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Limited conservation in cross-species com-
parison of GLK transcription factor binding
suggested wide-spread cistrome divergence

Xiaoyu Tu 1,2,3,8, Sibo Ren2,8, Wei Shen2,8, Jianjian Li 2,8, Yuxiang Li2,
Chuanshun Li3, Yangmeihui Li3, Zhanxiang Zong4, Weibo Xie 4,
Donald Grierson 5, Zhangjun Fei 6, Jim Giovannoni 6, Pinghua Li 7 &
Silin Zhong 1,2

Non-coding cis-regulatory variants in animal genomes are an important driving
force in the evolution of transcription regulation and phenotype diversity.
However, cistrome dynamics in plants remain largely underexplored. Here, we
compare the binding of GOLDEN2-LIKE (GLK) transcription factors in tomato,
tobacco, Arabidopsis, maize and rice. Although the function of GLKs is con-
served,most of their binding sites are species-specific. Conservedbinding sites
are often found near photosynthetic genes dependent on GLK for expression,
but sites near non-differentially expressed genes in the glk mutant are never-
theless under purifying selection. The binding sites’ regulatory potential can
be predicted by machine learning model using quantitative genome features
and TF co-binding information. Our study show that genome cis-variation
caused wide-spread TF binding divergence, and most of the TF binding sites
are genetically redundant. This poses a major challenge for interpreting the
effect of individual sites and highlights the importance of quantitatively
measuring TF occupancy.

Transcription factor (TF) binding to cis-regulatory elements is crucial
to gene regulation. The genome-wide map of all these regulatory
interactions is often referred to as the cistrome. Its dynamics enabled
species and individuals with similar genes to generate different
transcriptional programs and, as a consequence, different pheno-
types, and contributed greatly to species’ adaptive and phenotypic
plasticity1–3. With the help of a wide range of high-throughput
sequencing techniques, such as SELEX-seq, ATAC-seq, DAP-seq, and
ChIP-seq4–6, it is now possible to map TF binding or identify its
footprint genome-wide, which gave rise to a series of cross-species

TF comparisons in yeast and animal models. These studies have
shown that homologous TFs with conserved biological functions
shared very few binding sites in different species. For example, a
pioneer study found that a pseudohyphal development-related TF
binds only ~20% of the same target genes in comparison among three
Saccharomyces sensu stricto species7. ChIP-seq of two conserved
hepatic bZIP and HB TFs in the liver tissues of five vertebrates
(human, mouse, dog, opossum, and chicken) also found that <10% of
the binding sites are conserved8. The recent large-scale TF analysis
conducted by the ENCODE projects also found a low degree of
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conservation of TF footprints between humans and mice9,10, sug-
gesting that the animal cistrome is highly dynamic during evolution.

Tomeasure the impact of TF binding on transcription, exhaustive
ChIP-chip experiments have been performed in yeast to identify the
binding sites of all known TFs11–13. Surprisingly, it was found that many
most TF-binding sites have no apparent transcriptional effect. Further
studies in higher eukaryotes with large genomes have confirmed that
TFs can bind to an unexpectedly large number of sites and most of
them appear to have little impact on the nearby gene transcription,
suggesting high redundancy and system robustness of the transcrip-
tion regulatory network9,14–18. Interestingly, the conserved TF-binding
sites identified in the cross-species comparisons often have the stron-
gest impacts on nearby gene expression8,19. In addition, TF-binding
sites with strong regulatory potential are often located in super-
enhancer regions, which are genome hotspots targeted bymultiple co-
binding TFs15. Therefore, it has been suggested thatmultiple TFs jointly
contribute to the transcription output in a quantitative manner. Indi-
vidual TF-binding sitesmay be insufficient to explain transcription, and
a cluster of binding sites in the enhancer is key to achieving a precise
and robust transcription regulation in the mammalian genome20.

Despite the wealth of data from animal and yeast models, the
modes of cistrome evolution and their relative importance in
plants remain underexplored. To study this, one could compare the
binding of a well-known TF with conserved biological function in
multiple plant species. Photosynthesis is arguably one of the most
important and conserved biological processes in plants, and
GOLDEN2-LIKE (GLK) TFs are well-known transcription activators
controlling chloroplast biogenesis and development21. Sub-
functionalization of GLKs in monocots such as rice and maize has
been reported22. They also play a role in fruit development, where
GLK1 is switched off, and the GLK2 adapts a latitudinal gradient
expression pattern resulting in uneven coloration of the fruit
tissue23,24. Two redundant copies of GLK exist in most diploid
angiosperm genomes that have been sequenced to date25. Their
double loss-of-function mutants in Arabidopsis, tomato, and rice
showed a pale-green leaf phenotype and down-regulation of pho-
tosynthesis genes21,23,26. Except for a few well-known target genes,
the genome-wide binding profiles of GLKs have yet been deter-
mined, which makes it an ideal candidate for a cross-species cis-
trome comparison.

In this study, we use ChIP-seq tomap the GLK-binding sites in five
representative plant species and find that most of the GLK-bound
genes are species-specific. The conserved GLK-bound genes are often
associated with photosynthetic function, and their expression is more
susceptible to the GLK mutation. Our results reveal widespread cis-
trome divergence during plant evolution and the redundant nature of
plant TF-binding sites.

Results
Genome-wide identification of GLK binding
To study how plant cistrome evolves, we used ChIP-seq to determine
the binding sites of GLK1 and GLK2 in the leaf tissue samples from
Arabidopsis (A. thaliana), tobacco (Nicotiana benthamiana), rice
(Oryza sativa), and maize (Zea may), as well as the leaf and immature
green fruit tissues of tomato (Solanum lycopersicum) (Fig. 1 and Sup-
plementary Table 1). These five species were chosen because they
couldbe transformed to expressTF fusedwith anepitope tag and have
reference genomes for data analysis. We used the ENCODE2 ChIP-seq
processing pipeline with the MACS2-IDR algorithm27 to process the
data, and libraries that passed the QC cut-off value (NSC > 1.05,
RSC > 0.9, FRiP > 1% and correlation >0.8) were used for subsequent
analysis (Supplementary Data 1).

GLK is considered as a conserved transcriptional activator con-
trolling photosynthesis and chloroplast development. We first
checked some well-known photosynthesis-related genes known to be
regulated by the Arabidopsis GLKs, such as the chlorophyll-binding
proteins LIGHT HARVESTING COMPLEX A/B (LHCA/B) and those
encoding subunits of photosystem I/II. We found that these genes and
their homologs in the other four species all have 5’ end proximal GLK1
and GLK2 ChIP-seq peaks (Fig. 2a). They also overlap with the ATAC-
seq peaks (Fig. 2a), suggesting that GLKs bind to open chromatin
regions in their gene promoter. In total, we identified 960, 1286, 956,
332, and 1089 genes with GLK binding in proximal promoters in Ara-
bidopsis, tomato, tobacco, rice, and maize, respectively (Fig. 1, Sup-
plementary Data 2–6).

Previous motif enrichment and protein-binding microarray ana-
lyses ofArabidopsisGLKhave shown that its target genes often contain
the GATTCC or RGATTYYY motif upstream of their transcriptional
start site28. We extracted the sequences of the GLK ChIP-seq peak
summit regions and performedmotif enrichment analysis. The results

~ 150 Myr

Arabidopsis

Tobacco

Tomato

Maize

Rice

GLKs ChIP-seq 
across 5 species

Feature Analysis

Expression in TF mutant

GO/MapMan enrichment

Evolution and population studies

Identify conserved and
specific ChIP-seqtargets

Te
rm

C
at

eg
or

y

Conserved
GLK targets

Monocot
specific

Dicot 
specific

Solanaceae
specific

960

956

332

1089

1286

All GLK
targets

129 (13.44%)

180 (18.83%)

153 (11.90%)

100 (30.12%)

135 (12.40%)

277 (28.85%)

340 (35.56%)

296 (23.02%)

167 (50.30%)

234 (21.49%)

536 (56.07%)

482 (37.48%)

Leaf

Leaf

Leaf

Leaf

Leaf

Fruit

Fig. 1 | Divergence ofGLKTF binding during plant evolution.ChIP-seq is used to determine the binding of GLK1 andGLK2 in theArabidopsis, tobacco, tomato, rice, and
maize genomes. The conserved and specific GLK ChIP-seq target genes are identified, and their features were investigated.
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showed that the RGATTYY core motif is indeed enriched in the GLK-
binding sites in all five species (Fig. 2a, Supplementary Data 7). It
should be noted that the presence of a motif is a necessary, but not
sufficient condition for TF binding. Features such as DNA conforma-
tion could affect TF binding in vitro, whereas DNA cytosine methyla-
tion, histone modifications, chromatin accessibility, and co-binding of
other TFs may further complicate TF binding in vivo. Therefore, the
number of motifs in a genome often far exceeds the number of actual
binding sites29. In the case of GLK, there are over twomillion GLKmotif
matches (HOMER score > 6) and four hundred thousand GATTCC
perfect matches in the maize genome. To overcome the limitation of
motif search, machine learning models based on natural language
processing have been developed to distinguish the TF bound and
unbound regions30. One advantage of these models is that it is an
ensemble of black boxes that considermultiple short sequences inside
the ChIP-seq peaks, which could include motifs of the TF and its co-
binding factors or other sequences that influence DNA conformation
or epigenome. Suchmachine-learning tools have already been applied
to generate accurate classifier models for 104 maize TFs6,30.

Hence, we used the k-mer grammar tool to trainmachine-learning
classifiers to differentiate DNA sequences in GLK-bound regions and

the background, which are ATAC-seq regions without GLK binding.
The result showed that the k-mer models can indeed predict GLK
binding in five species with high accuracy (Fig. 2b; Supplementary
Data 8 and Supplementary Fig. 1). We also extracted the top 10 k-mers
in thesemodels and found that they oftenmatch the GLK core binding
motif RGATTYY (Fig. 2c and Supplementary Data 9). For example, the
AtGLK1 model has an area under the receiver operating characteristic
(ROC) curve of 0.99, an accuracy score of 0.94, and the highest-
ranking k-mer is GGATTTT (Fig. 2b, c). Such high accuracy suggests
that these models could capture both the recognition motif and hid-
den sequence information in the surrounding region that contribute to
TF-binding specificity.

To understand the chromatin environment surrounding the GLK-
binding sites, we clustered tomato GLKs ChIP-seq signals centered on
the gene transcriptional start sites (TSS) together with different epi-
genetic features, such as chromatin accessibility, DNAmethylation, and
histonemodifications (Fig. 2d). TheGLK-binding regions display typical
active chromatin signatures such as high chromatin accessibility and
active histonemarksH3K4me3 andH3K27ac usuallymarking promoter
and enhancer regions. They also showed low DNA methylation in CG,
CHG, andCHH contexts that are often associatedwith TF-binding sites.

Fig. 2 | GLK targets identified by ChIP-seq. a Genome browser tracks showing
GLK1 and GLK2 ChIP-seq peaks, as well as open chromatin regions (ATAC-seq) in
the photosynthesis gene loci. Themotif enrichment results for eachGLK are shown
below. b AtGLK1 bag-of-k-mers machine learning model ROC curve. c Top
10 scoring k-mers in the AtGLK1model.dHeatmap and average signal plot showing
the tomato epigenome features near theGLKbinding sites. Clustering is performed

using the leaf GLK1 ChIP-seq signal. From left to right, GLK1 ChIP-seq in leaf, GLK2
ChIP-seq in leaf, GLK1 ChIP-seq in fruit, GLK2 ChIP-seq in fruit, chromatin accessi-
bility DNase-seq signal, H3K4me3, H3K27ac, DNAmethylation at CG, CHG andCHH
sites. Regions 2 kb up and downstream of the gene transcriptional start sites are
shown. Source data are provided as a Source Data file.
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Previous genetic studies showed that the two GLK genes are
functionally redundant21,23,31. Consistently, we observed that the GLK1
and GLK2 ChIP-seq peaks overlap in promoters of photosynthetic
genes (Fig. 2a). The two GLKs have similar motifs and k-mer enrich-
ments (Fig. 2a and Supplementary Data 9). Their ChIP-seq signal
heatmap also showed the same read distribution patterns (Fig. 2d),
suggesting that the two GLKs have the same binding sites. We then
compared the 3472 tomato GLK1 and 6562 GLK2 peaks (IDR cut-off
0.01) and found 2815 overlaps. Even in the 657 GLK1-only peaks that
did not pass the GLK2 IDR cut-off, we could still detect GLK2 ChIP-seq
signal, and vice versa (Supplementary Fig. 2). To compare the two
SlGLKs quantitatively, we also compared their ChIP-seq read coverages
in the union of SlGLK1 and SlGLK2 peaks and found that they are
correlated. Similar results were also found in all species we examined
(Supplementary Fig. 3). Motif enrichment analysis for those GLK1 and
GLK2 only peaks showed that they have the GATT core motif (Sup-
plementary Fig. 4), suggesting that the non-overlaps peaks are weaker
than the overlappedones, andwe can conclude that the twoGLKs have
the same binding profile.

Conserved GLK targets in photosynthesis-related processes
To understand the function of GLK as a transcription regulator, we
examined the GO-term andMAPMAN annotation of its ChIP-seq target
genes and performed enrichment analysis. Strikingly, we found that
GLKs canbind tomostof thenucleus-encodedgenes in the chloroplast
photosynthetic electron transfer chain, photosystems I and II in par-
ticular (Fig. 3a and Supplementary Data 10), as well as genes in the

chlorophyll biosynthesis pathways (Fig. 3b and Supplementary
Data 11). Besides that, GLK might also play an indirect role in both
chloroplast and nucleus transcription, as they consistently bind to
pentatricopeptide (PPR) and tetratricopeptide repeat (TPR) protein-
coding genes controlling organelle RNA processing32, as well as CON-
STANS/B-BOX TF genes controlling photoperiod in all five species
(Fig. 3c and Supplementary Data 2–6)33,34.

Besides those conserved GLK ChIP-seq target genes, we also
found species-specific ones. For example, GLKs only bind to genes
encodingPSII subunit S (PsbS) in tomato and rice,whileCHLOROPLAST
IMPORT APPARATUS 2 (CIA2) is bound by GLKs in Arabidopsis and
tobacco (Fig. 3a and Supplementary Fig. 5). However, it should be
noted that ChIP-seq could identify TF binding sites of a wide range of
binding strengths. Such qualitative analysis of ChIP-seq peaks, which
label a region as bound or unbound, is known to have limitations35,36.
For example, weak binding sites are prone to be mischaracterized in a
cross-species comparison under different ChIP-seq enrichment and
peak caller detection threshold. To compare GLK binding quantita-
tively between two species, we have calculated the ChIP-seq read
counts in thepromoter of their homologous genepairs. The conserved
GLK target gene pairs have high ChIP-seq signal in both species, while
the species-specific ones only have a high ChIP-seq signal in one spe-
cies (Supplementary Fig. 6). In summary, our data suggest that
although the overall function of GLK is conserved, its binding has
diverged during the long evolution time that separated these species.

GO-term enrichment analysis showed that the GLK-bound genes
in each species were indeed enriched for photosynthetic terms such as

Fig. 3 | Conserved GLK ChIP-seq target genes. a Diagram of the photosynthesis
electron transfer chain. Components encoded in the nucleus are highlighted in
purple. The number inside the boxes indicates the number of species, in which the
gene is bounded byGLKs. For the tomato data, only leaf GLK target genes are used.

b Heatmap showing genes in the chlorophyll biosynthesis pathway and their GLK
ChIP-seq signal (−log(foldchange)). c Bar chart showing the percentage of con-
served TF genes bound by GLK. Source data are provided as a Source Data file.
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response to light stimulus (GO:0009416) and light harvesting
(GO:0009768) (Fig. 4a). We also used the MAPMAN annotation to
assign GLK ChIP-seq targets into different functional categories
(Fig. 4b). The photosynthesis category is most enriched, even though
they only account for ~10% of the ChIP-seq targets in each species.
Although more GLK ChIP-seq targets were assigned to other non-
photosynthesis categories, none of them were significantly enriched.
This could suggest that GLKs bind to photosynthesis-related genes in
the ancestral plant, and those binding sites are under strong negative
selection, while the non-conserved sites have been gained or lost
during evolution.

Most GLK ChIP-seq target genes are species-specific
Among the five species, the eudicots (Arabidopsis, tomato, and
tobacco) and the monocots (maize and rice) have diverged ~150MYA.
To study how GLK bindings diverged, we used OrthoFinder to assign
all GLK-bound genes in five species into ortholog groups and exam-
ined how many common and unique ones could be found in each
species. The result showed that very few of them are conserved in all
five species. For example, 129, 100, 151, and 205 of the ArabidopsisGLK
ChIP-seq targets are conserved in 5, 4, 3, and 2 species, respectively.
The remaining 375 genes have no ortholog GLK ChIP-seq targets in
other species. We also repeated the conservation analysis using gene
lists generated by different ENCODE2 peak calling pipelines at various
stringencies. If the conservation analysis is affected by false positives
or weak binding sites, the conservation rate would increase when a

more stringent cut-off is used. However, when the threshold is raised,
the number of identified target genes and the conservation rate
remainedunaffectedor declined, suggesting that our analysis is robust
(Supplementary Table 2). Interestingly, if we only count the genes
assigned to the photosynthesis category by MAPMAN, their con-
servation rate is over 90% (Supplementary Table 3), suggesting that
the selection pressure on GLK binding is more correlated to gene
function rather than the binding strength.

The conserved binding sites have larger transcriptional reg-
ulatory potential and stronger ChIP-seq signal
In animals, it has been shown that the recently gained TF-binding sites
are often less important than those conserved ones in terms of their
potential to regulate gene expression, despite the TF bindingmotif in
those sites are the same8. To test this in plants, weperformedRNA-seq
for the GLK1/2 double loss-of-function mutant in Arabidopsis and
tomato, as well as their wild-type leaves as control (Supplementary
Data 12, 13). We identified 1105 differentially expressed genes (DEGs)
inArabidopsis, while 266 of themare GLKChIP-seq targets and 75.94%
(202/266) of them are down-regulated in the mutant. We then
examined the percentage of DEGs in each conservation group
(Fig. 5a). We found that over half (70/129) of the genes in the most
conserved group 5 are DEGs, while the non-conserved genes have the
least amount of DEGs. Motif-enrichment analysis of the conserved
and species-specific binding sites confirmed that they all contain the
sameRGATTYYmotif (Supplementary Figs. 7, 8). This patternwas also
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observed in tomatoes, suggesting that the conserved plant TF-
binding sites also have stronger transcription regulatory potential like
the animal ones.

We hypothesize that the non-conserved GLK ChIP-seq target
genes recently acquired GLK binding through random sequence
variations in the promoter open chromatin regions. Some of those
cis-regulatory elements have yet to evolve a function that con-
tributes to plant fitness. Without selection pressure, they might be
gradually lost. To test this, we imputed TF binding strength based
on the average AtGLK1 and AtGLK2 ChIP-seq signal fold-change at
the peak summit (Fig. 5b). The result showed that the most con-
served binding sites in group 5 indeed have a stronger ChIP-seq
signal than the species-specific ones (p-value = 1.1E−08). Next, we
combined the binding strength and gene expression data and
found that the conserved genes such as those annotated with
photosynthesis functions often have a stronger ChIP-seq signal, as
well as a larger reduction in gene expression in the mutant than the
non-conserved ones (Fig. 5c).

GLK binding sites in non-DEGs are also under negative selection
Since the conserved GLK ChIP-seq targets are more likely to be dif-
ferentially expressed in the mutant, could it suggest that the binding
sites in non-DEGs or non-conserved target genes are false positive or
have no biological function? First, we noticed that over 40% of the
conserved ChIP-seq target genes are not DEGs, including some well-
known photosynthetic genes (Fig. 5a). For example, the chloroplast
ATP synthase subunit gene ATPC1 has strong GLK binding sites in
Arabidopsis and tomato, with ChIP-seq signal ranking 70th and 299th,
respectively (Supplementary Fig. 9). However, ATPC1 is only down-

regulated in the tomato, but not in the Arabidopsis GLK mutant. In
addition, there are also non-DEGs with conserved and strong binding
sites. The photoreceptor CRYPTOCHROME 1 is not differentially
expressed in both mutants, but it is a conserved target in all five spe-
cies with strong ChIP-seq signal (e.g. the 7th strongest in Arabidopsis).

We also observed that the binding strength of the conserved sites
could change between species. For example, the binding site in PSII
subunit gene PsbTn is strong in Arabidopsis (rank 102nd) and weak in
tomato (rank 1083rd), although it is differentially expressed in both
(Supplementary Fig. 9). This suggests that the presence of a strong or
conserved TF-binding sitemight not guarantee that the genewould be
dependent on the TF for transcription. It is possible that other TFs
could compensate for the loss-of-GLK function in a species- and locus-
specific manner. Alternatively, TF target genes might be differentially
expressed in certain cell types or under specific growth conditions
when the TF is knockout. Therefore, it is often difficult to infer the
biological function of individual binding sites solely based on limited
gene expression data.

To use a different approach to evaluate the potential function of
TF-binding sites, one couldmeasure the nucleotide diversity of the site
in a given population. If the site is under negative selection, it could
suggest that it is important and contribute to the fitness of the species,
despite the nearby gene is not differentially expressed in the TF
mutant. To test this for GLK, we used the 1001 Arabidopsis genome-
resequencing data and calculated the nucleotide diversity of its bind-
ing sites. We first compared the sites in ChIP-seq peaks against the
background, which is the unbound GLK motifs found in open chro-
matin without GLK ChIP-seq peaks (Fig. 5d). We also compared the
conserved against the non-conserved sites (Fig. 5e). As expected, both
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the log2 fold change of gene expression (WT vs. mutant) and the log2 ChIP-seq
signals foldchange. d–f Estimator of the cumulative distribution function (Ecdf)
plots of nucleotide diversity of GLK motifs (K–S test, one-sided). d GLK-bound vs.
unboundmotifs. eConserved vs. non-conservedmotifs. fmotif in DEGs vs. motif in
non-DEGs. Source data are provided as a Source Data file.
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of their nucleotide diversity scores are lower than the backgrounds,
suggesting that they are under negative selection. We then compared
the DEGs against the non-DEGs (Fig. 5f), and the result showed that
they are not significantly different (Kolmogorov–Smirnov test,
p =0.597). This shows that the binding sites in non-DEGs are under
similar selection pressure and could contribute to plantfitness in away
that we have not yet understood. Hence, we shall not overgeneralize
the relationship between regulatory potential and binding site con-
servation or binding strength.

Cistrome dynamics and TF-binding divergence
Given the large TF-binding divergence, an intriguing question is whe-
ther it is caused by the genome sequence variation (cis-variation).
Alternatively, the evolution of the TF protein (trans-variation) could
alter its binding preference. To test this, we have transformed Arabi-
dopsiswithmaize GLK1 and performed ChIP-seq to identify its binding
sites in a heterologous genome environment.

We first divided the Arabidopsis GLK ChIP-seq target and non-
target genes into three groups (group I: conserved, group II: Arabi-
dopsis-specific and group III: maize-specific) (Fig. 6). The conserved
genes in group I, such as AtLHCA1 and ZmLHCA1, are bound by GLK in
both species. We found ZmGLK1 ChIP-seq peaks in these Arabidopsis
gene promoters (Fig. 6b, c). The group II genes do not have a maize
ortholog bound by GLK. For example, AtGLKs can bind to the chlor-
ophyll biosynthesis gene AtHEMA1, and its ortholog ZmHEMA is not a
GLK target. But the heterologously expressed maize GLK1 can now
bind to its promoter at the same position as the Arabidopsis GLKs
(Fig. 6b, c). Finally, we examined the maize-specific group III genes,
such as the AT3G03440, which encodes a chloroplast ARM repeat
protein. When the ZmGLK1 is expressed in Arabidopsis, it could no
longer bind to its promoter. The ChIP-seq signal heatmaps of this
heterologously expressed ZmGLK1 showed that it has recapitulated
the ArabidopsisGLK’s binding pattern in both group I and II genes, but
did not bind to the maize-specific genes in group III (Fig. 6a). Taken
together, our data showed that TF binding is largely determined in cis
by DNA sequence variation rather than in trans.

Use of machine learning model to predict transcription
outcome
To better understand why only part of the genes with proximal GLK-
binding sites is differentially expressed, we sought to quantitatively
compare their genome features such as TF-binding strength, the initial

expression level in wild-type leaf, distance of the binding site to the
gene TSS, as well as other TFs’ co-binding information inferred from
the Arabidopsis TF DAP-seq data collection. Unsurprisingly, the dif-
ferentially expressed genes (DEGs) have stronger ChIP-seq signal, a
higher gene expression level in the leaf, and closer GLK-binding sites
(Fig. 7a). We also found TF DAP-seq data that has a co-binding pattern
correlatedwith theDEG status (Fig. 7b). However, itmustbenoted that
none of these features on its own is sufficient to predict whether a GLK
ChIP-seq target gene would be differentially expressed. Hence, we
trained random forest classifier models to consider different quanti-
tative genome features together. To avoid the effects of outliers given
the small dataset of 202 DEGs, we randomly sampled the training and
test data 500 times to train 500 independent models. The average
AUC, ACC, Recall, and F1-score of the models are 0.77, 0.698, 0.685,
and 0.688, respectively (Fig. 7c). This showed that combining different
classes of genome features could indeed improve our interpretationof
the genome regulatory code.

This method also enabled us to test what feature is important for
the model’s accuracy. We found that removing the TF co-binding data
resulted in the largest decrease in the model performance, suggesting
that the co-binding TFs could hold vital information for predicting the
transcription outcome (Fig. 7d). The random forestmodel also allowed
us to calculate a feature importance score for each co-binding TFs in
the DAP-seq data. We found that some of the well-known photo-
synthesis and light-signaling regulators such asMYB-related, C2H2 and
GBF TFs are among the top contributors (Fig. 7e). Although correlation
does not imply causality, it is possible that the differentially expressed
genes have been co-regulated by GLKs and these TFs in the ancestral
plant, and they have evolved into an indispensable part of the gene
regulatory network. It is similar to the observation in animal genomes
that the TF binding sites with strong regulatory potential are often
located in the enhancers bound by a large number of TFs15.

Tracking GLK binding divergence after genome duplication
The tomato genome has experienced the ancient eudicots gamma
duplication (~120 MYA) and the recent Solanum lineage one (~70
MYA). As the promoter regions bound by the TFs are also duplicated
during those events, it provides a unique opportunity to estimate
whether the interaction between GLK and its targets occurred
before or after one of the duplications. We found that the tomato
GLKs bind to a pair of genes encoding LIGHT HARVESTING COMPLEX
A4 (LHCA4) in synteny blocks in chromosomes 3 and 6. Both genes
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are down-regulated in the mutant (Fig. 8a). These two synteny
blocks have a high synonymous substitution rate (Ks = 1.689) and
are not located in the previously reported sub-genome regions that
resulted from the recent genome triplication37, suggesting that the
GLK bindings in LHCA4 have been preserved after the paleo-
duplication for over 100 MYA. However, genes could be lost or
rearranged after genome duplication, and as a result, most of the
tomato genes are no longer located in synteny blocks. The dupli-
cated genes could still be identified as homologous pairs that both
are targeted by GLK. We calculated the percentage of homologous
GLK ChIP-seq targets in the five conservation groups and found that
the most conserved group 5 indeed has more homologous target
genes, suggesting that the conserved binding sites are ancient, and
the species-specific ones are acquired more recently.

Unlike tomatoes, the maize genome experienced a recent tet-
raploidy event 5–12 MYA38. Most of its duplicated genes could still
be traced back to subgenomes 1 and 2. We then compared the GLK
ChIP-seq signal of the duplicated ChIP-seq target genes using the
Kendall rank correlation coefficient test. Kendall’s tau is 0.174
(p = 0.06322), suggesting that the correlation is very weak, and
duplicated GLK binding sites have already changed after such a
short evolutionary period. We also hypothesize that the rapid
change in TF binding might allow the duplicated genes to be
expressed in a different tissue, which could further give rise to
neofunctionalization. To test this, we calculated the expression
correlation of the maize GLK ChIP-seq target gene pairs in the two
subgenomes using themaizeGDB’s tissue gene expression data. The
result showed that the pairs that retained GLK binding have the
highest expression correlation while losing GLK binding led to sig-
nificantly lower expression correlation, confirming our hypoth-
esis (Fig. 8c).

Discussion
Cross-species comparison of GLK binding showed that plant cistrome
dynamics can also cause widespread TF-binding changes like those
observed in the yeast and animal genomes9,14,15,17,18. Our observation is
also in linewith previous plant TFChIP-seq analysis of the SEPALLATA3
MADS-box TFs in A. thaliana and A. lyrata, which found that less than a
quarter of their binding sites are conserved39. Despite the fact that the
non-conserved and weak TF binding sites are less likely to influence
gene expression, it has been suggested that we should not consider
them as non-functional14. Because eukaryotic genes are often regu-
lated by multiple TFs, and the combined input could exceed the
threshold of transcription activation, generating redundancy for the
whole gene regulatory network. In addition, the regulatory potential of
a TF-binding site could not be fully demonstrated by individual tran-
scriptome analysis, since a non-differentially expressed TF target gene
could become differentially expressed in another growth condition or
tissue. Consistently, our data showed that the GLK-binding sites in the
non-differentially expressed GLK ChIP-seq target genes are also under
similar negative selection as those in the differentially expressed ones.
Hence, it is important to study how TFs co-regulate gene expression in
order to fully understand the genome-regulatory code.

Many plant TF studies, particularly those in crops that are hard to
transform, have often inferred gene function based on mutant com-
plementation or over-expression in a model plant like tomato and
Arabidopsis. Our finding gives reason for caution in interpreting the
result of such studies. If TF binding could be influenced by the genome
cis-regulatory dynamics, one might have missed the species-specific
function of a TF when expressed in a foreign genome. For example,
ETHYLENE INSENSITIVE3 class TFs are key regulators of the conserved
ethylene signaling pathway40. We have previously found that some
climacteric fruit species have gained EIN3 binding sites in the
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promoters of their ripening genes, which have been evolved into
indispensable parts of their positive feedback loops controlling
ripening41. Thus, although the EIN3 genes in those fruits can comple-
ment the Arabidopsis EIN3 loss-of-function mutant and generate the
same phenotype when overexpressed, their recently evolved roles in
fruit ripening could not be tested in the Arabidopsis genome.

One limitation of our study is that, without a ChIP-grade anti-
body, we must overexpress the TF fused with an epitope tag to
perform ChIP-seq, making it difficult to control for protein level, as
well as where and when the TF is expressed. Since ChIP-seq is an
enrichment analysis, factors such as the protein abundance and
cellular location, the specificity of the antibody, sequencing depth,
library complexity, and even small details in the ChIP experiment
itself such as input to antibody ratio, sonication, and washing steps
could influence the final ChIP enrichment result. Strong TF-binding
sites could be easily detected even when the enrichment is poor. But
the number of weak TF-binding sites identified could be easily
affected by the ChIP-seq enrichment, making cross-species or cross-
experiment comparison difficult35. For example, we have previously
shown that the sensitive ChIPmentation assay could detect five times
more binding sites with the same antibody against the tomatoMADS-
box TF RIN than the traditional ChIP-seq method41,42. With the
development of CUT&Tag and single-cell ChIP-seq, it is likely that the
sensitivity could be further increased. In addition, the next genera-
tion of peak calling algorithms based on neural networkmodels or an
ensemble of different methods is now able to find weak TF-binding
sites from noisy ChIP-seq data43. The increased sensitivity means

more weak binding sites could be discovered in the future, posing a
major challenge for data analysis.

Another intriguing question is why the genome would retain so
many genetically redundant TF binding sites without a strong reg-
ulatory role. It has been hypothesized that gaining regulatory com-
plexity is the key to the evolution of multicellular organisms with
complex cell types, by enabling the common genes to be exploited
multiple times to generate different temporal and spatial transcrip-
tional programs and biological outcomes44. As the cistrome evolved
rapidly, cis-regulatory elements are generated or disrupted by
sequence variations, which leads to the recruitment of new TF or the
weakening of existing TF binding, and as a result, different transcrip-
tional outcomes and phenotypes could be generated. Therefore, the
observed divergence of GLK binding across plant species, as well as its
conserved core regulatory interactions could be a real-time snapshot
of evolution in action.

Several studies in yeast and animal models have shown that even
the weak TF-binding sites could play an important role in evolving new
gene regulatory programs and are required for achieving high TF-
binding specificities45,46. For example, replacing the native low-affinity
Hox-binding sitewith an artificial high-affinity one caused ectopic gene
expression inDrosophila embryo47. Recent plant TF studies using high-
sensitivity ChIP-seq have shown that each TF can bind to around
10,000 loci5,48. The Arabidopsis cistrome project found ~2.7 million
in vitro binding sites for 529 TFs. If a TF can bind to a third of the genes
in the genome, it is unlikely that all binding sites would be equal in
terms of regulating transcription. Therefore, one might need to
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consider the TF binding quantitatively and cooperatively, as we
demonstrated in using the random forest model to predict GLK ChIP-
seq target gene expression. In addition, a recent analysis of embryonic
stem cell reprogramming factors Oct4, Sox2, Nanog, and Klf4 revealed
that the spacing and direction of TF binding can also encode critical
regulatory information49, while similar analysis forplant TFs has largely
fallen behind.

Methods
Plant materials
The Arabidopsis glk1/glk2 mutant25 was obtained from the European
Arabidopsis Stock Centre (N9807). Transgenic Arabidopsis plants were
grown on Murashige and Skoog (MS) salts with 25μg/mL hygromycin
B, and 0.8% (w/v) agar. Plants were grown at 22 °C under long-day
conditions (16-h light) in a growth chamber. Rice cultivar Nipponbare
was used as the wild type. Rice plants were grown at 28 °C with long-
day conditions in the greenhouse. The tomato glk1/glk2doublemutant
generated by CRISRP/Cas9 in microTom background was kindly pro-
vided by Prof. Yu Pan, and we have confirmed the deletions by Sanger
sequencing (Supplementary Fig. 10). Both tomato and tobacco
(Nicotiana benthamiana) were grown in a growth chamber with a 12 h-
light (25 °C) and 12 h-dark (20 °C) cycle.

For the Arabidopsis GLKs, we fused their cDNAs with the
C-terminal GFP tag and transformed them into the glk1/glk2 double
mutant for ChIP-seq (SupplementaryTable 1). Transgene expression of
tomato GLK2 is known to cause co-suppression23. Hence, we trans-
formed the SlGLK2-GFP construct into the tomato cultivar Micro-Tom,
which harbors a loss-of-function mutation in the GLK2 locus. As the
tomato GLKs are also involved in early fruit development, we also
performed ChIP-seq using immature fruit at 27 day-post-anthesis. The
cDNA of the rice GLKs were fused to an HA tag and transformed into
wild-type rice under the control of the ubiquitin promoter. For these
stable transgenic plants over-expressing GLKs, we selected the trans-
genic linewith highproteinexpression levels forChIP-seq. Tobacco is a
recent allotetraploid and has two copies of each GLK with over 90%
sequence identity. Hence, we selected the two GLK genes with the
highest leaf expression level for the analysis. We used agroinfiltration
to transiently express the NbGLKs with an HA tag for ChIP-seq. The
maize (Zea mays) GLKs ChIP-seq data were obtained from a previous
study6. The maize GLK1-HA construct was also transformed into the
Arabidopsis glk double mutant for ChIP-seq.

ChIP-seq
Fully expanded leaves from Arabidopsis, rice, tomato, and Nicotiana
benthamiana, as well as pericarp samples from immature green
tomato fruits at 27 DPA, were harvested and cross-linked with 1% (w/v)
formaldehyde. The nuclei were then isolated by filtration and cen-
trifugation, and the chromatin was sonicated to sub-kb fragments
using Bioruptor. Anti-GFP (#A-11122, ThermoFisher) and anti-HA
(#C29F4, Cell Signaling Technology) antibodies were used for ChIP.
The protein A/G Dynabeads (10μL) were incubated with 2μL antibody
for 1–2 h in low salt buffer (20mM Tris–HCl pH 8.0, 150mM NaCl,
2mMEDTA, 0.1%TritonX-100, 0.1%BSA). The beadswere thenwashed
with low salt washing buffer (20mM Tris–HCl pH 8.0, 150mM NaCl,
2mMEDTA, 1% Triton X-100, 0.1% SDS) before adding to the sonicated
chromatins, were incubated overnight with the Dynabeads with anti-
body, and washed twice with low salt washing buffer (20mMTris–HCl
pH8.0, 150mMNaCl, 2mMEDTA, 1% TritonX-100, 0.1% SDS), high salt
buffer (20mM Tris–HCl pH 8.0, 500mM NaCl, 2mM EDTA, 1% Triton
X-100, 0.1% SDS), LiCl buffer (20mMTris–HCl pH 8.0, 250mMLiCl, 1%
Triton X-100, 0.7% sodium deoxycholate, 1mM EDTA) and TE. The
immunoprecipitated DNA was tagged on-beadwith TS-Tn5 for 45min.
The beads were then washed twice with high salt buffer and TE. Sam-
pleswere reverse crosslinkedovernight at 65 °C.DNAwaspurifiedwith

Qiagen MiniElute and PCR amplified. The libraries were sequenced
with a Hiseq X 150 bp paired-end read mode.

RNA-seq
Total RNA was extracted with RNeasy Mini Kit (Qiagen). Messenger
RNAs were isolated with Oligo d(T)25 magnetic beads (New England
Biolabs) and used for Illumina TruSeq library preparation. The libraries
were sequenced on Hiseq X with 150bp paired-end mode.

ChIP-seq data analyses
ChIP-seq reads were aligned to plant reference genomes (Arabidopsis
thaliana TAIR10, Nicotiana benthamiana version 2.5.1, Solanum
lycopersicum SL4.0, Oryza sativa MSU7.0, and Zea mays RefGen_v4)
using Bowtie 2 (version 2.3.2). For paired-end, 150 bp reads, the
100 bp from3’ endwere trimmedwith the bowtie2 parameter −3 100.
Unmapped and low mapping quality reads were filtered with SAM-
tools (version 1.9) using the parameters “-F 4 -q 20”. Duplicated reads
were removed with the subcommand “rmdup” in SAMtools. Pearson
correlation coefficients were calculated with the command “multi-
BigwigSummary” in deepTools to evaluate the reproducibility of the
biological replicates. Only biological replicates with a correlation
coefficient > 0.8 were kept for further analyses. The ENCODE2 ChIP-
seq pipeline with MACS2 (version 2.2.1) and IDR (version 2.0.4.2)
were used for peak calling. Peak summit positions were retrieved by
using the “–call-summits” function in MACS2. The regions ±75 bp
from the summit position with signal fold-change in NarrowPeak
format were then supplied to IDR, and the regions passed the IDR
0.01 and summit signal foldchange cut-off were kept and resized
back to 150 bp. They were then associated with genes based on
summit distance to the TSS. Depending on genome size, theChIP-seq
peak summit overlaps with the putative promoter region 1.5, 2.5, 2,
1.5, and 2.5 kb upstream of the TSS were associated with genes in
Arabidopsis, tobacco, tomato, rice, and maize, respectively. We also
used the ENCODE2 spp-IDR-TIP pipeline from PhantomPeakQual-
Tools (version 1.14) at two different cut-offs (p = 0.05 and p = 0.01)
for comparison.

RNA-seq analysis
RNA-seq reads were firstmapped to rRNAs, and the clean reads were
then mapped to the corresponding plant genomes by HISAT2
(version 2.1.0). Read counts were calculated with HTSeq (version
0.11.0). Differential gene expression analysis was performed using
DESeq2.

Function and motif enrichment analysis
Functional GO enrichment analysis was performed by a web-based
toolkit for the agricultural community agriGO v2.0 (http://
systemsbiology.cau.edu.cn/agriGOv2/). Gene functional category
enrichments were performed using MAPMAN. The target genes in the
five species were compared using OrthoFinder (version 2.2.7) to
determine the homologous relationship based on protein sequence
similarity. We used a conservation score to quantify how conserved a
group of genes (e.g. the eudicot shared GLK target genes in one
MAPMAN category) based on the events (observed) and the pair-wise
comparisons performed (expected). De novo motif discovery and
motif search were performed using HOMER (http://homer.ucsd.edu/
homer/motif/). For the nucleotide diversity analysis, we first identified
the GLK motif position in the Arabidopsis GLK ChIP-seq peaks using
HOMER (cut-off: motif match score > 6). We also identified the
unbound GLK motif hits in the open chromatin regions (ATAC-seq
peaks) without GLK ChIP-seq signal as background. The nucleotide
diversity score of each motif position is retrieved from the variant
collections identified by the 1001 Arabidopsis genome project (https://
1001genomes.org/data/GMI-MPI/releases/v3.1/).
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Machine learning analyses
We used the k-mer grammar tool (https://bitbucket.org/bucklerlab/k-
mer_grammar/src/master/) to generate machine-learning models to
distinguish sequences of GLK-binding sites from sequences in open
chromatin regions without GLK ChIP-seq peaks. For GLK-binding sites,
we tested both the 150 and 300bp sequences centered at the ChIP-seq
peak summit. The sequences of the same length centered at the ATAC-
seq peak summit are used as the background, and open chromatin
overlaps with weak ChIP-seq peaks (IDR 0.05) were removed. As there
are often 10 times more open chromatin regions than ChIP-seq peaks,
an equal number of open chromatin regions are randomly selected to
generate a balanced dataset for training the k-mer models. The
balanced input datasets were then randomly split into 80% training
and 20% test sets for the k-mer grammar tool.

To study the different transcriptional regulatory functions ofGLK-
binding sites, we also used a random forest classifier to discriminate
down-regulated DEGs from non-DEGs. Features used for RF model
training are the GLK1 and GLK2 ChIP-seq signal foldchange values at
the genes’ closest ChIP-seq summit, the distance from the summit to
the genes’ transcriptional start site in base pair, the genes’ initial
expression level in wild-type leaf in FPKM, and Arabidopsis TFDAP-seq
peaks obtained from the plant cistrome database (http://neomorph.
salk.edu/dap_web/pages/index.php). GLK target genes with DAP-seq
peaks overlapping with the 150 bp GLK ChIP-seq summit regions were
used. DAP-seq data were converted to categorical features (1 bound, 0
unbound) for training. TheDAP-seq TFdatasets with low features-label
correlation (<0.1) were discarded. As there are more non-DEGs than
DEGs, we randomly selected an equal number of the non-DEG labels to
match the DEGs to obtain a balanced training dataset, and 80% of the
data were used for training while the remaining 20% were used for
the test. Given the small sample size, we also randomly re-select the
training and test data 500 times to generate 500 models to calculate
the average AUC and model scores.

Synteny analysis and Ks calculation
Detection of synteny and collinearity was performed byMCScanXwith
default parameters. The synonymous substitution rate (Ks) between
homologs was computed by KaKs_Calculator (version 2.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the NCBI
database under accession code PRJNA682315 GSE220115 or GitHub
[https://github.com/rensabella/GLK-project/tree/main/data]. Published
data used in the study can be accessed at PRJNA518749 and
PRJNA743574. The Arabidopsis TF co-binding data is available in the
plant cistrome database [http://neomorph.salk.edu/dap_web/pages/
index.php]. The Arabidopsis nucleotide diversity data is available in
the 1001 Genomes database [https://1001genomes.org/data/GMI-MPI/
releases/v3.1/]. Themaize 23 tissues’ gene expression data is available at
maizeGDB [https://www.maizegdb.org/expression]. Source data are
provided with this paper.

Code availability
All codes have been deposited in GitHub [https://github.com/
rensabella/GLK-project].
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