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Ultra-coherent nanomechanical resonators based
on inverse design
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Engineered micro- and nanomechanical resonators with ultra-low dissipation constitute a

promising platform for various quantum technologies and foundational research. Traditionally,

the improvement of the resonator’s performance through nanomechanical structural engi-

neering has been driven by human intuition and insight. Such an approach is inefficient and

leaves aside a plethora of unexplored mechanical designs that potentially achieve better

performance. Here, we use a computer-aided inverse design approach known as topology

optimization to structurally design mechanical resonators with optimized performance of the

fundamental mechanical mode. Using the outcomes of this approach, we fabricate and

characterize ultra-coherent nanomechanical resonators with, to the best of our knowledge,

record-high Q ⋅ f products for their fundamental mode (where Q is the quality factor and f is

the frequency). The proposed approach - which can also be used to improve phononic crystals

and coupled-mode resonators - opens up a new paradigm for designing ultra-coherent micro-

and nanomechanical resonators, enabling e.g. novel experiments in fundamental physics and

extreme sensing.
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Topology optimization is a computational morphogenesis
procedure widely applied in engineering to determine the
best possible structural design and material distributions

within a prescribed design domain by maximizing a set of per-
formance targets1. Examples include the maximization of the
structural stiffness of an object under certain design and manu-
facturing constraints to determine the optimal design of a full-
scale aeroplane wing2 or a girder of a suspension bridge3, and the
maximization of light concentration to develop the optimal
design of nanophotonic resonators4.

The basic strategy of topology optimization is to define a
design domain in which material can be distributed. Material is
being added to or removed from this domain, and founded on a
physical model for the system, a gradient-based computational
method is used to optimize the figure-of-merit. Through itera-
tions, material is gradually redistributed towards the optimal
design for which the figure of merit is either maximized or
minimized, depending on the problem to be solved.

We use topology optimization to design a nanomechanical
resonator towards maximizing its Q ⋅ f (Qf) product5–7. Pre-
viously, improving the resonator’s performance has been done
through a combination of human intuition and trial-and-error
based on experience and approximative analytical expression for
the different dissipation mechanisms of the resonator8–17. Such
an intuition-based approach has recently led to impressive pro-
gress in increasing the Qf product of mechanical resonators by
using a combination of dissipation dilution11, soft-clamping15,
thin-clamping18, and strain engineering16. Despite these recent
successes, the approach inevitably leaves out many, possibly
counter-intuitive, designs that might exhibit superior behavior.
Topology optimization counteracts this problem as it directly
develops the optimized structure under given initial design con-
straints and loss models with no geometrical pre-assumptions.

Results
Model and topology optimization. Aiming at maximizing the Qf
product of the fundamental mode of a nanomechanical resonator
suitable for opto-mechanical experiments, we consider the initial
structure illustrated in Fig. 1a. It comprises an area of
700 × 700 μm2 and a thickness of 50 nm with a single central pad
of size 100 × 100 μm2 made of pre-stressed silicon nitride (that
allows for the interaction with light via radiation pressure
force19,20) and a narrow frame of 5 μm to ease fabrication. The
remaining space is free to evolve through topology optimization.
The pre-stressed resonator is numerically discretized with
200 × 200 quadrilateral shell elements using the finite element
method. In the topology optimization procedure, a design vari-
able is assigned to each element to control the material occupa-
tion in the element which is to be iteratively updated. Design
robustness with respect to manufacturing errors is enforced by
simultaneously considering three design realizations (eroded,
normal, and dilated, corresponding to over-etched, nominal, and
under-etched realizations of the design) which are maximized for
their minimum Qf product. Meanwhile, the fundamental fre-
quency is constrained to be equal or above a prescribed value to
ensure structural connectivity, and a volume fraction is used to
constrain the resonator weight and regularize the optimized
resonator shape. The deterministic, adjoint-based optimizations
are initiated by a uniform design variable distribution, satisfying
the volume constraint and typically require a total of 2000 finite
element evaluations to converge. Detailed descriptions of the
topology optimization procedure are included in the Methods
section.

Two damping mechanisms associated with intrinsic losses and
phonon tunneling losses have been included in the model

(Fig. 1b). The intrinsic losses are modeled as bending losses in the
form of hysteretic damping, i.e. using a lossy Young’s modulus.
The phonon tunneling loss (PTL) associated with radiation of the
phonons into the substrate was modeled by coupling the
boundary out-of-plane displacements to continuously distributed
lossy springs (illustrated in Fig. 1a) while keeping all the other
degrees of freedom fixed. Since the loss mechanisms are not yet
completely understood, we perform optimizations for five
different ratios of intrinsic and PTL losses, with loss values
estimated from the physically realized reference design [8] such
that the reference resonator under the five loss models exhibits a
similar Q-value as the experimental result. The optimized designs
based on the five different loss models are denoted as D1–D5. For
D1 and D5 the system is purely limited by intrinsic loss and by
phonon tunneling loss, respectively, while for D2–D4 the ratio is
gradually changed. The exact ratios can be found in the Methods
section. To illustrate the iterative procedure of the topology
optimization, in Fig. 1c we show the evolution of the design of
resonator D1. The final topology optimized designs for all five
cases are illustrated in Fig. 2. The images have been slightly
filtered in post-processing with the aim of removing buckling-
prone features and smoothing sharp features to prevent high
tensile stresses at the boundaries (see Methods section).

Interestingly, the optimized design of D1 is similar to the
membrane design suggested and experimentally tested in Beccari
et al.21 but using a completely different approach. They arrive at
this geometry based on considerations on soft-clamping using a
hierarchical design concept17.

Fabrication and characterization. The post-processed designs
were patterned on high-stress (σ0 ≤ 1.2 GPa) silicon nitride with a
thickness of 12–50 nm grown by low-pressure chemical vapor
deposition on a silicon wafer. We release the resonators by back-
etching the silicon substrate in a window of 1.4 × 1.4 mm2. The
fabricated structures are shown in Fig. 3a. To measure the
mechanical frequency and quality of the fundamental mode, ring-
down measurements were carried out in vacuum (pressure
<10−7 mbar) at room temperature using high-sensitivity fiber-
based homodyne detection (see Methods section). An example of
a ring-down measurement of a fundamental mode of frequency
240 kHz exhibiting an amplitude ring-down time of ~160 s is
illustrated in Fig. 4a. This corresponds to a Q factor of
1.18 ± 0.01 × 108 and a Qf product of 2.83 × 1013 Hz. We also
present an example of a thermal noise spectrum including some
higher-order modes in Fig. 4b.

We performed ring-down measurements of the fundamental
mode of 967 devices that include all the topologically optimized
resonators, D1–D5, as well as the conventional non-optimized
trampoline resonator13,14 which is used as reference structure. A
collection of our measurements on frequency, quality factor, and
Qf product is presented in Fig. 3. It is clear from these
measurements that the topologically optimized resonators are
superior to the reference trampolines and that they are all deeply
into the regime where the resonator is able to undergo coherent
oscillations (corresponding to Qf > 6 × 1012 Hz) as required for
quantum coherent experiments19.

To understand the limitations of their performance, we fit our
best attained results to a theory for the intrinsic and phonon
tunneling losses. As the intrinsic loss ΔW is mainly dominated by
the clamping losses near the boundaries, we directly estimate
these losses from the expression

ΔW ¼
Z

πϕ

12
Eh3

1� ν2
∂2u
∂x2

þ ∂2u
∂y2

� �2

dxdy ð1Þ

where h, E, ν are the thickness, Young’s modulus and Poisson’s
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ratio of the resonator material15. u(x, y) is the mode shape and the
loss angle is modeled as ϕ= 1/(hβ) where β is related to the
intrinsic damping at the surface. The mode profiles of all designs
are simulated using the COMSOL Multiphysics package with the
results shown in Fig. 5.

Phonon tunneling losses are simulated by placing a distribution
of independent lossy springs along the outer boundary with only
one degree of freedom in the out-of-plane direction defined by a
lossy imaginary stiffness per unit length k0. These two loss
contributions (intrinisic and phonon tunneling losses) are then
adjusted to match the best experimental data using the loss-

dependent factors β and k0 as fitting parameters. We find
β= (2.93 ± 0.19) × 1011 m−1 and k0 ¼ ð4:09 ± 1:36Þ ´ 1012 N=m2,
and the resulting theory curves for all designs are shown in Fig. 3a
where dotted (dashed) lines correspond to phonon tunneling
(intrinsic) losses while the total contribution is represented by
solid lines. It is clear that the best performing resonators of all five
designs are mainly dominated by intrinsic losses. However, for
some resonators we observe markedly lower performance (with Q
factors below 107) which we attribute to a near-resonant coupling
to the substrate modes, consequently leading to significantly
higher phonon tunneling losses which eventually become the

Fig. 1 Topology optimization model. a Illustration of the model used in topology optimization. Note the springs illustrate a continuous distribution of
springs. b Illustration of the two damping mechanisms: intrinsic losses in the form of bending and phonon tunneling losses. c Illustration of the optimization
procedure of resonator D1 with snapshots of the design evolution. The degree of transparency indicates the material density.

Fig. 2 Designs overview. Overview of topology optimized structures and the mode shape of their respective fundamental mode. Design D1 and D5 are
optimized assuming only bending losses or phonon tunneling losses, respectively. Design D2–D4 assume different weighted combinations of the two
damping mechanisms.
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Fig. 3 Results overview. a Overview of the measured frequencies and quality factors across all designs and thicknesses together with selected microscope
images. Solid lines correspond to theory fitted to the measured frequencies and best attained quality factors. Dotted and dashed lines are associated with
the phonon tunneling and intrinsic loss contributions, respectively. For some designs, the theory curves for the phonon tunneling loss is not visible on the
plots. b Quality factor plotted against frequency for the five best samples for each design. The shaded area marks the parameter regime in which the
resonator may undergo quantum coherent oscillations at room temperature. The inset is the nominal trampoline design fabricated in this work and used as
a reference13. The large spread in the Q factors is due to the uncontrollable coupling of the fundamental mode to the substrate mode. In the Qf plot, we only
include measurements of membranes for which the Q factor was above 107 but all measurement data are included in the plots for the frequency and Q
factor.

Fig. 4 Resonator result. a Mechanical ring-down measurement of the best measured sample corresponding to design D4. b Spectrum of a D1 sample.
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dominating loss factor. This randomized coupling to the substrate
modes can be circumvented by inserting a damping shield
encapsulating the resonator22.

The fitting of the loss models to the results of the best
performing membranes yields a guidance to the appropriateness
of the calibration parameter used to develop the five designs. For
example, design D5 was developed under the assumption that
phonon tunneling loss dominates which contradicts the result of
the fitting procedure as it concludes that intrinsic losses are
dominating. It is thus more likely that the calibration parameters
used for designs D1–D2 are more appropriately describing the
physical system as the assumed loss ratios for these designs are
qualitatively reminiscent of those attained via the fitting
procedure.

We highlight the source of intrinsic losses by plotting the
bending loss distribution of design D1 in Fig. 5a. First we note that
there is a significant amount of bending loss near the boundaries
(as highlighted by the inset) and near the intersection between the
circular frame and the tethers. The latter dilutes the bending loss
of the former (resulting from the strong mode confinement) and is
likely the origin of the quality enhancement . It is similar to the
effect observed in resonators based on fractal structures21. The
observed bending loss at the central pad is due to its low stress
leading to a locally reduced stiffness and consequently, sharper
bending. In Fig. 5b we illustrate the stress distribution from which
we observe a large stress component on the circular frame
perpendicular to the tether. The wavelength predicted by the stress
and frequency is ~2mm which is larger than the dimensions of
the resonator. Therefore, it cannot exist on the circular frame
resulting in mode confinement and dilution of losses. Finally, we

compared the amount of boundary bending losses (localized along
the outer boundary) to the estimated amount of distributed
bending losses (far away from the boundary) as shown in Fig. 5c.
It is clear that the resonator is limited by the boundary losses.

Discussion
Micromechanical oscillators with a Qf product of >1013 Hz for
the fundamental mode will have a number of intriguing appli-
cations in quantum optomechanics and precision sensing. One of
the main requirements in quantum optomechanics, e.g. for
cooling the oscillator to the quantum ground state, interrogating
macroscopic quantum superpositions, and entangling different
systems, is that the decoherence time exceeds the mechanical
oscillation period. This translates into the requirement that
Qf > kBT/ℏ= 6 × 1012 Hz at room temperature (where kB is
Boltzman’s constant, ℏ is the reduced Planck’s constant, and the
temperature is T= 300 K)19,20. While most of the resonators
fulfill this requirement, our best performing device yields around
4 coherent oscillations which is the largest number ever reported
for the fundamental mode of a membrane at room temperature.
Our devices will also exhibit exceptional performance in force
sensing measurement as for example used in magnetic resonance
force microscopy of electron and nuclear spins23. In such mea-
surements the sensitivity is limited by the thermal noise

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mkBT

2πf
Q

q
where m is the mass) which we find to be at 10

aN=
ffiffiffiffiffiffi
Hz

p
for the best devices which is significantly beyond what

is attainable with currently available room temperature force
microscopes.

Fig. 5 Design analysis. a Bending loss distribution of D1 on a logarithmic scale. The inset highlights the high bending losses at the boundary. b Static von
Mises distribution. The bars indicate the direction of the first principal stress component. c Numerically predicted intrinsic quality factor Qint partitioned
into boundary (Qbound) and distributed (Qdist) bending losses with Q�1

int ¼ Q�1
bound þ Q�1

dist.
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The topology optimization method, that we have here
employed to maximize the Qf product of the fundamental mode
of a membrane, is applicable to many other similar morpho-
genesis problems in engineering of high-performance micro- and
nanomechanical resonators. It can for example be applied to
finding the optimal structure for maximizing the dissipation
dilution effect - and thus the Qf product – in phononic crystal
resonators where Q factors of nearly one billion and Qf products
of >1015 have already been achieved without topology
optimization15,16,24. This can be achieved by running the opti-
mization algorithm over the higher-order modes (rather than the
fundamental modes as done in this work). Another interesting
avenue for new studies using our methodology is to optimize
other application-specific parameters instead of the Qf product.
An example is the optimization of the co-operativity parameter
associated with the coupling of a specifically functionalized
mechanical oscillator to spins25, light26 or charges27 with the aim
of significantly enhancing quantum transduction or sensing.
Finally, it is also possible to optimize structures with additional
constraints, either structural constraints enabling certain appli-
cations or parameter constraints, e.g. fixing the mass to a large
value with the aim of maximizing the coupling to gravity as
required for example for interrogating the quantum nature of
gravity28,29. Our methodology thus has the potential to revolu-
tionize the way nano- and micro-mechanical systems are being
designed enabling radically new applications and fundamental
explorations.

Methods
We employed a density-based topology optimization approach1 to design ultrahigh
coherent resonators. The basic methodology and the detailed optimization for-
mulation are described in the following.

Pre-stressed membrane resonators are simulated using finite element methods
with the 4-node MITC (Mixed Interpolation of Tensorial Components) quad-
rilateral shell element30. The mechanical dynamic problem is solved in two steps:
(1) Establish static equilibrium of a pre-stressed membrane resonator under pre-
scribed stress; (2) Identify resonating modes using linear eigenvalue analysis. The
FE equations are stated in discrete form as,

K0U0 ¼ F0 ð2Þ

K0 þ Kσ U0

� �þ iC� ω2
j M

� �
ϕj ¼ 0: ð3Þ

Here F0 is the equivalent force vector resulting from a prestress σ0, K0 represents
the linear stiffness matrix and Kσ U0

� �
represents the initial stress stiffness matrix

that depends on the displacement U0 of the prestress problem in Eq. (2). C and M
denote damping and mass matrices, ωj and ϕj are the angular frequency and modal
profile of the j-th resonating mode and i ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit.

The damping matrix, C, covers intrinsic and phonon tunneling losses. The
intrinsic losses are considered via a relaxation mechanism described by a complex-
valued Young’s modulus ~E ¼ 1þ iηs

� �
E. The phonon tunneling losses are mod-

eled using damped springs distributed along the boundary with a total stiffness of
�kb ¼ 1þ iηb

� �
kb and kb= 8.315 × 107 kN/m2. The detailed calculation formula-

tions of quantities in Eqs. (2) and (3) can be found in Gao et al.7. The quality factor

and frequency of the j-th resonating mode are calculated by

Qj ¼
< ωj

� �

2= ωj

� � ; f j ¼
< ωj

� �
2π

: ð4Þ

In the density-based topology optimization approach, an element-wise design
variable, xe 2 0; 1½ �, is introduced to indicate the material occupation in element e.
To avoid checkerboard pattern and mesh dependence1 and enhance design dis-
creteness, the design variables are first filtered using a density filter31 and then
smoothly projected using a hyperbolic tangent threshold function32, given as

~xe ¼
∑k2Ne

weðykÞvkxk
∑k2Ne

weðykÞvk
ð5Þ

�xe ¼
tanh β1η

� �þ tanh β1 ~xe � η
� �� �

tanh β1η
� �þ tanh β1 1� η

� �� � : ð6Þ

Here, ~xe is the filtered design variable, yk are the center coordinates of element k. vk
and xk are the corresponding volume and design variable of element k, respectively.
Ne is the neighborhood of element e within a certain filter radius specified by
Ne ¼ kj k xk � ye k ≤ r

	 

, and we(yk)= r− ∥yk− ye∥. �xe is the projected design

variable of element, e. When β1 is large, �xe � 1 if ~xe > η representing Si3N4, and
�xe � 0 if ~xe < η indicating void. The projection suppresses gray element density
regions induced by the density filter when β1 is sufficiently large and ensures black-
white designs when the optimization converges. Moreover, it mimics the manu-
facturing process and the manufacturing errors can be taken into accounts in the
optimization by choosing different thresholds, η, as discussed later.

The Young’s modulus of element e is directly related to the projected design
variable using the Rational Approximation of Material Properties (RAMP)33 and
the mass density is linearly interpolated as

Ee ¼
�xe

1þ q 1� �xe
� � ðE � E0Þ þ E0; q ¼ 3 ð7Þ

ρe ¼ �xe ρ� ρ0
� �þ ρ0: ð8Þ

Spurious modes caused by inappropriate stiffness-to-mass ratios in low-density
regions are suppressed by setting E0= 10−6E and ρ0= 10−7ρ to represent void in
this study. Wrinkling-like instabilities in low-density regions are alleviated using a
displacement interpolation with detailed formulations presented in Gao et al.7.

To enhance the design robustness with respect to manufacturing errors and
impose a minimal length scale in the nominal design, a three-case robust for-
mulation is employed32. Three design realizations are generated to mimic an
eroded, normal, and dilated manufacturing processes. The optimization problem
for designing ultrahigh coherent resonators is formulated to maximize the Qf
product of the fundamental mode for the worst case of the three design realiza-
tions, subjected to frequency constraints and a volume fraction constraint, given as

max
x

min
η

ln Q1 x; η
� �

f 1 x; η
� �� �

s:t: f 1 x; η
� �

> f �

vT�x x;ηdð Þ
∑
e
ve

≤ v�

0≤ x ≤ 1

η 2 ηe; ηi; ηd
	 


The three design realizations are generated using η 2 0:55; 0:5; 0:45f g with a filter
radius of r= 15 μm. This corresponds to a minimal feature size of 6.7 μm in both
solid and void regions of the nominal design. The prescribed frequency lower
bound and volume fraction upper bound are f*= 240 kHz and v*= 0.5.

Gradients of the objective and constraint functions are calculated using the
adjoint sensitivity analysis and the chain rules7,31,32. The design variables are
iteratively updated using the deterministic mathematical programming approach,
Method of Moving Asymptotes (MMA)34 based on the gradients of the objective
and constraints. β1 is updated until the convergence criterion is satisfied by
βðnþ1Þ
1 ¼ 1:1βðnÞ1 reaching a maximum value of 120.
The loss parameters used in the five design cases, (D1, D2, D3, D4, D5), are

ηs= (2.500; 1.790; 1.120; 0.515; 0.000) × 10−4 and ηb= (0.000; 0.095; 0.190; 0.285;
0.380) calibrated against the reference trampoline design.

The design outputs of the optimization algorithm have some irregular shape
features caused by the particular density-based topology optimization approach
that we are applying. As mentioned above, in this approach, an elemental density
variable (taking values between 0 and 1) indicates the material occupation in the
finite elements (0 for void and 1 for silicon nitride) of the design, thereby pro-
ducing a gray-scaled evolution design that ideally converges towards a white/black
design (corresponding to the density variable being 0 or 1). Due to finite element
discretization using quadrilateral shell elements, the final designs possess stair-cases
and a very small amount of gray values. This may lead to local tensile stress, and
would eventually result in breakage during fabrication. To avoid this, we spatially
filtered the designs in post-processing by removing convex features followed by
low-pass filtering using a rectangular window with a 5 μm width, thereby
smoothing the edges as illustrated in Fig. 6.

Fig. 6 Design post-processing. Comparison of the generated topology
optimized design (blue) and the subsequent post-processed design (red)
overlaid on top used in experiments for design D1.
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We deposit stoichiometric silicon nitride onto a 100 mm single-crystal silicon
wafer of 500 μm thickness using low-pressure chemical vapor deposition. This is
followed by spincoating photoresist onto the wafer and transfer of the different
resonator designs using UV-lithography. The photoresist is developed and the
silicon nitride is etched in these regions by means of reactive ion etching. Residual
photoresist is removed using oxide plasma, and finally, the trampolines are released
in potassium hydroxide at 80 °C followed by cleaning in hydrochloric acid and
sulfiric acid mixed with ammonium persulfate.

Measurements of the frequency and quality factor of the resonators are per-
formed using optical interferometry driven by a laser with a wavelength of
1550 nm. The laser beam is reflected off the vibrating membrane (located inside a
vacuum chamber at low pressure < 10−7 mBar), and the resulting phase shift is
detected with high-sensitivity using a phase-locked homodyne detector and
recorded with a spectrum analyzer. Excitation of the mechanical oscillator is done
by modulating the intensity of the laser at the resonance frequency. Once excited,
the modulation is switched off and the amplitude decay is subsequently measured.
We ruled out the potential effect of photothermal-induced modifications of the Q
factor by conducting the Q value measurements with a variety of different power
levels without observing any changes.

To model the frequency dependency of the silicon nitride thickness in Fig. 3a,
the tensile prestress dependency of the thickness is needed. The stress-thickness
dependency is believed to be caused by the oxidization layer which introduces a
compressive stress contribution onto the silicon nitride film dependent on its
thickness35. Assuming that the oxidized layer is much smaller than the total film
thickness, we model the effect by the expression σ(h)= σ0− βσ/h where σ0 is the
asymptotic prestress parameter and βσ is a coefficient that determines how fast the
prestress changes with thickness. We fit these two parameters against data attained
from the measurement of tensile prestress from 2573 samples of different thick-
nesses as shown in Fig. 7. The tensile stress was derived by measuring the reso-
nance frequency and comparing to predicted values from finite element
simulations noting the f / ffiffiffi

σ
p

dependency. This approach has some inherent
uncertainties related to fabrication and the assumptions of the material parameters
of silicon nitride. We find σ0= 1.235 ± 0.002 GPa and βσ= 4.52 ± 0.06Pa ⋅ m.

Data availability
The data generated in this study have been deposited in the figshare data repository
database https://doi.org/10.11583/DTU.14394254.
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