responseandmacroscopicP-E
loopswithdifferentSconfig1. At theatomand lattice levels,Sconfig increases
with the entry of foreign atoms into the equivalent position, leading to
higher atomic disorder and lattice distortions or oxygen-octahedral
distortions due to the differences in atomic size, mass, and
electronegativity30, as illustrated in Fig. 1a. As a result, random local
strains or electric fields appear at nanoscale scale, which may disrupt
microdomains into polar nanoregions. The larger the Sconfig, the more
disordered the polar dipole distribution. On the above basis, we build
different phase-field models with different degrees of dipole disorder in
BiFeO3-based dielectrics, as described inMethods. As shown in Fig. 1b, as
Sconfig increases from 0.69R to 1.64R, the polar regions are broken into
increasingly disordered and decreasing areas. At low entropy, the size of
polar regions is large and the dipole orientation distribution is uniform
and orderly. As Sconfig increases to 1.64R, the polar regions are broken
intomuch smaller areas andmore disordered dipoles appear with a very
chaotic state (Fig. 1b). Therefore, for high-entropydielectricswith strong
local heterogeneity, the dipole switching would become much easier
and thus the ferroelectric hysteresis effect would be greatly alleviated5.
This microscopic configuration change has also been verified by our
simulation results of P-E loops in Fig. 1c. As Sconfig increases, the P-E loop
curves gradually shift from ferroelectric to relaxor-like behavior. As the
shaded area displayed in Fig. 1c, Ue raises substantially with the increase
of Sconfig. The improvement of Ue caused by entropy increase has also
beenconfirmed inother systemsofBaTiO3 andPbTiO3-baseddielectrics.
As shown in Fig. 1d,Ue of all three systems show a similar increase trend
with Sconfig changing from 0.69R to 1.64R. The improvement of energy
storage performance by high entropy design concluded by our simula-
tions results is also consistent with the existing experiments12,24,31.
Therefore, high-entropy engineering, as a universal design strategy, has
shown great potential in enhancing the energy storage performance by
modulating local dipole configuration32.

Machine learning-driven high-entropy design
To experimentally realize the high-entropy design in dielectrics,
based on our knowledge and experience in the field of materials, we
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carry out an expert-orientated trial-and-error method to find high-
entropy systems with suitable elements and their contents. Taking
Bi(Mg0.5Ti0.5)O3 as initial matrix, we have prepared 77 systems of
Bi(1-a-b-c)LaaSrbCac(Mg0.5Ti0.5)1-d-e-fMndZreHffO3, including 48 sets of
high-entropy combinations by introducing different elements in the
A-site and B-site, as detailed at Supplementary Table 2. Unfortunately,
the time-consuming and labor-intensive repetitive exploration
experiments did not help us find a high-entropy systemwith excellent
energy density. The highest Ue among them is 87 J cm−3, just over
three times as high as pristine BMT. This is because the huge
exploration space of potential high-entropy systemsmakes it difficult
tofind the optimal composition quickly and accurately, which is also a
common challenge faced by current high-entropy materials design33.
In order to efficiently implement high-entropy design, we propose a
data-driven pattern with machine learning screening and directed
experiment validation to accelerate the discovery process of high-
entropy dielectrics with high energy storage performance. As dis-
played in Fig. 2a, the machine learning framework consists of three
parts: (i) the generative model with generation of the latent space z,
(ii) classification and sampling of compositions, and the predictive
model of (iii) forward inference and inverse design. First, before
embarking on a machine learning-driven high-entropy design, having
enough training data is the most basic requirement. Obviously, the

existing experimental data is not enough to support the model to
show good global generalization ability in such a huge exploration
space. Thus, we develop a generative model (GM)-based framework
with a neural network for the encoder-decoder of HEDs34. Here, we
construct encoderswith the types and contents of dopant elements in
the A-site and B-site Bi(1-a-b-c)LaaSrbCac(Mg0.5Ti0.5)1-d-e-fMndZreHffO3

(C-n, n = 1,2,3…), where themain dopant elements in the A-site are La,
Sr and Ca, and the main dopant elements in the B-site are Mn, Zr and
Hf, and the content varies from 0 to 0.01 in each case. Using the
elemental composition information of every initial film as the input
data, a latent feature space z that can be used to potentially represent
the dielectric information variables is generated, and then decoding z
can regenerate the reconstructed compositions. Supplementary
Fig. 1, Supplementary Tables 3 and 4 show the reconstructed results
of the compositions. The model is also analyzed for its ability to
extract high-entropy compositions represented as low-dimensional
latent variables, as shown in Supplementary Fig. 1, where the smooth
curve indicates that the model eventually stabilizes. Thus, we could
get a physically meaningful and informative z with a large amount of
information about the features of high-entropy dielectrics. Then,
based on the screening of targeted metrics, we build a classifier that
can recognize high and low energy density (Supplementary Fig. 2) to
construct a composition-Ue relationship from a small dataset.
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Because the space of C-n compositions is too large with about 1011

possible combinations, we analyze known high-performance com-
positions in the low-dimensional space by Gaussian mixture model
(GMM) (Supplementary Fig. 3) and Markov Chain-Monte Carlo Sam-
pling (MCMC) to inversely generate unseen other compositions with
similar high performance35,36. Next, based on the inverse target
design, we use a regression model to further inference the Ue of the
candidate compositions generated byGM.With this regressionmodel
integrating the advantages of Artificial Neural Networks (ANN) and
Light Gradient Boosting Machine (Light GBM) methods, the
composition-descriptor-performance relationships can be estab-
lished to achieve fast and large-scale combinatorial inference37–40. The
physical descriptors in this model can be seen in Supplementary
Table 5. The scarcity of experimental data, as well as the difficulty of
generalizing the constructedmodel globally and the highly non-linear
nature of the composition-performance relationship would lead to
instability in the regressionmodel41. Thus, to improve the efficiency of
data mining as well as the robustness of the regression model, we
define a mining capacity coefficient λ that ranks the sum of the pre-
dicted values and their uncertainty weights, similar to a Bayesian
optimization, to guide the discovery of desirable compositions. In

traditional active learning strategies, the uncertainty tends to favor
the space of compositional combinations whose predicted values
have higher variance. We have improved uncertainty trade-off with
the goal of predicting dense, stable compositional data in one go. We
rank combinations by λ, as this strategy magnifies the gap between
different candidates42,43. The ranking-based strategy ensures that
candidate portfolio selection is less affected by model inaccuracies
and provides a systematic way to combine model predictions and
uncertainty.

Based on 77 sets of BMT-based experiment results as initial data,
we generate 2144 sets of high-performance systems with energy den-
sities greater than 65 J cm−3, and then select the top five sets for tar-
geted experiments. The GM-generated potential space z is visualized
by principal component analysis (PCA) downscaling, as shown in
Fig. 2b, where the blue squares denote the original experimental data,
corresponding to the color bar on the right side. Purple circles denote
the 2144 candidate sets of high-energy-density potential data sampled
from the classifier (Ue > 65 J cm−3). Solid spheres with different colors
indicate the new five components generated bymodel predictions (C-
n, n = 1,2,3,4,5). Their elemental species and contents, entropy values,
and uncertainties are shown in Supplementary Table 6. The five new
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compositions are located in themiddle dense region (inside the yellow
circle), indicating that the energy density of the compositions in this
region is more in line with our expectations. The relationship between
the entropy value and the normalized Ue of each composition in the
candidate space predicted by the regressionmodel is shown in Fig. 2c.
As the entropy value increases, the combination of elements becomes
more and more complex, and therefore the uncertainty increases,
which the overallUe of the screened composites tends to increase. This
is highly consistent with our previous phase-field simulation results.
Based on the screening results by the ranking strategy, we carry out
directed experiments to verify the theoretical predictions. More
details about experiment results will be introduced in the following
section. Encouragingly, the top five high-entropy designs we screened
all gain in energy storage performance, especially C-3 film with the
highest Ue of 156 J cm−3 and Eb of 5104 kV cm−1, which is about eight
times more than that of BMT. This coincides with the results of our
phase-field simulations, demonstrating the feasibility and effective-
ness of the high-entropy strategy on improving energy storage per-
formance. Thus, the machine learning strategy in this work
successfully accelerate the discovery of high-performance HEDs by
only 5 sets of directed experiments.

Directed experiments and electrical characterization
Guided by phase-field simulations and machine learning predictions,
we conduct directed experiments for the five screened compositions
of BMT-based high-entropy films by chemical solution deposition
(CSD) with the thickness of about 160 nm (Supplementary Fig. 4). For
each high-entropy film, different annealing temperatures were also
explored to find the optimal energy storage performance. As shown in
Supplementary Fig. 5, energy storage densities, breakdown strengths,

and maximum polarization values were displayed at different anneal-
ing temperatures. At the optimal annealing temperature of each
component (C-n, n = 1,2,3,4,5), we further performed the relevant
structural and morphological characterization as well as the electrical
property testing. Figure 3a shows the grazing incidence x-ray diffrac-
tion (GI-XRD) pattern of the BMT-based films, where C-1 and C-3
formed pure perovskite phases consistent with BMT, and pyrochlore
phases appeared in C-2, C-4 and C-5. Meanwhile, the positions of C-n
films and BMT at the (100) and (110) peaks remain apparently
unchanged, indicating that no lattice substitutionhas occurred even in
the presence of elemental doping27. However, it can be clearly seen at
(110) that the peak intensities of C-n films are significantly weaker than
that of BMT, and the diffraction peaks gradually become broader.
Those changes may be attributed to that the high entropy doping
strategy leads to the grain refinement or the increase in the proportion
of amorphous phases as a result of the deterioration of the
crystallinity12,44. This is also evident from the scanning electron
microscope (SEM) of different films after annealing (Supplementary
Fig. 6), which show denser microstructures with nanograins down to a
few nanometers in Supplementary Fig. 7. As the high resolution
transmission electron microscope (HR-TEM) results shown in Supple-
mentary Fig. 8a, b, the lattice diffraction fringes can be observed in the
area of the yellow circles, which are thus determined to be crystalline,
and the rest amorphous.With the increaseof entropy fromBMT toC-3,
the percentage of local amorphous phase increased from 10% to 45%
(Supplementary Fig. 8c). More details about the experimental pre-
paration and characterization are described in Methods.

To understand the electrical properties of five high-entropy BMT-
based films, we first measured the dielectric constant and dielectric
loss under different frequencies from 1 kHz to 1MHz, as shown in
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Fig. 3b. As a whole, the dielectric constants of C-n films are lower than
that of BMT, decreasing from 310 of BMT to 190 of C-3 at 1 kHz, which
is in line with the trend of polarization reduction observed in the
phase-field simulations. This decrease may be due to the high entropy
doping that refines the grains and introduces an excess of amorphous
phases45. Over a certain frequency range of 1 kHz to 1MHz, we observe
higher dielectric constant stability, i.e., the variation of dielectric
constant is ~ 10% for C-n films and 30% for BMT film. In addition, we
find that the loss tangents of C-n films are somewhat suppressed in the
measured frequency range. At 100 kHz, the dielectric loss has a
relaxation peak with frequency, probably due to the grain
refinement27,45. We ascribe the evolution of dielectric properties to the
emergence of nanocrystals and the increase of amorphous phases,
which areusually considered to have linear polarization characteristics
with low dielectric constant, low loss, and good frequency stability12,46.
As we discussed above, the maximum electric field that dielectrics can
withstand is one of the important factors (denoted by Eb) to determine
the maximum energy density, which is also a key performance index
for high-entropy design to improve. To compare the voltage resistance
characteristics, we analyze Eb of BMT and C-n films using the Weibull
distribution law, as shown in Fig. 3c. The Weibull modulus β comes
from the slope of the fitted lines, indicating the reliability of Eb dis-
tribution and reproducibility of the films47. The Weibull modulus β
values of BMT and C-n (n = 1, 2, 3, 4, 5) films are 7.76 and 10.19, 10.2,
11.8, 10.51, and 16.97, and Eb are 1173 and 4357, 4232, 5104, 3734, and
2987 kV cm−1, respectively. To further explore the reason why high-
entropy design enhances Eb, we provide the leakage current densities
of BMTandC-nfilms under different applied electric fields48. As shown
in Supplementary Fig. 9, it can be seen that the leakage current den-
sities of C-n films at high electric fields are much lower than that of
BMT film,which is nearly two orders ofmagnitude lower. For example,

at an electric field of 1000 kV cm−1, the leakage current density of C-3
film is 4.01 × 10−6 A cm−2, while that of BMT is 3.97 × 10−4 A cm−2.
Therefore, the high-entropy design of C-n films exhibit lower leakage
current densities and higher Eb, which is beneficial to improve the
maximal energy density. Then, we measured the P-E loops of BMT and
C-n films at 1500 kV cm−1 to further evaluate their potential for energy
storage performance, as shown in Fig. 3d. The results show that the
low-entropy BMT film has a lower η of 45% due to its higher Pr
(~40μC cm−2) and strong polarization switching hysteresis. While for
those films with high-entropy design, all C-n films exhibit weaker
hysteresis effect with enhanced relaxation-like properties, reduced
residual polarization Pr (~10μC cm−2), and much improved efficiency
(η ~ 75%). To understand the huge difference of polarization response
between BMT and C-n films, we also characterized the local domain
structures by piezo-response force microscopy (PFM) in two repre-
sentative films of BMT and C-3 sample, as shown in Supplementary
Figs. 10 and 11. Compared to the pure BMT, greatly reduced domain
size and amplitude can be clearly identified in high-entropy C-3 film,
which can be an important reason for the slim P-E loops. Therefore,
high-entropy design facilitates the advantages of improved insulation,
reduced leakage current and improved breakdown strength, etc.

Energy storage properties and cycling stability
In order to better evaluate the energy storage properties of C-n films,
we plot the polarization information of each composition at their
respective Eb, as shown in the bar chart of Fig. 4a. Pure BMT film has
high Pm (88 µC cm−2) and also high Pr (40 µC cm−2), and the Pm-Pr value
is much lower than high-entropy films. This is because high-entropy
designbrings an increase inPmat higher Eb but suppressedPr, resulting
in larger Pm-Pr value. For example, the Pm of C-3 film reaches
119 µC cm−2 and Pr is only 23 µC cm−2, and the Pm-Pr values of BMT and
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Fig. 4 | Energy storage performance and cycling stability. a Pm, Pr and Pm-Pr for
each composition under their breakdown strength Eb. b Energy density and effi-
ciency at the electric fields up to Eb. c Comparisons of energy densities and

breakdown strengths between the original experimental compositions, the gen-
eratedfive experimental compositions, andBMT.dCharging-discharging reliability
of different films at an electric field of 2000 kVcm−1 and 1000 kV cm−1 for BMT.
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C-n films are 48 and 76, 72, 96, 45, 97 µC cm−2, respectively. In this
work, the substitutions of Sr2+ (1.44nm) for Bi3+ (1.36 nm) sites and Zr4+

(0.72 nm) and Mn2+ (0.67 nm) for Ti4+ (0.605 nm) and Mg2+ (0.72 nm)
sites may distort the local lattices and thus forms local polarized
nanoregions, which is beneficial to reduce the domain motion poten-
tial barrier, and significantly enhance the polarized region’s mobility
with increased Pm and decreased Pr49. Consistent with our phase-field
simulations, the high-entropy doping strategy plays a role in syner-
gistically regulating Eb, Pm, and Pr, which is conducive to improving the
energy storage performance of dielectrics for broader applications50,51.
Based on their P-E loops (Supplementary Fig. 12), we calculate the
energy density Ue and efficiency η as shown in Fig. 4b. For pure BMT
film, the maximal Ue is only 18 J cm−3. While for C-n films with high-
entropy design, all maximal Ue have been improved and the highest
maximal Ue reaches 156 J cm−3 at 5104 kV cm−1 for C-3 film, which is
more than eight times higher than that of BMT. The highUe valuesmay
be attributed to the low loss (small Pr) andhigh entropy-induced lattice
distortion, grain refinement, and amorphous phases12,31,51. Meanwhile,
we compare the Ue and Eb of original experimental samples used for
machine learning with BMT and C-n films (n = 1, 2, 3, 4, 5), as shown in
Fig. 4c. It can been seen that the Eb of those high-entropy films by
directed experiments have been greatly improved up to above
4000 kV cm−1, leading to higher maximal Ue, as more pentagrams
located in top right corner of Fig. 4c. Thus, it not only shows that the
high-entropy strategy hasgreat potential for improving energy storage
performance, but also validates the feasibility of our approach of
generative learning to efficiently find ideal high-entropy compositions
with high energy densities.

Considering the practical applications, we tested the charging-
discharging cycling reliability of the films under an electric field of
2000 kV cm−1, as shown in Fig. 4d. The cycling reliability of pure BMT
film is stable at 1000 kV cm−1 but cannot withstand 2000 kV cm−1. The
energy storage performance of C-n films remained stable after 1 × 105

cycles and generally maintained good stability without obvious dete-
rioration. For example, the C-3 film exhibits nice fatigue durability of at
least 1 × 105 cycles with Ue ~ 33.36 J cm−3 and η ~ 77% at 2000 kV cm−1.
We also evaluated performance stability over a wide temperature
range of 20 to 150 °C, as shown in Supplementary Fig. 14a. Pure BMT
film has poor stability with Ue changing from 4.53 to 3.8 J cm−3 and η
changing from 50% to 40% under an electric field of 1000 kV cm−1, and
is rapidly punctured after warming up under an electric field of
2000 kV cm−1. The C-n films behave more stable under an electric field
of 2000 kVcm−1 and the Ue of C-3 film changes from 33.36 to
29.36 J cm−3 and η from 77% to 70%. Therefore, high-entropy films have
better temperature stability compared to the BMT film. In addition, we
also evaluated their frequency stability, as shown in Supplementary
Fig. 14b. It can be seen that at an electric field of 2000 kV cm−1, all C-n
films are stable andC-3filmkeepsunchangedUe of ~4.53 J cm

−3 andηof
~77%. As a result, all C-n films prepared in this work are characterized
by low loss, high resistivity, and high breakdown strength, as well as
excellent cycling reliability and temperature and frequency stability.

Discussion
In summary, we achieve a theory-to-experiment methodological path
for the rational design of high-entropy BMT-based dielectrics with high
energy density. First, by performing phase-field simulations, we have
predicted that the macroscopic energy storage performance could be
adjusted by local dipole configuration in high-entropy dielectrics. To
accelerate the discovery of ideal high-entropy combinations, a com-
prehensive machine learning framework has been developed with the
generative learning and regression model to guide the directed
experimental preparation of HEDs. Using limited experimental results,
we use generative learning to search potential combinations through a
large number of exploration space and then screen out five most pro-
mising high-entropy compositions by the ranking strategy. Finally, by

conducting only 5 sets of directed experiments, we obtain a new high-
entropy system of Bi0.87La0.08Sr0.05Ti0.41Mg0.39Mn0.15Zr0.05O3 with a
more than eight times higher Ue (~156 J cm−3) than pure BMT film. With
both excellent fatigue properties and temperature and frequency sta-
bilities, those high-entropy films also show great potential for wide use
in energy storage capacitors. Based on the machine learning-driven
patterns, we efficiently find the desired high-entropy composites with
high energy storage performance using very sparse experimental data.
This method also provides us with a significant reduction in overall
experimental cycle time andopens up anewavenue for designing those
material systems with complex components.

Methods
Phase-field simulation
The spontaneous polarization P is selected to describe the temporal
evolution of the polarization field and the domain structure to solve
the three-dimensional time-dependent Ginzburg-Landau(TDGL)
equation in the phase-field simulation:

∂Piðr,tÞ
∂t

= � L
δF

δPiðr,tÞ
+ ξ iðr,tÞ,ði= 1,2,3Þ ð1Þ

where L is the kinetic coefficient related with the domain wall migra-
tion rate, F is the total energy, r is the spatial position, t is time, Pi(r, t) is
the polarization intensity at a certain space position and a certain time,
ξ iðr,tÞ is the impact of thermal noise, which conforms to a random
Gaussian distribution.

The total energy F includes the Landau bulk free energy, gradient
energy, elastic energy, and electrostatic energy, as follows:

F =
Z

V
½ f bulk + f grad + f elas + f elec�dV ð2Þ

where V is the volume of the system, fbulk, fgrad, felas, felec represents the
Landau bulk free-energy, gradient energy, elastic energy, and elec-
trostatic energy, respectively.

In terms of polarization, the bulk free energy for a stress-free
ferroelectric can be formulated as a six-order expansion, as follows:

f bulk =a1ðP2
1 +P
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wherea1, a11, a12, a111, a112, a123 are all Landau energy coefficients,which
associated with the thermodynamic behaviors of bulk phases.

Owing to the contribution of domain walls, the gradient energy
fgrad is expressed as follows:

f grad =
1
2
G11ðP2

1,1 +P
2
2,2 +P

2
3,3Þ+G12ðP1,1P2,2 + P2,2P3,3 + P1,1P3,3Þ

+
1
2
G44½ðP1,2 + P2,1Þ2 + ðP2,3 +P3,2Þ2 + ðP1,3 +P3,1Þ2�

+
1
2
G’44½ðP1,2 � P2,1Þ2 + ðP2,3 � P3,2Þ2 + ðP1,3 � P3,1Þ2�

ð4Þ

where Gij is gradient energy coefficient, Pi, j is
∂Pi
∂rj
.

The elastic energy felas has the following expression:

f elas =
1
2
cijkleijekl =

1
2
cijklðεij � ε0ij Þðεkl � ε0klÞ ð5Þ

where cijk is the elastic stiffness tensor, eij is the elastic strain, εij is the
total strain and ε0ij is electrostrictive stress-free strain. In high-entropy
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ceramics, a local stochastic strain field is introduced to consider the
doping effects of various chemical elements:

ε0ij =QijklPkPl + cx ð6Þ

where x represents the local strain coefficient. The concentration c of
doping which follows the Gaussian distribution in different entropy
ceramics is listed in Supplementary Information.

For a given domain structure, the electrostatic energy felec consist
of applied external electric field and electric field which is formulated
as follows:

felec = � PiE
ex
i � 1

2
Ein
i Pi ð7Þ

where Eex
i is the applied external electric field, Ein

i is the electric field
induced by the dipolemoment in the sample. The detailed parameters
for each material are listed in supplementary Information.

Machine learning
The encoder-decoder architecture was designed to represent the
composition of the dielectric materials in an unsupervised manner.
Themain ideawas to optimize a loss function(L), which is theweighted
sum of maximum mean discrepancy between the z and prior dis-
tribution and binary cross-entropy of input-output pair.

L= kEX ∼P½φðX Þ� � EY ∼Q½φðY Þ�kH �
Xn
i = 1

P½φðX Þ� logQ½φðY Þ� ð8Þ

where P andQ are two distributions of different dataset. TheMMD is
defined by a feature map φ: S→H, H is defined as the reproducing
kernel Hilbert space. Such loss function is able to accurately repre-
sent the difference between the latent distribution and the
prior distribution. We trained one encoder-decoder for A and B
sites respectively, with the number of neurons per layer of the
encoder being 80, 64, 48, and 2, while the decoder using exactly the
opposite structure. Each layer is nonlinearly transformed using
the layernorm and ReLU activation functions, with a batch size of 10,
a learning rate of 1 × 10−3, and an epoch of 300. The latent space of A
and B sites are dimensionally reduced using PCA and visualized
in Fig. 2b.

The GMM assumes the data is composed of multiple Gaussian
distributions, whichwas used tomodel and estimate the distribution
density of z. The optimal number of Gaussian clusters is usually
determined by the empirical elbow method. ANN classifier was
trained with two layers of simple neural network to identify raw
samples with a high energy density. In order to make the classifier
more precious, k-fold cross-validation was used. Then, we utilized
Metropolis-Hasting MCMC in the latent space z based on Markov
chain, aiming to generate numerous data according to accept-reject
sampling.

ANN, inspired by neural networks, excels at learning complex
patterns, while LightGBM is a tree-based gradient boosting framework,
efficient for handling high-dimensional features. This work integrates
both to enhance predictive accuracy and robustness in regression
tasks, among which the main hyperparameters were optimized by
random searches followed by 10 rounds of Bayesian Optimization
(BO). To eliminate the dimensional impact and enhance the stability of
the regression model, all atomic properties were normalized. More-
over, predicted values and uncertainty were calculated by top fifty
models fromBO to reduce the incidental errors.We thenmeasured the
value of λ through a ranking strategy, as shown in Eq. 9, where α
denotes predicted value, β denotes uncertainty. The program was
written using Pytorch and Sklearn. BO is used in the bayes_opt library

in python.

λ=α*rankðUPredict Þ+β*rankðUUncertaintyÞ ð9Þ

Sample preparation
The high-entropy dielectric films of C-n (n = 1,2,3,4,5) were fabricated
by chemical solution deposition method. Bismuth nitrate pentahy-
drate (Aladdin, 99%; with 10% excess to compensate the volatilization
of Bi during heat treatment), lanthanum acetate sesquihydrate (Alad-
din, 99.99%), strontium acetate (Aladdin, 99%), titanium butoxide
(Aladdin, 99%), magnesium acetate tetrahydrate (Aladdin, 99%),
manganese acetate tetrahydrate (Aladdin, 99%), zirconium propoxide
solution (Aladdin, 70%) were dissolved in an acetate (Aladdin, 99.5%)
solvent and a 2-Methoxyethanol solvent. Ammonia and acetylacetone
were used as stabilizers and the concentration of the precursor solu-
tion was adjusted to 0.2M by the addition of 2-Methoxyethanol, fol-
lowed by continuous stirring for six hours at room temperature for
complete dissolution. The solution was filtered by syringe filter with a
pore size of 0.2μm to obtain clear and transparent precursor solu-
tions. The clarified and stabilized precursor solution was spin-coated
on a Pt substrate. The rotational speed was 4500 rad/min for 30 s. The
obtained films were pyrolyzed at 200 °C, 300 °C, and 450 °C for five
minutes to remove the residual organic matter. Finally, a rapid heat
treatment was carried out at 640 °C for two minutes to obtain a film
with a thickness of about 160 nm and a uniform and dense surface
(Supplementary Fig. 6).

Characterizations
An X-ray diffractometer (Smartlab, Rigaku) with Cu Kα radiation was
used to characterize the crystal structure of these prepared films. A field
emission scanning electron microscope (FE-SEM; JSM 7610F Plus) was
used to characterize the film thickness and surface microstructure.
Characterization of crystal interiors used HR-TEM (Thermo Fisher Talos
F200X). A commercial scanning probe microscope (MFP-3D, Asylum
Research) was applied for PFMmeasurements. The dielectric properties
of thin films were measured by the impendence analyzer (Agilent 4294,
USA).Dielectric constant and loss tangent aremeasured in the frequency
range from 1kHz to 1MHz. The ferroelectric properties were collected
using a ferroelectric workstation (Precision Premier II, Radiant Tech-
nologies Inc., USA) at 1 kHz and room temperature.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used are available within this paper and Supplementary
Information. Further information can be acquired from the corre-
sponding authors upon reasonable request.

Code availability
All codes in this work are available from the corresponding author
upon reasonable request.
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