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MetaboAnalystR 4.0: a unified LC-MS
workflow for global metabolomics

Zhiqiang Pang1, Lei Xu1, Charles Viau1, Yao Lu2, Reza Salavati1, Niladri Basu1 &
Jianguo Xia 1,2

The wide applications of liquid chromatography - mass spectrometry (LC-MS)
in untargeted metabolomics demand an easy-to-use, comprehensive compu-
tational workflow to support efficient and reproducible data analysis. How-
ever, current tools were primarily developed to perform specific tasks in LC-
MS basedmetabolomics data analysis. Here we introduceMetaboAnalystR 4.0
as a streamlined pipeline covering raw spectra processing, compound identi-
fication, statistical analysis, and functional interpretation. The key features of
MetaboAnalystR 4.0 includes an auto-optimized feature detection and quan-
tification algorithm for LC-MS1 spectra processing, efficient MS2 spectra
deconvolution and compound identification for data-dependent or data-
independent acquisition, andmore accurate functional interpretation through
integrated spectral annotation. Comprehensive validation studies using LC-
MS1 and MS2 spectra obtained from standards mixtures, dilution series and
clinical metabolomics samples have shown its excellent performance across a
wide rangeof common tasks such as peakpicking, spectral deconvolution, and
compound identification with good computing efficiency. Together with its
existing statistical analysis utilities, MetaboAnalystR 4.0 represents a sig-
nificant step toward a unified, end-to-end workflow for LC-MS based global
metabolomics in the open-source R environment.

Metabolomics involves the comprehensive identification and quanti-
fication of small compounds in biological samples using various ana-
lytical techniques1. Liquid chromatography - mass spectrometry (LC-
MS) has been the primary analytical platform for global or untargeted
metabolomics and exposomics2,3. Following spectra acquisition,
common bioinformatics tasks include spectra processing, compound
identification, statistical analysis, and functional interpretation of key
patterns and significant signatures4. Over the past decades, powerful
computational tools have been developed for individual tasks such as
XCMS, MS-DIAL, MZmine, and asari for raw spectral processing5–9;
GNPS, SIRIUS, and MS-FINDER for compound identification10–12;
MetaboAnalyst and various R packages for statistical analysis13,14; KEGG
and mummichog for functional interpretation15–17. Coordinating these
different tools to enable streamlined data analysis and comprehensive

understanding represents a major barrier to current LC-MS-based
metabolomics and exposomics studies.

To enable a unifiedmetabolomicsworkflow, several critical issues
need to be addressed in spectra processing and interpretation. To
facilitate both quantitative analysis and compound identification, LC-
MS untargeted metabolomics are typically conducted with MS1 full
scans coupled with tandem MS (MS2) using data-dependent acquisi-
tion (DDA) or data-independent acquisition (DIA) methods18,19.
Although DDA usually acquires MS2 spectra by fragmenting precursor
ions within a relatively narrow window, recent studies show that over
half of them are chimeric and need to be deconvolved18. In contrast,
DIA fragments all ions in a wider m/z range with multiple cycles to
improve the metabolome coverage, and spectra deconvolution is
essential to relink precursors with fragment ions. Sequential window
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acquisition of all theoretical fragment ionmass spectra (SWATH-MS) is
a specific variant of DIA to help overcome DDA drawbacks by lever-
aging all ions20. Despite multiple tools and algorithms12,18,21–24, inte-
grated LC-MS1 and MS2 spectra processing remains a primary
bottleneck in terms of computational efficiency as well as the
requirement of deep knowledge for parameter settings associated
with using these tools. Most of them can only process either DDA or
DIA data. There is a need for a highly efficient tool capable of sup-
porting bothmethods. Secondly, MS2-based compound identification
relies heavily on the availability of reference spectra databases. The
lack of a comprehensive yet easily customizable reference spectra
database remains an essential gap in current global metabolomics.
Thirdly, compound identifications typically involve matching m/z
values and retention times of MS1 features, as well as their associated
MS2 patterns against reference databases. This process often yields
multiple candidates and requires further time-consuming manual
curation before functional interpretation can be performed. Tradi-
tional functional enrichment analysis relies on accurate compound
identification. Recent studies have shown that, despite uncertainties at
individual compound levels, functional activities can be reliably pre-
dicted by leveraging the patterns of the putative identifications based
onm/z values and retention times ofMS1 features15,16. Theperformance
could be further improved by utilizing MS2 spectral data. To meet
these emerging demands from the growing applications of metabo-
lomics across broad areas, we have developed MetaboAnalystR ver-
sion 4.0 to integrate LC-MS1 and MS2 spectra processing, compound
identification, statistical analysis, as well as functional interpretation
within a unified software environment.

MetaboAnalystR 1.0 was released in 2018 as the underlying R
package of the popular MetaboAnalyst web server to facilitate trans-
parent, reproducible statistical data analysis. The subsequent releases
(version 2.0 in 2019 and version 3.0 in 2020) added important capa-
cities for LC-MS1 spectra processing and functional interpretation,
respectively. The R package allows easy creation of flexible data pro-
cessing pipelines that complement the pre-defined workflows by the
MetaboAnalyst web server. It is well received by the metabo-
lomics community as evidenced by >1000 citations25–27.

Here, we introduce MetaboAnalystR 4.0 developed as a unified
computational workflow for LC-MS-based global metabolomics. In
addition to enhancing and consolidating the LC-MS1 spectral proces-
sing and associated statistics and functional analysis modules, Meta-
boAnalystR 4.0 contains several key features including (1) an auto-
optimized DDA data deconvolution workflow to deal with chimeric
spectra; (2) an efficient SWATH-DIA data deconvolution pipeline;

(3) a comprehensive collection of reference spectra databases (>1.5
million spectra) coupled with common search algorithms supporting
custom plug-in databases, and (4) more accurate functional activity
prediction by integrating LC-MS1 and MS2 results. To better under-
stand the performance characteristics of both individual components
as well as the complete workflow, we performed comprehensive vali-
dation studies using seven different datasets ranging from standards
mixtures, dilution series, exposomics data to clinical samples.

Results
General workflow
MetaboAnalystR 4.0 features end-to-end support for metabolomics
data analysis, spanning from raw LC-MS spectra processing to statis-
tical and functional analysis. In addition to generic data tables, com-
pound or LC-MS peak lists, MetaboAnalystR accepts raw spectra in
open formats (mzML, mzXML, mzData, netCDF andMGF) from LC-MS
metabolomics experiments, as well as output files from other well-
established spectra processing tools, including MS-DIAL, MZmine,
XCMS, asari, MS-FINDER, and SIRIUS. The pre-processed spectral
peaks and identified compounds will be automatically formatted and
enter a unified pipeline for downstream processing, statistics, and
functional analysis as shown in Fig. 1.

LC-MS spectra processing
MetaboAnalystR features an auto-optimized LC-MS1 spectra proces-
sing pipeline since version 3.0. The workflow involves extracting
regions of interest followed by parameter optimization based on the
design of experiments27. The optimized parameters are subsequently
used for peak detection, quantification, alignment, and annotation.
This approach achieves good performance with high computing effi-
ciency. In version 4.0, the LC-MS spectra pre-processing workflow has
been significantly expanded to support integrated analysis of MS1 and
MS2 spectra data (DDA or SWATH-DIA).

For DDAdata,MetaboAnalystR first assigns all MS2 spectra from a
single sample into different feature groups based on the mass-to-
charge ratio (m/z) and retention time of their precursor ions. The
chimeric status is evaluated based on the nearest MS scans. Briefly,
MS2 spectra of all ions (including the main precursor and other con-
taminating ions within the isolation window and above the intensity
threshold) are extracted from MS2 spectral reference libraries as
candidate spectra (“Methods” section, Fig. 2a). If any reference spec-
trum is missing, a predicted spectrum will be generated using a
similarity-networkmodel28 (“Methods” section, Fig. 2b). All candidates
are then used to obtain the deconvolved spectrum based on a

Fig. 1 | LC-MS untargeted metabolomics workflow based on MetaboAna-
lystR 4.0.Mass spectra are processed separately for MS1 and MS2 levels based on
its auto-optimized workflows. MetaboAnalystR 4.0 also accepts pre-processed

results from other spectra processing tools. The resulting metabolite feature table
will be filtered and/or normalized for statistical and functional analysis.
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self-tuned regression algorithm (“Methods” section). The SWATH-DIA
data processing is based on the DecoMetDIA approach23, with the core
algorithm re-implemented using the Rcpp/C++ framework and further
optimized to support parallel computing to address the computa-
tional bottleneck associated with the original implementation.

Following the deconvolution step, all MS2 spectra from replicates
(if any) for a specificMS feature undergo a consensus step to generate
a single spectrum tominimize potential errors and noise. This process
may optionally utilize the observed frequency of a specific fragment.
For instance, if a fragment is detected only once in replicates and is not
seen in any reference MS2 spectra, it may be optionally excluded
(“Methods” section, Supplementary Fig. 1).

The consensus spectra are searched against a reference spectra
database for compound identification (“Methods” section). Users can
choose different databases based on instrument types, collision
energies, and other common options. Two widely usedmethods – dot
product and spectral entropy have been implemented to evaluateMS2
matching similarity29. The candidates for a particular feature are
scored by consideringm/z, retention time, isotope, andMS2 similarity
score together5. Thematching scores range between 0 and 100, where
0 indicates nomatching and 100 indicates a perfectmatch (“Methods”
section). The top N candidates, defined by users, can be exported as
the database search results. If the matching score is below 10, Meta-
boAnalystR optionally performs a neutral loss scan to further improve
the compound identification rate30.

Tobe interoperablewithotherwidelyused tools,MetaboAnalystR
accepts LC-MS1 feature detection results from MS-DIAL, MZmine,
asari, andXCMS5–9. The results can be automatically formatted into the
generic format for processing by MetaboAnalystR. Additionally,
MetaboAnalystR accepts the pre-processed LC-MS2 results in MSP or
MGF files generated byMS-DIAL andMZmine. Users could input these
files directly for MS2 database search and export the results for
downstream analysis. MetaboAnalystR also offers functionalities to
convert the compound identification results from MS-FINDER and
SIRIUS for functional analysis10–12.

Comprehensive MS2 spectra database
MetaboAnalystR 4.0 comes with a comprehensive reference spectra
database organized under five different themes or libraries, includ-
ing pathway compound library, biology compound library, lipid
library, exposome library, and the complete library. A summary of
these five libraries is presented in Table 1. These databases have been
curated from public repositories, including HMDB31, MoNA Series32,
LipidBlast33, MassBank32, GNPS22, LipidBank34, MINEs35, LipidMAPs36,
and KEGG17 (“Methods” section). All fragments in the MS2 spectra
reference libraries have been further annotated into formulas using
BUDDY37. In addition, the corresponding neutral loss spectra data-
bases have also been pre-calculated, corresponding to the five
databases above. The underlying spectra, which include original
MS2 spectra, neutral loss, and annotated fragments, are stored as

Fig. 2 | DDA spectra deconvolution in MetaboAnalystR 4.0. a The overall
workflow. All spectra are evaluated as “clean” or “chimeric” based on theMS signals
of the nearest MS1 scan. The reference spectra of all ions (A, B, and C) within the
isolation window and above the intensity threshold are extracted from a reference
MS2 library for regression analysis. b Diagram of reference spectrum prediction
strategy. MetaboAnalystR can predict one or more candidates missing in the MS2
library. Formula(s) of the ion (e.g., ion C) is predicted at first. An abiotic/bio-
transformation network is constructed for the formula (e.g., C2H7NO3S), and all

neighbors with reference spectra of the formula are extracted as a list. Each frag-
ment of the single spectrum in the list is predicted in a formula. If the formula
(e.g., C3H9) of the fragment includes more chemical elements (number or type)
than the original formula (e.g., C2H7NO3S), it is excluded from the spectrum. The
clean spectrum is returned to the list. Their similarities to the original
MS2 spectrum of all spectra in the list are evaluated, and the one with the highest
similarity score is selected as the predicted spectrum for the ion.
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SQLite files available for download. The simple schema of the SQLite
database allows users to easily prepare their own in-house custom
databases for compound searching.

Integrating LC-MS data processing results for accurate
functional insights
Obtaining functional insights is among the main interests in metabo-
lomics studies. Conventional approaches generally require manual
annotation of a significant portion of spectral features, which is a very
time-consuming process. The mummichog algorithm15 has demon-
strated that putatively annotated compounds fromhigh-resolutionMS
peaks are able to collectively point to the correct pathways. A pivotal
step in this process is provisionally mapping m/z information to
empirical compounds. The initial algorithm (version 1.0) uses m/z
values of MS peaks. The subsequent release (version 2.0) incorporates
peak retention times. MetaboAnalystR 4.0 further utilizes MS2 infor-
mation to filter out impractical assignments to improve accuracy and
specificity. After MS1 and MS2 spectral processing, MetaboAnalystR
can automatically perform statistical analysis from the peak intensity
table and format the database searching results for functional
enrichment analysis (“Methods” section). The default database for
functional analysis is based on the known pathways curated from
KEGG and BioCyc38. Users can also choose other functional libraries
based on disease signatures, chemical ontologies, SNP-associated
metabolites, etc39.

Benchmarking and case studies
Using a total of seven datasets, including onewhole blood exposomics
dataset, one serial dilution dataset, three standards mixtures
datasets18,40,41, and two clinical plasma metabolomics datasets42,43, we
evaluated the performance of MetaboAnalystR 4.0 for LC-MS1 spectra
processing and quantification,MS2 spectra processing and compound
identification, statistical analysis, and functional interpretation. When
possible, we also compared with those obtained using other com-
monly used tools, and the results were provided as supplementary
materials.

Performance of LC-MS1 spectral processing and quantification.
Understanding the chemical compositions of different types of blood
samples is important, especially for diseases whose pathogenesis is
closely related to blood cellular components44,45. To evaluate the per-
formance of LC-MS1 spectral processing workflow, we have generated
a whole blood exposomics dataset to compare the differences in
plasma, serum, and whole blood from 14 individuals using LC-MS-
based global metabolomics. To ensure comprehensive metabolome
coverage, LC-MS1 spectra were collected using two column types
under positive and negative ion modes (C18-ESI+, C18-ESI−, HILIC-ESI+,
and HILIC-ESI−) for each sample. MS2 has been acquired in both DDA
and SWATH-DIA methods. The general design of this study is shown
in Fig. 3a.

All MS features were detected with the auto-optimized LC-MS1
workflow in MetaboAnalystR. Over 12,000 MS1 features have been
detected for each individual mode (Fig. 3b). Statistical analysis was

performed on the feature abundance tables. Principal component
analysis (PCA) shows significant differences in the metabolomes of
the three different types of blood samples (Fig. 3c). A clustering
heatmap was used to view abundance distributions of all MS1 fea-
tures (Fig. 3d). Generally, whole blood contains more metabolite
features compared to serum and plasma. Serum does not metabo-
lically equate to plasma as shown by the presence of unique features
in both data types. In this study, we focused on elucidating the dis-
tinct features among different types of blood samples. Over 2000
unique metabolic features have been found in this dataset (Fig. 3b).
Similar results have also been observed from the other three data-
sets (Supplementary Figs. 2–6).

To further evaluate the quantification performance of Meta-
boAnalystR, a dilution series (n = 13) was prepared by mixing serum
and urine samples with varying ratios in a cross-gradient manner7

(Fig. 3e, “Methods” section). The cross-gradient dilution is designed
to minimize the potential bias caused by matrix effects in equal
dilutions46. We conducted a Pearson correlation analysis between
the dilution ratios and the MS1 feature intensities obtained using
MetaboAnalystR. As illustrated in Fig. 3f, over 90% of MS1 features
detected by MetaboAnalystR exhibited high average correlation
coefficients (>0.85), indicating its excellent quantification perfor-
mance. Compared to other tools under their default settings,
MetaboAnalystR exhibits the overall best quantification results
(Supplementary Figs. 7–9).

Performance of LC-MS2 spectral processing. Three standards mix-
tures (SM) datasets with different levels of complexities were down-
loaded from Mass Spectrometry Metabolite Library of Standards
(MSMLS, IROATechnologies). The 1st SMdataset contains amixtureof
526 standards (complex mixture), including one DDA injection and
one SWATH-DIA injection (single replicate for both ESI+ and ESI−). The
2nd SM includes 15 DDA samples, each containing 10–15 non-isobaric
compounds (simple mixture, single replicate for both ESI+ and ESI−).
The 3rd SM dataset contains 91 compounds (medium complexity) and
was analyzed by both DDA and SWATH-DIA (three replicates each for
both ESI+ and ESI−)40. The chemical identity information for each
compound (retention time,m/z, and InChIKey) in each SMdataset was
utilized as the corresponding reference compound lists to assess the
accuracy of compound identification.

The 1st SM dataset was used to evaluate the performance of
DDA deconvolution. The results indicate that performing deconvo-
lution on DDA spectra has increased the number of compounds that
were correctly identified as the top candidates (Table 2, Supple-
mentary Tables 1–3, Supplementary Fig. 10), and the matching
scores of the identified compounds reported by the deconvolution
pipeline were significantly improved compared to those obtained
from the pipeline without deconvolution (Fig. 4a). Compared to
other tools under their default settings, MetaboAnalystR detected
the highest number of compounds with high computational effi-
ciency (Table 2). Similar results were also observed from the 2nd
SM dataset, with MetaboAnalystR showing a higher compound
identification rate than other tools under their default settings
(Fig. 4b, Supplementary Fig. 11). While manual parameter optimiza-
tion by expert users may improve the performance of other tools,
the MS2 spectra processing in MetaboAnalystR is auto-optimized
(“Methods” section) to avoid such requirements.

Using the 3rd SM dataset, we first tested the number of com-
pounds that could be identified correctly. For DDA dataset, Meta-
boAnalystR correctly identified most compounds by using either
Complete library or Pathway library (Fig. 4c). To evaluate the false
discovery rate, we generated a series of decoy spectra by randomly
increasing m/z error and replacing the original MS2 spectra with
synthetic spectra from isobaric compounds (“Methods” section, Sup-
plementary Fig. 12). The results showed that MetaboAnalystR was

Table 1 | Summary of MS2 reference spectra libraries curated
from different public resources

Name Records Unique compounds Size (MS2 |
neutral loss)

Complete library 10,420,215 1,551,012 7.2 | 6.4GB

Pathway library 172,370 3456 138.2 | 94.1MB

Biology library 864,386 49,055 744.0 | 491.0MB

Exposome library 1,883,828 106,387 1.5 | 1.1 GB

Lipid library 3,221,409 878,220 1.9 | 1.1 GB
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Fig. 3 | Evaluationof LC-MS1 data processing and quantification. aDesign of the
metabolomics experiment. b Statistics of LC-MS1 features across different modes.
Generic features, MS features detected across all blood samples; Unique features,
features detected only in one type of blood samples. c PCA score plot of the blood
dataset (C18, ESI+). d Heatmap of the complete metabolic profiles (MS1 level, C18,
ESI+). Unique MS1 features for a specific blood sample type were highlighted with
rectangles. Blue, unique features for serum compared to plasma; Green, unique

features for plasma compared to serum. Ruby, unique features for whole blood
compared to plasma and serum. e Design of serial dilutions. Urine and serum are
mixed according to the ratio labeled at the x-axis. f Correlation analysis of MS
features from serial dilutions. MetaboAnalystR reported high average correlation
coefficients (>0.85) across different modes, compared to other tools (Supple-
mentary Fig. 7).
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able to maintain a low false positive rate (<25%, Supplementary
Figs. 13 and 14).

Finally, we evaluated the compound identification performance
on complex biological samples using the blood exposomics dataset.
Herein, we focused on the unique features of different types of blood
samples. These features were used as target lists for MS2-based
compound identification. As depicted in Fig. 4d, MetaboAnalystR
identified over 500 compounds (level 2a) through DDA, which was
~5% more compared to compound identification based on non-
deconvoluted DDA spectra (Supplementary Fig. 15). For instance,
2-Piperidinone (Fig. 4e) was only identified after deconvolution, with
amatching score of 92. Over 1000 compounds were identified based
on SWATH-DIA. The chemical composition analysis showed that
whole blood samples contained more lipids, organic acids, and
organic heterocyclic components in contrast to serum and plasma.
The main chemical differences between serum and plasma are lipids
(Supplementary Fig. 16).

Evaluating the complete workflow using clinical
metabolomics data. We used two clinical metabolomics datasets
collected from two recent COVID-19 studies42,43 to validate the com-
plete workflow of MetaboAnalystR including raw LC-MS1 and
MS2 spectra processing, compound identification, statistical analysis,
and biological interpretation. The 1st dataset includes 160 samples for
both polar metabolites and non-polar lipids datasets (ESI+ and ESI−,
DDA, “Methods” section) categorized into five groups (Asymptomatic,
Mild, Severe, Critical, and Fatal)42. The 2nddataset includes 30 samples
(ESI+ and ESI−, SWATH-DIA, “Methods” section) categorized into dis-
ease and healthy control43.

As shown in Fig. 5a, MetaboAnalystR detected over 5000 MS1
features for all datasets. Compound identification result indicates that
MetaboAnalystR could identify around 10%~24% of compounds (level
2a, Fig. 5b), which is higher thanother tools under their default settings
(Supplementary Figs. 17–19). Note the comparison with other work-
flows or tools could only be performed till this step.

We applied the enhanced mummichog algorithm using the
results obtained above for function analysis. We chose to compare
biological differences between the Mild and Fatal groups for the 1st
dataset, and between the disease and healthy controls groups for the
2nd dataset. There are two sub-datasets (polar and non-polar lipids)
in the 1st dataset and one dataset in the 2nd dataset. Therefore, a
total of three comparisons were performed. In general, more path-
ways were reported whenMS2 data were used (Fig. 5c, d). Compared
to the result based only on MS1 features, four more significant
pathways were reported when considering the SWATH-DIA data
(Fig. 5e). These pathways are related to phosphatidylinositol phos-
phate, vitamin D, vitamin C metabolism, and arachidonic cascades
(Supplementary Tables 4–6). Theywere reported to be related to the
pathogenesis of the disease by the previous studies47–50.

All predicted active pathways (including those based on other tools)
are summarized in Supplementary Figs. 20–24.

Assessment of computational performance. The two clinical meta-
bolomics datasets were used to benchmark the computational per-
formance of all tools included in this study. The assessments were
conducted using a workstation (Dell OptiPlex 7070, 64GB RAM,
Intel-i7-9700 CPU, Ubuntu 20.04.2) controlled by Simple Linux Uti-
lity for Resource Management (SLURM51, “Methods” section). Meta-
boAnalystR completed raw LC-MS1 spectral processing within 5 h
and MS2 spectral processing within 16 h for each of the three data-
sets, with memory usage below 25GB. Compared to other tools
under their default settings, MetaboAnalystR achieved MS feature
detection at a speed similar to MZmine and MS-DIAL (Supplemen-
tary Table 7 and Supplementary Figs. 25–26). The memory con-
sumption of MetaboAnalystR is comparable to that of MS-DIAL but
lower than that of other tools. According to the execution logs,
MS2 spectra searching in SIRIUS is based on application program-
ming interface (API) calls to remote web services, which is highly
dependent on the network traffic and responsiveness of the remote
server. MS-FINDER also partially uses remote access to predict for-
mulas. In comparison, MetaboAnalystR allows users to run the
complete workflow locally without depending on network traffic or
remote server load.

Discussion
Despite significant progress made in the past decades, analyzing LC-
MS data from untargeted metabolomics remains challenging.
Researchers have to learn to usemultiple tools andRpackages inorder
to achieve comprehensive data analysis and understanding. In addi-
tion, better support for MS2 spectra processing is required to enable
more accurate, high-throughput compound identifications and func-
tional understanding. We have developedMetaboAnalystR 4.0 to help
orchestrate LC-MS spectra processing, compound identification, sta-
tistical analysis, and biological interpretation within an open-source R
environment. MetaboAnalystR accepts LC-MS1 and MS2 data in com-
mon open formats. Compound identification can be performed effi-
ciently within the same workflow using the comprehensive reference
spectra libraries. The results can be directly fed into the downstream
statistical and functional analysis. Our comprehensive case studies
have indicated that MetaboAnalystR 4.0 performs favorably when
comparedwith otherwidely used tools in termsof spectral processing,
compound identification, quantification, interpretation as well as
computing efficiency.

A key innovation and advantage of using MetaboAnalystR 4.0 for
raw spectral processing lies in its auto-optimized design for common
LC-MS1 and MS2 spectra processing. Another important contribution
is the manual curation and annotation of comprehensive MS2 spectra
libraries coupled with efficient search algorithms for compound
identification. Users can visually explore the MS2 spectra searching
results through interactive mirror plots. As an open-source R package,
MetaboAnalystR is designed to be extensible and interoperable with
other tools and workflows. It not only accepts common data formats
(such as csv and txt) but also supports standard formats (such as
mzTab). MetaboAnalystR can also directly incorporate raw spectral
processing results (such as MSP and MGF files) generated from other
well-established tools into its workflow for downstream analysis.
Finally, MetaboAnalystR 4.0 is the backend of the MetaboAnalyst 6.0
web application52, which has been developed to support users who are
not comfortable with the R command-line interface.

An important limitation of the current implementation of Meta-
boAnalystR 4.0 is that the built-in database of MS2 reference spectra
were compiled fromvarious instruments and experimental conditions,
resulting in potentially varying qualities in compound identification. In

Table 2 | Summary of identified compounds from a standards
mixture of 406 compounds by different tools

Tools aDetected (MS1) bAnnotated (MS2) Percentage (%)

MetaboAnalystR (deco) 239 159 39.2

MetaboAnalystR
(non-deco)

239 146 36.0

MS-DIAL/MS-FINDER 165 82 20.2

MZmine/SIRIUS 221 77 19.0

The result is based on MS2 (DDA, ESI+). The results from the other three modes are available in
Supplementary Tables 1–3.
aDetected: number of MS1 peaks matched them/z and retention time of the standards.
bAnnotated: number of compounds correctly identified as the top hit from the MS2 spectra
search.
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contrast, MS2 reference spectra from METLIN53 or other commercial
tools originate from in-house experimentally validated databases
under more standardized conditions. We encourage users to convert
their own in-house databases into the compatible SQLite format for
the MS2 search workflow.

We will continue to improve the MetaboAnalystR package and
the MetaboAnalyst web application to make LC-MS global

metabolomics more accessible to the community. For future direc-
tions, we intend to add a new component to support the analysis of
data from stable isotope-labeling experiments54,55. MetaboAnalystR
does not support ion-mobility spectrometry and all-ion fragmenta-
tion (AIF) data56. They have also been increasingly applied in meta-
bolomics studies. The support for these features will be achieved in
the future release.

Precursor: 100.0757 (2-Piperidinone)
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In conclusion, MetaboAnalystR 4.0 has significantly enhanced a
series of important functions and implemented the much-requested
support forMS2 spectra processing and compound identification in an
efficient manner. In combination with its already well-established
functionalities on statistical analysis and functional interpretation,
MetaboAnalystR 4.0 offers a unifiedworkflow to support LC-MS global
metabolomics and exposomics studies.

Methods
This research complies with all relevant ethical regulations. The whole
bloodexposomics studywas approvedby theResearchEthicsOfficeof
McGill University (Study ID: A05-M26-16B).

Chemicals
Standard human serum and ammonium acetate (NH4AC) were pur-
chased from Sigma-Aldrich (Sigma, St. Louis, MO, USA). Acetonitrile
(ACN), methanol (MeOH), 0.1% formic acid (FA) in Water, 0.1% FA in
ACN, and pure water were purchased from Fisher Chemical (Morris
Plains, NJ, U.S.A.).

Blood sample preparation
Healthy volunteers were recruited from McGill University as pre-
viously discussed57. About fivemilliliters of venouswhole blood (WB)
were drawn from each volunteer into a BD K2-EDTA Trace Element
free Vacutainer. A sub-sample of this whole bloodwas used to obtain
plasma (i.e., whole blood centrifuged for 15min at 4 °C at 2700 rpm).
From each individual, another blood sample was collected into a BD
Vacutainer tube not containing any anticoagulant, which was
allowed to sit for ~30–60min for clots to form following which
serum was obtained by centrifugation (15min at 4 °C at 2700 rpm).
Blood samples from 14 individuals were collected and included in
this study. All blood samples were paired with three different types
(whole blood, serum, and plasma). All samples were immediately
frozen at −80 °C until analysis. The demographic information of all
subjects is summarized in Supplementary Table 8. This study was
approved by the Research Ethics Office of McGill University (Study
ID: A05-M26-16B).

The different blood sample types were prepared based on the
previously published protocols58,59. The three blood sample types
(WB, serum, and plasma) were thawed on ice for one hour, and then
vortexed for 30 s to ensure homogeneity. One hundred µl of each
sample type was transferred to a 1.5ml Eppendorf microcentrifuge
tube, to which 400 µl of −20 °C 1:1 ACN:MeOH (v/v) was added.
Samples were vortexed for 60 s and stored at −20 °C for one hour.
Samples were then centrifuged at 16,100 × g for 10min at 4 °C. The
supernatants were collected (250 µl) and filtered by centrifugation
using 0.2 µm Nanosep centrifugal filters (PALL Life Sciences) at
14,000 × g for 15min at 4 °C. Filtered samples (120 µl) were then
transferred to LC-MS vials equipped with 250 µl glass inserts and run
in the LC-MS. A Quality Control (QC) sample was made by pooling
equal volumes fromeach filtered samples supernatant into one 1.5ml
Eppendorf microcentrifuge tube.

Sample preparation for serial dilutions
A urine sample was collected from a donor from the population
mentioned above57. A total of 100mL urine was sub-sampled and
frozen at −80 °C. A human standard serum sample (Sigma-Aldrich,
Sigma, St. Louis, MO, USA) and the urine were thawed on ice for one
hour, and then vortexed for 30 s to ensure homogeneity. A total of 13
Eppendorf microcentrifuge tubes were prepared and labeled from A
toM. For tubes A to E, 150 µl urine was transferred into each of them.
For tubes G to K, 150 µl standard serum was transferred into each of
them. 250 µl pure urine was transferred into tube L, and 250 µl pure
serum was transferred into tube M. Then, 50 µl pure serum were
extracted and mixed into tube E. Then, 50 µl liquids were extracted
andmixed into tube D, and so on until tube A. Same operations were
repeated for pure urine tube L, and tubeG–K. Finally, 75 µl pure urine
and serum were extracted respectively and mixed into tube F. As a
result, a total of 11 dilution mixtures and two pure samples were
generated. The whole preparation workflow is shown in Supple-
mentary Fig. 27. After the preparation of the serial dilutions, all
samples were processed similarly as the blood samples, except that
the ratio of organic reagents to samples is 1:2.5 instead of 1:4. All
processed samples (120 µl) were then transferred to LC-MS vials
equipped with 250 µl glass inserts and run in the LC-MS. No QC
samples were prepared in this case study. Three replicates were
prepared for each of the serial dilutions. This study has been
approved by the Research Ethics Office of McGill University as
described above.

LC-MS and MS2 analysis
Metabolic profiling at theMS1 level was performedon aUHPLC system
(Thermo Scientific™ UltiMate™ 3000 System). A hydrophobic column
(Hypersil GOLD™ aQ C18 Polar Endcapped HPLC Column, 100mm×
2.1mm, 1.9μm) and a hydrophilic (Accucore™ 150 Amide HILIC HPLC
Column, 100mm×2.1mm, 2.5μm) column were used for reverse
phase (C18 column) and hydrophilic interaction liquid chromato-
graphy (HILIC column) separation, respectively. The chromatogram
system was coupled to a Thermo Scientific Q-Exactive Orbitrap mass
spectrometer.

The chromatographic conditions for the C18 and HILIC columns
were optimized as follows. For both columns, the flow rate was fixed at
0.4mL/min. For the C18 columns, the composition of the mobile
phases A and B was 0.1% FA in water and 0.1% FA in ACN, respectively.
For HILIC chromatography, the composition of the mobile phases A
and B were 50% ACN in water with 5mmol/L NH4AC and 95% ACN in
Water with 5mmol/L NH4AC, respectively. The gradient procedures
and other instrumental parameters are provided in Supplementary
Table 9.

TheQ-ExactiveOrbitrapMSwasconfigured as follows. For theC18
column, an electrospray ion (ESI) source with a spray voltage of 4 keV
in positive mode and 3.5 keV in negative mode were used, and for
HILIC a voltage of 4 keV in positivemode and 3.8 keV in negativemode
were used. Additional MS parameters were set for the C18 and HILIC
columns, which are summarized in Supplementary Table 10. Both

Fig. 4 | Evaluation of LC-MS2 data processing and result visualization.
a Comparison of matching scores of DDA (with or without deconvolution, ESI+) in
the complex standards mixture sample. The deconvolution algorithm could sig-
nificantly improve the matching scores of chemical candidates in comparison to
the non-deconvolved spectra. n = 99 independent compounds, means ± SEM;
paired one-tailed Student’s t-test (**, significant, p = 1.5e-7, no adjustment).
b Statistical analysis of the compound identification results of the 2nd standards
mixture dataset. Compared to the other two workflows, MetaboAnalystR reported
a significantly higher compound identification percentage. n = 15 independent
datasets, means ± SEM; unpaired one-tailed Student’s t-test without adjustment
(MetaboAnalystR vs. MS-DIAL/MS-Finder, significant, p =0.008; MetaboAnalystR

vs. MZmine/SIRIUS, significant, p =0.0003; MS-DIAL/MS-Finder vs. MZmine/SIR-
IUS, insignificant, p =0.14). c Number of identified compounds from the 3rd stan-
dards mixture dataset using different MS2 reference libraries. d Results of MS2
spectra-based compound identification for the blood exposomics dataset.
e Example mirror plot of 2-Piperidinone illustrating the MS2 spectrum matching
pattern. The upper side (blue) represents the user’s input, while the bottom side
(red) displays the spectrum from the reference library. When the mouse hovers
over the fragments, corresponding information, including m/z, relative intensity,
and potential formula, is displayed. All matched fragments are marked with a red
diamond at the top.
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positive (ESI+) and negative (ESI−) ion modes were adopted for ion
acquisition.

MS2 was performed immediately after the LC-MS1 experiment
with the corresponding mode (C18-ESI+, C18-ESI−, HILIC-ESI+, or HILIC-
ESI−). The chromatographic conditions were the same as the ones
detailed in the LC-MS section, while the mass spectrometer was spe-
cifically configured for untargeted DDA, DIA, and iterative targeted
DDA, respectively. DIA was performed with sequential window acqui-
sition of all theoretical fragment ion mass spectra (SWATH-MS) strat-
egy. All parameters for the MS2 acquisitions are summarized in
Supplementary Table 10.

Untargeted DDA was performed to detect the top 10 ions with
the highest intensities of each full MS scan. Immediately after the
acquisition of MS1 and untargeted DDA, SWATH was performed.
Each cycle of SWATHconsisted of a fullMS scan and 10MS2windows
with different window sizes. The m/z size of the MS2 window was
determined based on the general distribution of metabolic features
at the MS1 level. The adjacent windows were sequentially used for
DIA MS2 detection. The windows overlapped with their neighbors at
1.0m/z. The design of SWATH windows is summarized in

Supplementary Table 11. Approximately 0.9 s elapsed in total for
each SWATH cycle.

The sample type-specificmetabolic featureswere extracted based
on the results of MS1 and used as the inclusion list. Iterative targeted
DDA was executed with the updated inclusion list (optimized using
HERMES60) to exhaust the targets as much as possible61. In detail, the
sample-specific ions were input as the acquisition targets for DDA.
Once the 1st round of DDA was finished, the detected ions were
excluded from the target inclusion list. Then, the 2nd round of tar-
geted DDA was performed with the updated inclusion list until the
targets or samples were exhausted. All raw spectra data were depos-
ited to the Metabolomics Workbench (accession ID: ST002796 and
ST002798).

MS2 reference spectra library curation
A total of nine public MS2 databases were collected and curated.
HMDB databases were downloaded directly from its website as xml
files. Four tables (HMDB_experimental_NegDB, HMDB_exper-
imental_PosDB, HMDB_predicted_NegDB, HMDB_predicted_NegDB)
were generated from the HMDB database. MoNA series and

Fig. 5 | Biological interpretation of clinical metabolomics data. a Summary of
MS1 features detected from DDA and SWATH-DIA datasets. b Percentage of MS1
features identified based on MS2 spectra. c Comparison of significant pathways
obtained by integrating MS2 identification results (MS1 +MS2) or not (MS1).

d Scatter plot of pathway enrichment analysis results of SWATH-DIA dataset. n = 30
independent experiment samples. Fisher’s exact test without adjustment for
functional analysis. e Venn diagram of pathway analysis results from SWATH-DIA
datasets.
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LipidBlast database were downloaded from MassBank of North
America as msp files. Nine tables (MoNA_PosDB, MoNA_NegDB,
ReSpect_PosDB, ReSpect_NegDB, VaniyaNP_PosDB, Vaniya_NegDB,
BMDMS_PosDB, LipidBlast_PosDB and LipidBlast_NegDB) were gen-
erated. MassBank database was downloaded from its website as msp
files. Four tables were generated (RIKEN_PosDB, RIKEN_NegDB,
MassBank_PosDB, MassBank_NegDB). GNPS database was down-
loaded from the GNPSwebsite asmsp files. Two tables (GNPS_PosDB,
GNPS_NegDB) were generated. MINEs database was downloaded
from the MINEs website in msp format. Two tables were curated
(MINEs_PosDB, MINEs_NegDB) from it. These downloaded files were
curatedwith in-house R scripts into SQLite format based on the same
schema, which is named “Complete library”. Detailed information
regarding downloading links, database versions, and access dates are
available in Supplementary Table 12. Based on the “Complete
library”, we derived four specific MS2 reference libraries (Pathway
library, Biology library, Lipid library, and Exposomics library) as
described below.

The pathway library was mainly curated according to the KEGG
pathway information. KEGG pathways of 120 species (including
common model species and pathogenic microorganisms) were
downloaded with KEGGREST62. All compounds from the metabolic
pathways of all species were extracted as a compound list. A total of
3456 compounds were included (supplementary Fig. 28). All MS2
records in the “Complete library” matching these compounds were
extracted as a “Pathway library”. Similarly, Biology library was
curated based on the compound information from KEGG17 com-
pound database and HMDB31. All compounds and glycans from
KEGG are summarized as compound list 1. All compounds in HMDB
labeled as “Serum”, “Urine”, “Sweat”, “Saliva”, “Feces” and “Cere-
brospinal Fluid” were summarized as compound list 2. Compound
lists 1 and 2 were merged as a target list. All MS2 records in the
“Complete library” matching these compounds were extracted as a
“Biology library”. The lipid library was curated based on the com-
pound information from LIPIDMAPS, LipidBank34, LipidBlast33, and
HMDB database63. All lipids from these databases were summarized
as a lipid list. All MS2 records in the “Complete library” matching
these compounds were extracted as a “Lipid library”. All lipids in this
library are classified into superclasses, main classes, and sub-classes
based on RefMet64. Exposomics library was curated from KEGGDrug
database65, Microbial Metabolites Database66, Toxin-Toxin-Target
Database (T3DB)67, FooDB (www.foodb.ca), Phenol-Explorer68,
Exposome-Explorer69, and NORMAN Suspect List Exchange
database70. All compounds from these databases were extracted as
exposomics compound list. All MS2 records in the “Complete
library”matching these compounds were separately extracted as an
“Exposomics library”.

Five neutral loss spectra databases have also been pre-calculated,
corresponding to the five options above. The curation of neutral loss
databases was based on the algorithm implemented by METLIN neu-
tral loss database30. Briefly, neutral loss spectra were calculated by
deducting the m/z from the precursor ion as the neutral loss ion. The
intensity values were directly mirrored. The scheme of all MS2 refer-
ence libraries is shown in Supplementary Fig. 29.

DDA data deconvolution
The first step of DDA spectra deconvolution is to assign all
MS2 spectra to individual target features based on the precursor
information. If users provide a target feature list, MetaboAnalystR
can automatically perform MS2 data processing. Otherwise, the
complete MS1 features will be used for MS2 data processing. By
default, the MS1 features list generated by MetaboAnalystR includes
minimum and maximum values for m/z and retention time. If m/z
and retention time are not provided as in ranges, the m/z and
retention time ranges will be calculated automatically based on

tolerance values defined by users (ppm for m/z, and rt_tol for
retention time). If there are multiple MS2 spectra assigned to an
individual target MS1 feature, the spectra would be merged in a
weighted manner as developed in MZmine9. The median m/z
(mz_med) and median retention time (rt_med) are extracted or cal-
culated based on theMS feature’s information. Then the nearestMS1
is extracted for the following analysis. If there are multiple different
centroids within the (mz_med centered) isolation window, and any
of their intensity values are over the acquisition threshold (user-
defined), the spectrum is considered as “chimeric” to be decon-
volved in the next steps. The centroid ion corresponding to the MS
feature is considered as “main ion”, others are considered
“contamination ions”.

The purpose of deconvolution is to remove the fragments
produced from “contamination ions” in the chimeric spectrum
(“Spectrum 0”) and generate a clean deconvoluted spectrum for the
“main ion”. Technically, the “main ion” is the ion of target feature,
while the “contamination ion” may come from multiple sources,
such as isobaric ions, orphan isotopologues18, other known or
unknown ions with their m/z values falling into the isolation win-
dows, etc. In the second step, MetaboAnalystR scans through all
contamination ions and determines if they are orphan iso-
topologues. If any of them is identified as orphan isotopologues
based on the MS1 scan, the spectrum of this orphan isotopologue is
predicted with the method from DecoID18. We name the predicted
spectrum of the orphan isotopologue as “Candidate Spectrum I”.
Then, if there is any ion that has been detected and identified as a
clean spectrum in one or two nearestMS2 scans inside the data itself,
the clean spectrum is also extracted for deconvolution, named
“Candidate Spectrum II”. Next, MetaboAnalystR extracts potential
spectra from the MS2 library as the reference spectrum for the ions,
which are neither orphan isotopologues nor the ones with clean
spectra included by the spectra data itself. All spectra from the
reference are extracted, and the one showing the highest similarity
to the original chimeric spectrum (“Spectrum 0”) is retained as
“Candidate Spectrum III”. The spectral similarity is evaluated with
dot product18 or spectral entropy29 similarity methods based on
users’ preferences. If all ions in this isolation window have been
assigned with a reference spectrum, the deconvolution can be exe-
cuted directly.

In many cases, however, some ions can be identified as neither
orphan isotopologues nor the ones with a clean spectrum contained
in the data itself nor the ones with a reference spectrum from the
library. These ions will be named “Unknown ions”. MetaboAnalystR
predicts the spectrum of these “Unknown ions” based on the
hypothesis that ions with abiotic/bio-transformation relationships
will share highly similar MS2 spectra pattern2,28. In this case, themost
accurate formula is first predicted for the “Unknown ion”. Then an
abiotic/bio-transformation network is constructed around the
“Unknown ion” (Fig. 1c) based on the rules from NetID28. Different
from the network used in NetID, this prediction networkmodel is not
propagatable to avoid potential redundancy. Once the network is
constructed, all neighbors of the “Unknown ion” are searched against
the library to get their spectra data. All fragments of the spectra data
are predicted as themost accurate formula. If the chemical elements’
composition of the formula is against the formula of the “Unknown
ion”, this fragment is considered as an unreasonable fragment and
will be removed from the spectrum. Once this cleaning step is com-
pleted, the similarity of all spectra to the original chimeric spectrum
(“Spectrum0”) is evaluated. The onewith the highest similarity score
is returned as the predicted spectrum for the “Unknown ion”. It is
named “Candidate Spectrum IV”.

Next, Candidate Spectra I–IV are returned as the components to
deconvolve the original chimeric spectrum (“Spectrum 0”). Given
that Candidate, Spectrum IV is neither from real data nor a reference
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library, a penalty (0–10; 0, no penalty for the perfect match; 10, 10
times penalty for the negativematch) is given based on the similarity
to the “Spectrum 0”. Deconvolution on the “Spectrum 0” is per-
formed with a penalized elastic-net regression model71,72. The pur-
pose of this deconvolution model is to minimize the residue. The
deconvolution method is shown as the formula below:

Residue= min
Xn

i=0

y� xiβ
� �2 + λPα βð Þ

 !
ð1Þ

where Pα βð Þ= 1
2 1� αð Þjjβjj22 +αjjβjj1 is the elastic-net penalty72. y is the

response vector (Spectrum 0), x is the candidate components
(Candidate Spectra I–IV). In this model, α and λ are two critical
parameters. If α = 1, the model is a LASSO regression model, similar to
DecoID18. Instead of using an arbitrary value for α and λ from DecoID,
MetaboAnalystR permutates amatrix ofα and λ combination. Indetail,
11α values (starting from0, and endwith 1, step by0.1) and 10 λ values,
estimated by the correlations between response vector and compo-
nent vectors72. Therefore, 110 α and λ combinations are prepared to
optimize the elastic-net model in an automated manner. Then,
deconvolution based on the penalized elastic model is executed and
results in 110 solutions for “Spectrum 0”. All residues of 110 solutions
are iterated and the one with minimal residue is returned (Solution 0).
Different from DecoID, MetaboAnalystR optimizes α and λ for every
individual peak, instead of implying a hard value for all peaks.

Finally, allβ values for contamination ions ðβcontmsÞ in Solution0 is
used to remove fragments in “Spectrum 0”. The remaining fragments
are normalized and exported as “deconvoluted” spectrum for “main
ion”. If there is no fragment left after the cleaning or the β value for
“main ion” is 0, thedeconvolution failed. Theoriginal “Spectrum0”will
be retained and exported directly for MS2 reference library searching.
The deconvolution of DDA data can be achieved with the function,
PerformDDADeconvolution.

SWATH-DIA data deconvolution
SWATH-DIA data deconvolution algorithm follows the steps described
by DecoMetDIA23. In brief, for a specific MS feature, all extracted ion
chromatograms (EICs) of MS2 peaks from the corresponding SWATH
window are detected and clustered based on peak similarity and
retention time information. One model peak is selected from each
cluster, and all model peaks are organized to decompose all EICs. Each
decomposed component fromdifferent EICs is used to reconstruct the
composition of theMS2 cluster. The cluster containing the originalMS
feature is exported as a pseudo-MS2 spectrum. Unlike DecoMetDIA,
the entire data deconvolution workflow is implemented in Rcpp/C++.
The deconvolution of SWATH-DIA data can be achieved with the
function, PerformDIADeconvolution.

Spectra consensus for replicates
MS2 data are commonly acquired with multiple replicates. In such
cases, all deconvolved MS2 spectra corresponding to the same MS1
peak must be processed to generate a single consensus spectrum. If
there are no replicates, this step is skipped. All MS2 fragments across
different replicates are initially summarized by count. If the fre-
quency of an individual fragment is above a user-defined threshold
(e.g., 50%), it is kept; otherwise, the fragment is removed. Optionally,
a database-assisted spectrum consensus can be used to assist the
process (see Supplementary Fig. 1). If database-assisted option is
enabled by users, all spectra of the precursor are extracted as
referent list (L) from the reference library. All fragments notmeeting
the user-defined frequency threshold is then searched against L. If
this fragment can be found from L and the frequency of the fragment
across the replicates is over 2, the fragment is kept; otherwise, it is
discarded. All the remaining fragments are normalized and merged
to generate a consensus spectrum for database searching in the next

step. The spectrum consensus can be achieved with the function,
PerformSpectrumConsenus.

Reference library searching and scoring
Reference library searching is based on the m/z (and optionally, the
information on retention time) of precursors. All matches are extrac-
ted from the database for scoring. MetaboAnalystR uses the same
scoring rule as MS-DIAL5. The matching score is calculated using the
following formula:

Matching Score

=
MS2 Similarity+MS1 Similarity+RT Similarity+0:5 × Isotope similarity

3:5
× 100

ð2Þ

where the MS2 similarity (ranging from 0 to 1) is calculated using the
popular dot product similarity5,18 or spectral entropy similarity29

algorithms. MS1 similarity and retention time (RT) similarity (both
ranging from 0 to 1) are calculated with an exponential distribution
methodbasedondeviation. Isotope similarity is also calculated using a
similar method as implemented in MS-DIAL. However, the calculation
of isotope distribution similarity only considers [M + n] (n < 3), as the
intensity of isotopes [M + n] (n ≥ 3) is very low and highly variant.
Briefly, the similarity evaluation of isotope distributions is performed
based on the experimental isotope distribution and the theoretical
distribution of formulas extracted from the reference library. Isotope
elements considered here include carbon (C13), hydrogen (H2),
nitrogen (N15), oxygen (O17, O18), and sulfur (S33, S34). Other elements
are not considered due to their extremely low abundance in nature.
Retention time is optionally used based on users’ requests. If retention
time is disabled (by default), the retention time similarity is not
calculated, and the denominator is modified to 2.5. The database
searching is performed via SQLite query and can be achieved with the
function, PerformDBSearchingBatch.

Neutral loss searching
Neutral loss presents a mirror of MS2 spectra data. They are discarded
fragments without charges during ionization and detection. Neutral
loss is valuable for characterizing unknown compounds30. If the
matching score is below 10 (out of amaximumof 100), the neutral loss
searching option can be performed to find the potential chemical
identification. In such cases, the target precursor (P0) is extracted and
incorporated into the abiotic/bio-transformation network model28

(described in “DDAdata deconvolution algorithm”) to find all potential
neighbors. These neighbors are used as targets for extracting spectra
from the neutral loss reference library. The neutral loss of P0 is cal-
culated directly30 and is matched against the neutral loss spectra
extracted from the reference library. All potential matches are scored
and exported as a reference of chemical identification. The results are
labeled as “Neutral loss matching”. The database searching with neu-
tral loss can be achieved by enabling the “enableNL” parameter in the
PerformDBSearchingBatch function.

Result export
All compound identification results can be exported as a data frame in
the form of a .csv or .txt file. The exported information includes
compound names, chemical formula, InChIKeys, andmatching scores.
If the reference library is a lipid library, the exported information also
includes lipid classifications (superclass, main class, and sub-class).
When multiple matches are returned for a specific feature, MetaboA-
nalystR will check for those that are chemically the same (i.e. due to
redundancies in database records, see Table 1) and only keep the one
with the highest matching score. The database search results can be
exported as a data frame table using the PerformResultsExport
function.
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Decoy spectra generation and null evaluation
To generate decoy spectra, a mixture of 91 compounds40 was used as
the raw spectra data in the mzML format, which was imported using
the mzR package73. Spectral scans were split into MS1 data and MS2
data based on MS level (as shown in Fig. 3c). MS data was processed
similarly for both DDA and SWATH-DIAmethods. Specifically, them/
z values of mass centroids of MS data were randomly adjusted by
adding mass errors ranging from 10 to 30 ppm, while the intensity
values were randomly distorted by multiplying with a coefficient
(ranging from 0.01 to 50.0). The retention time dimension was kept
unchanged. For DDA spectra, the MS2 spectrum pattern was
replaced with a synthetic MS2 spectrum randomly simulated from
isobaric compounds. For SWATH-DIA spectra, the MS2 spectrum
pattern was processed in the same way as MS spectra, while the
SWATH window and retention time were kept unchanged. A total of
18 spectra decoy spectra data were generated for each replicate in
both DDA and SWATH-DIA datasets. These decoy spectra were
processed in the sameway as the original real dataset using different
tools to perform null evaluations. After processing, all compounds
within the decoy samples are categorized as “true negatives”. If they
are still identified as their original identities, they are classified as
“false positives”. Evaluations based on these decoy samples were
conducted for all toolswith their database options, encompassing all
original compounds.

MetaboAnalystR usage
The MS spectral data used in this study were converted into mzML
centroidmode using Proteowizard73 for both MS1 and MS2 levels. The
auto-optimized workflow was first applied to process the MS spectra,
including peak picking, peak alignment, gap filling, and peak annota-
tion, to generate complete MS feature tables. These tables were used
as the target list for MS2 spectra processing in both DDA and SWATH-
DIA. The chemical classification analysis of blood samples was per-
formed using ClassyFire63. The R stats package was employed to per-
form Pearson correlation analysis of serial dilutions. The heatmap
analysis was directly performed using MetaboAnalystR. Identification
andmatching of compounds to the list of standards were based on the
exactmatching of InChIKeys, deviation of retention time less than 20 s
with mass tolerance 5 ppm.

MS-DIAL/MS-FINDER usage
MS-DIAL (v4.9.22, Linux version) andMS-FINDER (v3.52, Linux version)
were used. A mass accuracy parameter of 0.005Da was set for “MS1
tolerance” and 0.01 Da for “MS2 tolerance”. The minimum percentage
of peaks within one groupwas set to 50%, while other parameterswere
left as default. Following DDA or SWATH-DIA data processing, peak
area alignment results were exported as the results of the MS level. All
features with MS2 information were exported for MS-FINDER analysis
performed in batch mode. PubChem remote query was only allowed
when there was no candidate from other databases. All MS2 spectra
libraries were selected for searching, while other parameters were left
as default values. The identified formula and structures were exported
automatically by MS-FINDER. Compound identification and matching
to the list of standards were based on InChIKeys.

MZmine usage
We used MZmine (v3.2.8, Linux version) to process the raw spectra
data. Firstly, we imported raw data and performed mass detection at
the MS1 level. Next, we executed the ADAP chromatogram builder74

with a parameter scan-to-scan accuracy set at 0.005Da or 10 ppm,
while keeping other parameters as default values. We then performed
smoothing and joint alignment to generate an aligned feature list and
exported as theMS1 feature table. Subsequently, we executed theMSn
feature list builder, followed by mass detection at the MS2 level.

Finally, the MSn feature list was exported to the SIRIUS/CSI:FingerID
format with all MS2 feature lists selected. We enabled the merge MS2
option, leaving the other parameters as default values in this step. To
evaluate computational performance, we processed the COVID-19
dataset in batchmode from the command line. For other datasets, we
used the MZmine UI for analysis.

XCMS usage
XCMS (v3.20.0, an R package) was used to process SWATH-DIA data.
All parameters from the XCMS online platform (https://xcmsonline.
scripps.edu/) were used to process MS1 data. For SWATH-DIA data
processing, we utilized the function, reconstructChromPeakSpectra, to
deconvolve SWATH-DIA data. We exported all deconvoluted spectra
into a.msp file using an in-house R script.

SIRIUS usage
We used SIRIUS (v5.6.3, Linux headless version) for the MS2 spectra
search. For formula prediction, we set the program to use the entire
database, while enabling ZODIAC, CSI:FingerID, and CANOPUS. For
CSI:FingerID, we selected all available databases. Other parameters
were left as their default values.We exported theMS2 searching results
with the “write summarize” option enabled. To identify chemicals and
match them to the standards list, we used the InChIKeys generated by
InChIs from SIRIUS.

Assessment of computational performance
We used SLURM (v22.05.6) to execute and record the usage of the
computational resources for each job. All tools had a command-line
interface to be executed. We allocated two CPU cores and all RAM
resources for each tool for comparison. We recorded the clock time
between the starting and ending of the job, as well as the maximum
usage of RAM.

Integration of MS2 results into the mummichog algorithm
MetaboAnalystR can process LC-MS1 and MS2 spectra directly and
format the results for pathway enrichment prediction with mummi-
chog. It also acceptsMS1 peaks list/table individually or in combination
with MS2-based compound identification. The mummichog algorithm
was improved by incorporating MS2-based chemical identification
results. Initially, the algorithm matches all features based on theirm/z
and/or retention time to generate empirical compounds27. One MS1
feature may be mapped to multiple empirical compounds, and MS2-
based chemical identifications will be utilized to filter out those
unfeasible candidates to produce a shorter but more accurate list of
empirical compounds. The permutation test is then performed based
on the filtered list. The underlying pathway libraries have been upda-
ted with additional compound IDs to be more compatible with the
results generated fromMS2 identification. In MetaboAnalystR 4.0, the
compounds in pathway databases have been converted into different
types of chemical IDs, including InChIKeys, KEGG IDs, HMDB IDs,
PubChem SIDs, PubChem CIDs, and SMILES.

Interfacing with other tools and databases
MetaboAnalystR can also accept results from other well-established
raw spectra processing tools, such as MS-DIAL (in mat format),
MZmine (in msp format), and XCMS (as an object in R) for MS2
identification with a comprehensive/specific database. In addition,
MetaboAnalystR can automatically convert MS2 identification
results from MS-FINDER (structure result table) and SIRIUS (com-
pound identification table) into a compound list for mummichog-
based pathway enrichment analysis. All MS2 reference libraries are
curated as SQLite libraries. Users can easily convert their in-house
reference library into SQLite format to be included in the MetaboA-
nalystR workflow.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
LC-MS and MS2 data of blood samples and serial dilutions used in the
evaluation of MetaboAnalystR 4.0 have been uploaded to Metabo-
lomics Workbench (https://www.metabolomicsworkbench.org/) as
studies ST002796 and ST002798. The complex standards mixture
data was obtained from MetaboLights repository (ID: MTBLS2207).
The simple standards mixture series data was from Curatr (https://
curatr.mcf.embl.de/). The standardmixtures with medium complexity
were also from MetaboLights repository (ID: MTBLS1311). Polar and
non-polar DDAmetabolomics datasets of COVID-19 were downloaded
from MetaboLights repository (ID: MTBLS2542). The COVID-19
SWATH-DIA metabolomics dataset was obtained from MassIVE repo-
sitory (ID: MSV000089568 [https://doi.org/10.25345/C5HQ3S30D]).
All curated MS2 spectral libraries and descriptions are available from
the MetaboAnalyst website (https://www.metaboanalyst.ca/docs/
Databases.xhtml). Source data are provided with this paper.

Code availability
Source code of MetaboAnalystR 4.0 is available from GitHub (https://
github.com/xia-lab/MetaboAnalystR). The codes used for benchmark
studies and analysis is available also from GitHub (https://github.com/
zhiqiang-PANG/MetabR4_scripts). A step-by-step tutorial of MetaboA-
nalystR 4.0 has been provided in the MetaboAnalyst website (https://
www.metaboanalyst.ca/docs/RTutorial.xhtml).
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