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The productivity-biodiversity relationship varies
across diversity dimensions
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Understanding the processes that drive the dramatic changes in biodiversity along the pro-
ductivity gradient remains a major challenge. Insight from simple, bivariate relationships so
far has been limited. We combined >11,000 community plots in the French Alps with a
molecular phylogeny and trait information for >1200 plant species to simultaneously
investigate the relationships between all major biodiversity dimensions and satellite-sensed
productivity. Using an approach that tests for differential effects of species dominance,
species similarity and the interplay between phylogeny and traits, we demonstrate that
unimodal productivity-biodiversity relationships only dominate for taxonomic diversity. In
forests, trait and phylogenetic diversity typically increase with productivity, while in grass-
lands, relationships shift from unimodal to declining with greater land-use intensity. High
productivity may increase trait/phylogenetic diversity in ecosystems with few external
constraints (forests) by promoting complementary strategies, but under external constraints
(managed grasslands) successful strategies are similar and thus the best competitors may be
selected.
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iological diversity changes dramatically along the gradient

of ecosystem productivity. This is particularly visible in

plant communities that transform from marginal grass-
lands high above the tree line to semi-natural meadows and
pastures and finally to lush broad-leaved forests!. Understanding
how ecological processes, such as environmental filtering, com-
petitive exclusion, or evolutionary context affect these transfor-
mations remains an unresolved challenge in ecology (see ref. 2 for
a review). Here, we follow a recent call to employ approaches that
embrace more complexity? and show that simultaneously and
systematically exploring productivity-biodiversity relationships
across several biodiversity dimensions may provide deeper insight
than focusing on one biodiversity dimension alone.

Two approaches have commonly been used to study the rela-
tionship between productivity and biodiversity. First, the shape
and strength of productivity-biodiversity relationships have been
studied intensively in natural and semi-natural systems based on
observations. Observational studies mostly identified unimodal
productivity-biodiversity relationships®#, but alternative rela-
tionships were also found (e.g., ref. ®). Biodiversity of the typically
large numbers of species considered in such studies has com-
monly been approximated by species richness. Second, manip-
ulation experiments have been conducted to test to which extent
biodiversity promotes productivity. Such experiments identified
positive associations between several biodiversity dimensions and
productivity®~10. However, these findings may not be directly
comparable to observation-based assessments since their typically
local extent leads to comparably narrow productivity ranges
covered, and because biodiversity change in experiments is
induced by artificial community modifications!!:12. Observational
studies, in essence, may thus offer a less distorted picture of
productivity-biodiversity relationships in natural communities,
but so far have been limited by the rather crude assumption that
biodiversity equals species numbers.

Species richness ignores how communities are structured by
both species dominance and similarity. Biodiversity estimates
accounting for species dominance assign a higher weight to
species with higher coverage or higher abundance in a commu-
nity. With the same species richness, dominance-corrected
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biodiversity is higher for a community where abundances are
more evenly distributed in comparison to a community domi-
nated by a few common species. Additionally, species are not
equal in terms of their functions and ecological strategies, and
thus the similarity between species should be considered, with
higher biodiversity in communities where species are more dis-
similar!3. Ecologically relevant similarity information may be
obtained directly, by measuring functional traits, or indirectly, by
comparing the positions of species on a phylogenetic tree. Bio-
diversity dimensions considering similarity information can be
used to test ecological theories that link species similarity directly
to their performance in abiotic (e.g. environmental filtering) and
biotic environments (e.g. competitive exclusion).

A comprehensive analysis of biodiversity and its response to
various ecological processes may be obtained by systematically
varying the assumptions on species dominance and similarity in
biodiversity estimates (Fig. 1a). Even when accounting for dom-
inance and similarity, using only small sets of biodiversity metrics
may deliver an incomplete picture of productivity-biodiversity
relationships and will be constrained by the assumptions of the
assessed metrics. This limitation can be relaxed by systematically
investigating the realm of major assumptions. For example, the
assumed importance of species dominance can be continuously
increased in Hill’s numbers framework!314 using the parameter g
(Fig. 1a). A lineage of similar species that dominates communities
along an environmental gradient may then result in low beta
diversity estimates above a certain value for g, but not when ¢ is
set to zero and all species are treated as equally important!>.

Assumptions on species similarity may be systematically varied
along two axes (Fig. 1a). The first axis is linked to the type of
similarity information, with poles defined by trait similarity and
phylogenetic relatedness!®. Along the axis, trait and phylogenetic
similarity information are then combined to functional-
phylogenetic similarity estimates, using a weighting parameter,
a, that balances their contributions!®. On the second axis, species
similarity assumptions can be varied by emphasizing high versus
low similarities (i.e., the scale of similarity)!>17-18, In other words,
branches close to the tips or branches close to the roots of the
phylogenetic or functional tree may be emphasized (see Fig. 1a).
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Fig. 1 Definition of biodiversity space and hypothesized productivity-biodiversity relationships. Panel (a) shows a sketch of our definition of biodiversity
space. Functional-phylogenetic weighting parameter (a) on the x-axis corresponds to increasing emphasis on trait similarity relative to phylogenetic

similarity. Scaling parameter § on the z-axis represents increasing emphasis on small versus large species differences. Dominance weighting parameter (g)
on y-axis represents increasing emphasis on dominant species in biodiversity estimates. Expected relationships between species richness and productivity
is shown in panel (b); expected relationships between trait/phylogenetic diversity metrics and productivity are shown in panel (c). The green symbols in
the diagrams represent commonly used biodiversity metrics (see legend). Rao* represents 1/(1—Rao), with Rao being Rao's quadratic entropy®8. Silhouette

images are courtesy of Philipp Brun.
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To this end Pagel’s §-transformation!® can be used, where higher
values for § give greater emphasis on high versus low similarity.
In forest tree communities, biodiversity estimates considering low
similarity scales (low 8), focusing e.g. on different clades, respond
to the environment, whereas estimates considering high-
similarity-scales (high 0), focusing e.g. on sister species, appear
to be influenced by competition!”.

Considering the above metrics allows us to begin to tease apart
different ecological hypotheses. The relationship between pro-
ductivity and species richness, for example, may be unimodal,
since according to the most prominent historical hypothesis!®-21,
species numbers decline in unproductive environments due to
environmental filtering, while in productive environments lower
species richness results from increased competition and, in turn,
competitive exclusion. In contrast, the limiting similarity
hypothesis assumes species to specialize on complementary
niches (herein the term niche is used in the Grinnellian sense?2)
in communities where competition is high, promoting assem-
blages with diverse traits?3-2°. Similarly, in such communities
phylogenetic diversity was observed to be over-dispersed. Trait
and phylogenetic diversity therefore potentially increase with
productivity (Fig. 1c). However, productivity-biodiversity rela-
tionships also depend on the local environment.

Both productivity and biodiversity are modulated by climate,
ecosystem type, and land use intensity which likely also affects
their interrelationship. Climate constrains both ecosystem pro-
ductivity and the number of species capable to thrive. In harsh
climates, the observed productivity gradient may be shifted to
lower values and also the observed biodiversity may be lower
than in more favorable climates. Moreover, biological commu-
nities differ across ecosystem types such as grasslands and
forests, with potential implications on the shape of the
productivity-biodiversity relationships. This is particularly true
for semi-natural ecosystems which are under the influence of
contrasting forms of land use. In semi-natural grasslands, for
example, extensive management usually includes the removal of
a significant fraction of the biomass above a certain height. This
reduces light competition and filters for species capable of per-
sisting despite the frequent cutting and/or grazing!®. Conversely,
increasing levels of fertilizing may increase productivity and thus
competition within communities. In forests, on the other hand,
plant height is rarely artificially constrained. Light competition
may therefore be stronger in forests than in grasslands. However,
forest communities may sometimes be artificially altered through
plantations and promotions of desired tree species.

Here, we investigated productivity-biodiversity relationships
for an extensive set of plant community observations in the
French Alps (Fig. 2a), covering three climate zones (Fig. 2b)
and two major ecosystem types at several levels of land use
intensity. We combined over 11,000 diverse, geo-referenced
plant community surveys mainly from forests and perennial
grasslands, a genus-level phylogeny, and three key functional
traits (specific leaf area (SLA), height and seed mass (SM)) for
over 1200 species of vascular plants to comprehensively
investigate productivity-biodiversity relationships. Our study
area included over 40,000 km? in the lower montane, upper
montane, and lower alpine bioclimatic zones2’. Given this
massive number of community plots, traditional in situ mea-
surements of plant productivity were not feasible. We therefore
estimated productivity with the high-resolution, satellite-sensed
Normalized Difference Vegetation Index (NDVI) from the
Landsat program (landsat.gsfc.nasa.gov) which has been
demonstrated to be good substitute at regional scales28. For
clarity, we focused on the common and complementary indices
of species richness and Rao’s quadratic entropies of unscaled
functional and phylogenetic diversity (Rao*gnce and Rao*ppnyio.

Lower montane

Upper montane
[ Lower alpine
Il Upper alpine
Il Nival

Fig. 2 Distribution of community plots and bioclimatic zones. Panel (a)
shows the distribution of the community plots in the French Alps. Panel (b)
indicates corresponding bioclimatic zones, as defined by ref. 27. Total length
of scale bar is 80 km. Source data are provided in the Source Data file.

respectively), but corresponding results across the whole bio-
diversity space introduced above (Fig. 1) are also provided,
either in the Results section or in the Supplementary material.

Based on this set-up, we test and largely confirm the following
hypotheses:

(1) We expect contrasting productivity-biodiversity relation-
ships for different dimensions of biodiversity.

a.
We assume environmental filtering and competitive exclu-
sion to shape unimodal relationships between species
richness and productivity (Fig. 1b), and find such relation-
ships in all ecosystem types.

b.

We assume niche differentiation in competitive environ-
ments to result in a monotonically increasing relationship
between productivity and trait and phylogenetic diversity
(Fig. 1c), and find such relationships across all land cover
types and in forests, but not in grasslands, where unimodal
relationships prevail.

(2) We expect differences between productivity-biodiversity
relationships between bioclimatic zones, between ecosystem
types, and under different land use intensities, and find
them in particular for ecosystem types and land use
intensities.

Productivity may increase trait/phylogenetic diversity in forests
because, within the relatively large niche space available, com-
petitive exclusion selects for species that pursue complementary
ecological strategies. In (managed) grasslands niche space is
externally constrained and successful ecological strategies are very
similar. Competitive exclusion may thus select for the growth
forms with the highest competitive ability.
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Fig. 3 Plant biodiversity responses to NDVI across biodiversity space. In panel (a) shapes of the relationships are summarized across biodiversity space.
x-axis corresponds to increasing emphasis on trait relative to phylogenetic information; y-axis represent increasing emphasis on dominant relative to rare
species; z-axis represents increasing emphasis on high versus low species similarities. Numbers indicate locations of commonly used biodiversity metrics
within the biodiversity space. Panel (b) shows explained variance of the fits across biodiversity space. Detailed relationships for focal biodiversity metrics
are illustrated at in panels (c-e) with source data provided in the Source Data file. Central lines in boxplots illustrate medians, boxes illustrate interquartile
ranges, and whiskers show 95% confidence intervals. Overlaid are univariate GAM-fits with colors representing type of the curve: blue is increasing; yellow
is concave-; purple is concave+; and gray is not significant. Rao* represents 1/(1—Rao), with Rao being Rao's quadratic entropy®®.

Results

General relationships. When pooling communities from all
ecosystem types, we found a unimodal relationship between
species richness and productivity, while most dimensions of trait
and phylogenetic diversity increased with productivity (Fig. 3).
We split plant community observations into 18 bins of increasing
NDVI (productivity) and sampled 40 communities within each
bin 100 times to calculate mean diversity for 6 x 4 x 6 combina-
tions of type of similarity (a), scale of similarity (§), and species
dominance weight (q) covering the biodiversity space introduced
above (Fig. 1). Using semi-parametric regression?® and shape
criteria (Supplementary Table 1), we then assessed type and
explained variance of the relationships between biodiversity

measures and NDVI (see Methods). In addition to species rich-
ness, we found unimodal relationships for two thirds of the
parameterizations of taxonomic diversity (§ = eo), as well as for
50% of measures considering fine scales of trait similarity (8 = 10,
a=1). Explained variance of the model fits was highest for bio-
diversity measures considering coarse scales of similarity (6 < 1)
where increasing relationships prevailed (Fig. 3a, b). For biodi-
versity measures with increasing weights of species dominance,
explained variance decreased, and for the highest dominance
weight (g =), corresponding relationships were classified as
non-significant (ns).

Productivity-biodiversity relationships across all ecosystem
types were largely robust when additional traits were considered
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or when bioclimatic zones were compared. Relationships between
NDVI and biodiversity dimensions showed little change when
trait diversity was estimated based on an extended set of five traits
considering also leaf dry matter content and leaf nitrogen content
for a subset of the community observations (Supplementary
Fig. 1). Similarly, NDVT relationships with the three focal metrics
remained comparable across three bioclimatic zones (Supple-
mentary Fig. 2). Bioclimatic zones did constrain the available
productivity ranges, with colder climates being associated with
lower NDVI, but where NDVTI ranges overlapped, relationships
were mostly equivalent. However, species richness was an
exception to this rule, showing a positive association with NDVI
in the colder, upper montane and lower alpine zones but a
negative association in the warmer, lower montane zone.

Effect of ecosystem type. Within forests, productivity-biodiversity
relationships were similar to those across all ecosystem types while
within grasslands every significant productivity-biodiversity rela-
tionship was unimodal (Fig. 4, Supplementary Figs. 3 and 4).
Forests were generally associated with higher NDVI than grass-
lands, with lower species richness, and with higher functional and
phylogenetic diversity (Fig. 4). NDVI-biodiversity relationships
within forests were unimodal for taxonomic diversity (§ = o) while
among diversity metrics focusing on intermediate and coarse scales
of similarity (§ < 1) most significant relationships were increasing
(Supplementary Fig. 3). However, the goodness of fit of the rela-
tionships within forests was generally lower than for relationships
across all ecosystem types. For trait diversity (6 < oo, a=1), rela-
tionships were either non-significant or unimodal. This changed
when traits were considered in isolation: the diversities of height at
maturity and SM did increase with NDVI (Fig. 4c). Within
grasslands, the patterns were strikingly different: unimodal
NDVI-biodiversity relationships prevailed across all biodiversity
dimensions (Fig. 4, Supplementary Fig. 4). Grassland biodiversity
measures for which explained variance was highest included species
richness and measures considering intermediate to coarse scales of
trait and trait-dominated functional-phylogenetic similarity (6 <1,
a>0.5).

Within forests, productivity-biodiversity relationships appeared
to be driven by the woody part of the community (Supplementary
Fig. 5). Within the forest community plots investigated, slightly
more herbaceous than woody species were observed, and

herbaceous species showed considerably higher Rao*phy1, (6= 1,
a=0, q=2), while woody species had a distinctly higher
Rao*gee (0=1, a=1, g =2). Relationships between NDVI and
the focal diversity metrics of wooded forest species were
equivalent to those for all forest species: unimodal for species
richness, and increasing for Rao*gynee and Rao*,pye. The
herbaceous part of the forest community, on the other hand,
became less species rich with increasing NDVI and reached a
minimum Rao*gnee and Rao*,py, at intermediate levels of NDVL

Productive forests had fewer species than the null expectation
but phylogenetic and functional-phylogenetic diversity was
mostly disproportionately high; for productive grasslands the
opposite was true (Fig. 5). For forests and grasslands, we
compared the diversity at the five highest NDVI bins to the
diversity of random assemblages by calculating the mass fraction
of the observed diversity distribution that lies above or below the
null diversity distribution (density bias, see Methods). Productive
forests were less diverse in terms of taxonomic diversity and for
biodiversity measures considering fine scales similarity (Pagel’s
0 > 10) but more diverse in measures accounting for intermediate
to coarse scales of similarity (Pagel's 6 <1). Conversely,
productive grasslands showed higher species richness and lower
phylogenetic and trait diversity (Pagel's 6<10) than null
expectation.

Effect of land use intensity. On average the focal biodiversity
metrics increased with land use intensity in grasslands, and they
declined more steeply with productivity when land use intensity
was high (Fig. 6). We used the average deviation of NDVI values
from the seasonal signal during the growing season as a proxy for
the frequency of land use practices (mowing, grazing, manuring)
and split grasslands by tertiles into three levels of land use
intensity. Low land use intensity was predominant for commu-
nities at the three lowest levels of productivity but negligible at the
two highest levels of productivity. For all focal metrics, average
biodiversity increased with land use intensity. Furthermore,
NDVI-species richness relationships changed from increasing to
unimodal with land use intensity, while Rao*,pny10 and Rao*gnct
shifted from unimodal to decreasing. Despite these differences in
relationship types, land use intensities did not greatly affect
density biases of productive grasslands throughout the whole
biodiversity space (Supplementary Fig. 6).
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Fig. 4 Relationships between focal biodiversity metrics and NDVI for forests and grasslands. Productivity-species richness relationships are shown in
panel (a); productivity-Rao*nyi, relationships are shown in panel (b); productivity-Rao*nct relationships are shown in panel (c). Central lines in boxplots
illustrate medians, boxes illustrate interquartile ranges, and whiskers are 95% confidence intervals for forests (dark green) and grasslands (light green).
Overlaid curves are corresponding GAM-fits, colored according to curve type classification: yellow is unimodal; blue is increasing; and gray is not
significant. Standard errors are hardly visible in this representation and thus not depicted. Histograms illustrate the frequency distribution of the vegetation
types along the productivity gradient. Mini panels on the right show Rao* indices for traits (a =1) for maximum height (HGT) diversity, specific leaf area
(SLA) diversity and seed mass (SM) diversity. Rao* represents 1/(1—Rao), with Rao being Rao's quadratic entropy®8. Source data for main panels are

provided in the Source Data file.
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on high versus low species similarities.

Discussion

We comprehensively investigated plant productivity-biodiversity
relationships by systematically evaluating different biodiversity
metrics and the ecological hypotheses they imply. By varying
dominance weights, and type and scale of similarity underlying
biodiversity estimates, as well as bioclimatic zones, ecosystem types,
and land use intensity levels, we unraveled a multitude of patterns.
Our first hypothesis was confirmed: we consistently found unim-
odal relationships between taxonomic diversity and productivity in
all ecosystem types, unless the productivity range was constrained
to lower levels by cold climate or low land use intensity or to higher
levels by warm climate. Consistent with the majority of below-
continental-scale studies on productivity—species richness relation-
ships in plants (summarized in ref. 3), our results provide evidence
that plant species richness generally declines at the highest pro-
ductivity levels, suggesting that competitive exclusion is an impor-
tant mechanism in productive plant communities!®-21-30-32, In
contrast, productivity-trait diversity and productivity-phylogenetic
diversity relationships varied between ecosystem types.

Despite declining species numbers, trait and phylogenetic
diversity increased in productive forests to values above random
expectation. This result corresponds to the patterns expected of by
the limiting similarity hypothesis?3-2>. Productivity-biodiversity
relationships in forests appear to be dominated by the woody part
of the vegetation (Supplementary Fig. 5), with a comparably high
average longevity and thus a slow turnover3334. Woody vegetation
therefore forms a comparably stable, vertically structured envir-
onment, with light limitation in the lower layers, except early in

the growing season if deciduous trees form the canopy. Such
environments contain limited open space for establishment but
their complexity and stability allow for a high niche dimension-
ality, i.e., a wide variety of Grinnellian niches?? that can be filled
by specialized species. On evolutionary time scales divergent
selection may then act on various traits of the present community
to occupy these niche spaces, in particular if competition is high3°.

Trait and phylogenetic diversity consistently responded nega-
tively to high productivity in grasslands, while at low to inter-
mediate levels of productivity the relationship depended on land
use intensity. Trait and phylogenetic diversity of productive
grasslands was below random expectation, which was opposite to
our hypothesis and to the patterns found in forests. The less
stable structures in grasslands may offer less room for specialized
niches, and thus trait diversity may be driven more by the
interplay of productivity and disturbance filters: members of
grassland communities have been shown to have similar leaf
nutrient concentrations and growth rates that change with soil
fertility. Soil fertility, which is linked to productivity, may thus
constrain trait biodiversity in grasslands!2. Disturbances includ-
ing mowing and grazing, on the other hand, may reduce
competition3637 and increase opportunities for establishment,
leading to a diversification of traits like size, or reproductive
strategy!2. Our results indicate that disturbance induced by land
use may indeed increase biodiversity, but only at low to inter-
mediate levels of productivity. When productivity is increasing
competition above a certain threshold, the disturbance filter
appears to lose its effect. The identified differences between land
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Fig. 6 NDVI-biodiversity relationships at three levels of land use
intensity in grasslands. Relationships between productivity and species
richness (a-c), Rao*phyio (d-f), and Rao*jynct (g-1) are compared between
communities of different land use intensity classes: low (a, d, g), medium
(b, e, h), and high (¢, f, i). Central lines in boxplots illustrate medians, boxes
illustrate interquartile ranges, and whiskers are 95% confidence intervals.
Overlaid curves are corresponding GAM-fits, colored according to curve
type classification: yellow is unimodal; blue is increasing; gray is not
significant; and orange is decreasing. Rao* represents 1/(1—Rao), with Rao
being Rao's quadratic entropy®8. Source data are provided in the Source
Data file.

use intensities may be indicative for differences between natural
grasslands, like those existing in North America or China, and
more managed, semi-natural grasslands like those in Europe.
However, plant trait-environment relationships can vary across
continents®® which may also affect productivity-biodiversity
relationships.

The processes discussed so far not only offer plausible expla-
nations for individual biodiversity dimensions and ecosystem
types, they also fit with the overarching framework of modern
coexistence theory. Modern coexistence theory3*40 focuses on
competitive communities typical for productive environments
and assumes that species mainly differ along two orthogonal axes:
competitive ability and niches. If co-occurring species differ more
in their competitive ability than in their niches, competition will
exclude inferior competitors; if they differ more in their niches
than in their competitive ability, coexistence is possible. Part of
the community will therefore be excluded when competition is
high, leading to declining species numbers in productive envir-
onments, but not all species are affected to the same extent. The
likelihood of exclusion of a species, i.e., its relative niche and
competitive ability differences to other species in the community,
may be mirrored in trait and phylogenetic differences®®. Within
forests trait and phylogenetic differences may mainly encode
differences in the wide variety of existing niches, e.g., whether a
plant is a canopy forming species or belongs to the herbaceous
understory vegetation. Consequently, competition in these eco-
system types will favor species with large trait and phylogenetic
differences, leading to increased trait and phylogenetic diversity.

In productive grasslands, on the other hand, species have
similar growth rates, shape, and leaf chemistry. Trait/phyloge-
netic differences between species in these communities are
therefore comparably subtle and may be more closely linked to
competitive ability. So, selection for the strongest competitors in
productive grasslands may lead to decreasing trait and phyloge-
netic diversity.

By considering plant communities from different ecosystem
types and bioclimatic zones, and at various levels of land use
intensity we were able to investigate productivity-biodiversity
relationships at a high level of generality, but this also required
making a number of limiting assumptions. Firstly, our analysis
was restricted to vascular plant species and ignored the con-
tribution of mosses or pteridophytes to biodiversity. Yet, for
example in some mountainous forests, ferns and mosses may
significantly contribute to the herbaceous part of the vegetation.
Secondly, missing trait information constrained the analysis to
about a third of all vascular plant species occurring in the French
Alps. We therefore could only consider community observations
with >80% coverage*! from these most common species. Thirdly,
for the over 1200 species considered, trait diversity was estimated
based on three traits only. These traits are linked to key ecological
functions (see Methods) and the major patterns appeared to be
robust to the number of traits considered (Supplementary Fig. 1).
Yet, the trait diversity used here may still not mirror all essential
trade-offs acting along the productivity gradients in the various
systems investigated. Fourthly, our estimates of productivity and
land use intensity are proxies from remote-sensing products. The
link between NDVT and productivity is well established?842; the
>18 years of satellite data at 30 m resolution provide the best
resource available; and the strong patterns identified highlight the
large amount of signal in these proxies; but estimates may still be
of limited accuracy for dense forests, for communities on sites
with ample bare ground, or for comparisons between contrasting
ecosystem types. Finally, our approach permits the simultaneous
assessment of predictions for several biodiversity dimensions,
constraining the realm of plausible mechanistic explanations, but
it is still empirical, and thus we cannot infer causality.

Disentangling the mechanisms underlying productivity-bio-
diversity relationships from binary species richness—productivity
gradients alone has proven difficult. We have shown that inves-
tigating biodiversity comprehensively while accounting for bio-
climatic zones, ecosystem types, and land use intensity, provides a
much more detailed view on the issue, and a better test-bed for
ecological theory. In the French Alps, modern coexistence theory
offers a consistent explanation for the observed diversity of
productivity-biodiversity relationships. Future studies investi-
gating other systems and evaluating alternative theoretical models
will be necessary to confirm the generality of this finding and
pave the way to the resolution of a lasting debate in ecology.

Methods

Study design. Our methodological framework consisted of a workflow (Supple-
mentary Fig. 7) of which most steps were repeated for plant communities from all
ecosystem types, forest communities, and grassland communities. In this workflow
we calculated species-level functional and phylogenetic trees, adjusted their focal
scale with Pagel’s & transformation!8, and converted them into distance matrices.
These functional and phylogenetic distance matrices were then combined to
functional-phylogenetic distance matrices using the a parameter!®, and provided
the first input to Hill's numbers framework suggested by Leinster and Cobbold!3
with which we calculated biodiversity. The second input to this framework were
either observed communities or random assemblages. We also estimated mean
annual NDVT to investigate shapes and strengths of productivity-biodiversity
relationships for each observed community, as well as the mean absolute deviation
of NDVI from the seasonal signal during the growing season to assess the impact of
land use intensity in grasslands. Finally, we compared the diversity of high-
productivity environments to the diversity of random assemblages.
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Community data. Plant community observations were provided by the French
National Alpine Botanical Conservatory (CBNA) and covered the French Alps
(c. 41,500 km?, Fig. 2a). The initial dataset was published in ref. 43, consisted of
about 43,000 observations and 3400 species of vascular plants with abundance
information resolved in six coverage classes*4. We translated these coverage classes
into percentages using the conversion suggested by Miinkemiiller et al.*> (Sup-
plementary Table 2). Summed coverage estimates were allowed to exceed 100%
since vegetation structure can be vertically layered.

We filtered community observations for four quality criteria. Firstly, the entire
community and a minimum of ten species had to be sampled. Secondly, geo-
positioning information had to be available with a standard error of no more than
10 m. Thirdly, estimated total coverage had to be higher than 30%, in order to limit
the distortive effect of rocks/bare soil for corresponding NDVT estimates, and lower
than 250%, to discard a few observations with unrealistically high coverage values.
Finally, full trait information had to be available for at least 80% of the total
coverage®!. After filtering, 11,172 community observations and 1219 species
remained for multi-trait analyses, while numbers for single-trait analyses were
higher (Supplementary Table 3).

Normalized Difference Vegetation Index data. We used the remotely-sensed
Normalized Difference Vegetation Index (NDVI) to derive proxies for pro-
ductivity*® and land use intensity. Geo-corrected NDVI data were obtained from
the Landsat project and had a horizontal resolution of 30 m. We downloaded
NDVI estimates for all scenes (images) of the Landsat 7 satellite covering the study
area from July 1999 to October 2017 and extracted NDVI values at the locations of
the community plots. The extracted values were filtered for pixel quality ‘clear’ (no
water, snow, clouds, or cloud shadow) and NDVTI scores in the valid range,
resulting in an average of 136 NDVI estimates per community plot (ranging from
38 to 483).

Climate data. We used data on bioclimatic zones and growing season to investi-
gate the impact of climate on productivity-biodiversity relationships, and to
constrain estimates of land use intensity. All climate data originated from the
Climatologies at High resolution for the Earth’s Land Surface Areas (CHELSA)
initiative*”* with an original resolution of 30 arc-sec (http://chelsa-climate.org/).
Bioclimatic zones were defined following Korner et al.?” and had an original
resolution of 1 x 1 km. We downscaled these values to 25 x 25 m using geo-
graphically weighted regression. Estimates on the first and the last day of the
growing season (>5 °C) were based on mechanistically downscaled temperature
data at 25 x 25 m resolution.

Functional trees and traits. We used functional trees rather than distance
matrices to describe species trait similarity in order to be able to adjust the scale of
similarity with Pagel’s & parameter!8. Functional trees were built on trait infor-
mation including the key traits SLA, height at maturity (HGT), and SM. SLA,
HGT, and SM are tightly linked to the fundamental life missions resource acqui-
sition, survival, and reproduction?, and thus useful to capture variation in plant
ecological strategies:®>! SLA mirrors the trade-off between fast resource uptake
and long lifespan; SM represents the trade-off between fecundity and energy
invested per offspring individual;°> and HGT is related to competitive ability and
avoidance of environmental stress>>. Furthermore, in a sensitivity analysis we also
included the leaf-spectrum-traits leaf dry matter content and leaf nitrogen content
(LDMC and LNC, respectively)>*. These traits were available for 300 species which
constituted >80% of coverage in 3300 community plots. Additionally, we used
information on plant woodiness in order to distinguish the herbaceous from the
woody species in forest communities. Trait data originated from Thuiller et al.43.

Functional dendrograms were derived from the combined information of SLA,
HGT, and SM, and for each trait individually. First, all traits were log-transformed
and scaled to unit variance. For species with complete trait information we then
calculated distance matrices using the Euclidean distance measure and finally
derived hierarchical clusters with the unweighted pair group method with
arithmetic mean (UPGMA) algorithm to produce ultrametric, functional
dendrograms®>.

We checked to which degree the functional variation was hierarchical by
applying Mantel tests, comparing phenetic distances (obtained from the
dendrograms) with functional distances from the distance matrices>®. Based on
9999 randomizations, we found significant (p < 0.001) correlations of 0.74, 0.80,
0.80, and 0.73 for functional trees based on all traits, SLA, HGT, and SM,
respectively. A substantial fraction of the functional variation was therefore
preserved in the trees.

Phylogenetic tree. We used an ultrametric genus-level phylogeny of plants

occurring in the European Alps and extended it with random binary trees to obtain
a species-level resolution. The original tree was developed by Thuiller et al.#3 based
on Genbank sequences and included 947 genera, covering 99% of the species for
which trait information was available (Supplementary Table 3). In order to bring
the tree to species-level resolution, we randomly generated as many binary splits as
were necessary to link the genus-level tree tips to all observed species within each
genus, using the Yule model as implemented in the R package apTreeshape®’. We

repeated this procedure to create 100 and 2000 possible species-level trees and used
them to calculate phylogenetic and functional-phylogenetic diversity of resampled
sets of observed and null communities, respectively (see subsections Calculating
biodiversity and Constructing null communities). Limited phylogenetic resolution
had little effect on our analyses. Indeed, across the filtered community dataset, on
average only 1% of genera were represented by three or more species in local
communities and thus not fully resolved.

Phylogenetic distances were not significantly correlated with functional
distances. The phenetic distances obtained from the functional dendrogram and
ten replicates of species-level phylogenetic dendrograms showed non-significant
Mantel correlations (all p >0.05) of 0.004 + 0.000, when on 999 randomizations
were used (see also Supplementary Fig. 8).

Assigning ecosystem types to community plots. Ecosystem type was directly
reported only for an insufficient fraction of the community plots. We therefore
derived this information a posteriori based on the typical habitat of the majority of
the plant coverage present. Two approaches may be used to add ecosystem type
information in retrospect: obtaining land cover information for the coordinates of
the community plots (e.g., from high-resolution remote-sensing products) or by
inferring the ecosystem type from the species composition of the community plot.
We used the latter, more direct approach by deriving for each species whether it
typically or occasionally occurred in forests or grasslands, or both ecosystem types,
using information from Flora Indicativa®®. We then defined coverage criteria to
determine whether observations represent forest communities (1 = 3324), grass-
land communities (1 = 3738) or none of the above (n =4110) (Supplementary
Tables 3 and 4).

Estimating productivity and land use intensity. We approximated productivity
(for each community observation) and land use intensity (for grassland observa-
tions) from irregular NDVI time-series as observed by the Landsat program. To
this end, we used generalized additive models (GAMs)2°. The theoretical range of
NDVI values is bounded between —1 and 1, but the observed values only covered
the central part of that range (—0.04 to 0.32). Our data were therefore hardly
affected by these boundaries and it was feasible to assume that NDVI values follow
a Gaussian error distribution. To approximate productivity, we fitted NDVI as a
function of Julian day, using a cyclic cubic regression spline with a flexibility of five
degrees of freedom at maximum (k = 5), and year of measurement, using a factor
term. From these fits, we then predicted mean interannual NDVI. For land use
intensity, we fitted similar models, but only considering the observations taken
during the growing season, where we assumed the majority of land use practices to
take place. Within this period, we fitted NDVI as a function of Julian day using
ordinary thin plate regression with a flexibility of three degrees of freedom at
maximum (k = 3). We assumed that in semi-natural grasslands the model error
remaining after correcting for the seasonal signal is mainly driven by land-use
practices including mowing, grazing and fertilizing, and used the mean absolute
residual of the model fits as a proxy for land use intensity>®. All GAMs were fitted
using the R package mgcvo?.

Binning plant community observations. Before estimating biodiversity, we split
plant community observations into bins defined by distinct combinations of NDVI,
ecosystem type, bioclimatic zone, and land use intensity. Investigating biodiversity
within discrete NDVI bins allows determining uncertainty via bootstrapping. The
NDVI gradient in the data was split into 18 bins (—0.04 - —0.02, —0.02 -0,..., 0.3
-0.32) in order to enable comparison of several productivity levels while still having
sufficient observations per bin. For ecosystem type, we either pooled all ecosystem
types, or we distinguished forest and grassland observations. Furthermore, we
distinguished the lower montane, upper montane, and lower alpine bioclimatic
zones, as well as three levels of land use intensity in grasslands (separated by tertiles
of mean absolute deviations from the seasonal NDVI trend). From the community
observations within each bin, biodiversity was estimated for 100 bootstrap samples
of 40 observations. When land use intensity levels were compared in grasslands,
bin-wise biodiversity was estimated for 100 bootstrap samples of 20 observations,
due to the reduced number of observations per bin. Observations were sampled
randomly under the constraint that they had to be at least 5km apart from each
other. Binning with regular bin sizes leads to smaller sample sizes at the boundaries
of the productivity range, which may cause undesired edge effects. We tested for
such effects by using an alternative binning criterion of 5%-percentiles of the
productivity data and found edge effects to have a small impact on our results
(Supplementary Fig. 9).

Calculating biodiversity. We calculated biodiversity by successively defining scale
of similarity, type of similarity, and dominance effect. To adjust the scale of
similarity, we transformed functional and phylogenetic trees with Pagel’s § trans-
formation!8. This transformation was originally developed in a phylogenetic
context, but can also be applied to functional dendrograms!®. Transformations
with & below 1 increasingly inflate deep, close-to-root branches of the dendrogram,
emphasizing differences between distinct groups, while transformations with &
above 1 increasingly inflate the shallow, close-to-tip, branches, focusing on fine
differences like those between sister species. If § approaches infinity, the
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dendrogram becomes rake-like, assuming equal similarity between all species, and
corresponding biodiversity metrics approach taxonomic diversity (see also Fig. 1).
We estimated biodiversity for & values of 0.1, 1, 10 and oo.

Once the scale of similarity was set, type of similarity was determined based on
the functional-phylogenetic weighting parameter!® a. To this end, &-transformed
functional and phylogenetic trees were converted into distance matrices, and used
to calculate a combined matrix of Euclidean functional-phylogenetic distances
based on the formula

FPDist = (a PDist? + (1 — a)FDist’)?, (1)

where PDist represents the phylogenetic distance matrix and FDist the functional
distance matrix. Functional-phylogenetic distances can be considered functional
distances that account for information from unmeasured, phylogenetically
correlated traits, and may contain information not apparent from phylogenetic or
functional distances alone!®. Biodiversity was calculated for a values of 0, 0.2, 0.4,
0.6, 0.8 and 1.

Finally, the importance of species dominance was defined through the
parameter ¢ in Hill’s numbers frame work!4. To this end, the obtained functional-
phylogenetic distance matrices were converted into a similarity matrices (one
minus scaled distance) and used as similarity information in the framework of
Leinster and Cobbold (2012)!3 to calculate biodiversity. Besides considering
similarity information, in this framework the importance of dominance can be
varied by setting the dominance weight g, which is bounded by zero and infinity!3.
We calculated biodiversity for Hill's numbers of 0, 1, 2, 5, 10, and oo, using the R
function abgDecompQ provided by Chalmandrier et al.!’.

Modeling productivity-biodiversity relationships. We investigated
productivity-biodiversity relationships using GAMs. Our biodiversity estimates are
effective numbers, i.e., non-negative but not necessarily integer values which
should not be modeled assuming Gaussian error distributions. However, Poisson
error distribution, the typical alternative for count data, was also not feasible as it
requires integer values. We therefore log-transformed biodiversity estimates prior
to model fitting with the Gaussian error assumption. We fitted the response to
productivity as a smooth term with a restricted flexibility of three degrees of
freedom at the most (k= 3).

Classifying productivity-biodiversity relationships. We generated response
curves from the productivity-biodiversity model fits and used goodness of fit and
curve shape criteria to separate five classes of curves. Goodness of fit was determined
based on R2, which here represents the explained variance when fitted biodiversity
estimates were back-transformed to the original scale. Model fits with R% < 0.15 were
assumed to be insignificant and corresponding curve types labeled ‘ns’. We used this
relatively strict threshold, in order to exclude noisy relationships from interpretation.
Response curves were predicted within the range of NDVI observations. Curves were
considered concave— (unimodal) if they had their minima at the minimum or
maximum of the prediction range and their maxima somewhere within the prediction
range. Correspondingly, to fall into the class concave+, curves had to have their
maxima at the minimum or maximum of the prediction range and their minima
somewhere within the prediction range. However, our relatively inflexible GAM fits
by tendency fell within this strict definition of concave + for biodiversity estimates
that increased exponentially with productivity. Due to this artifact and since there was
no theoretical reason to expect concave+ productivity-biodiversity relationships, we
added an additional criterion for this class: curves had to significantly increase on
both sides of the minimum. This was the case if biodiversity predictions at both edges
of the prediction range surpassed 25% of the predicted biodiversity range. If this was
not the case, and maximum biodiversity was predicted for highest NDVI, curves were
assigned ‘increasing’; If this was not the case and maximum biodiversity was predicted
at lowest NDVI, curves were assigned ‘decreasing’. Curve shape criteria are sum-
marized in Supplementary Table 1.

Constructing null communities. We constructed null communities to investigate
how biodiversity in high-productivity environments differs from random expec-
tation. Null communities were constructed for all ecosystem types, forests only,
grasslands only, and land use intensity levels within grasslands based on an
extension of Gotelli’s swap algorithm®-02 for abundance data. In a first step, we
applied this former algorithm to the presence/absence version of our species by site
matrix: random pairs of present species and sites were repeatedly chosen and
species presence was swapped. While constructing random communities, this
approach preserves local species richness per site and among site species occur-
rence frequencies. In a second step, we randomly assigned the observed dominance
values at each site to the new species lists. This way, also local abundance dis-
tributions per site were preserved. For biodiversity analyses 2000 times 40 of these
null communities were drawn (2000 times 20 for null models specific to land use
intensity levels) under the constraint that sites from each productivity bin had to be
represented in equal fractions. For the derived null communities we then calculated
all dimensions of biodiversity as described in subsection Calculating biodiversity.

Comparing observed biodiversity with null biodiversity. For forests and
grasslands, we compared biodiversity dimensions in the highest productivity bins
with the corresponding biodiversity dimensions of null communities. We
approximated the frequency distributions of null and observed biodiversity by
crude, continuous density functions (adjust =2 in the density command in R%%)
and used them to calculate the mass fraction of the observed biodiversity density
distribution that lies at higher or lower biodiversity than the null biodiversity
density distribution. If the surplus of the observed density distribution was at
higher biodiversity, the resulting fraction was multiplied with +1, otherwise it was
multiplied by —1. We calculated these biases individually for the five highest
productivity bins (the three highest bins for estimates specific to land use intensity
levels in grasslands) and report their averages.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

NDVI data from the Landsat mission. Climate data from CHELSA. Plant community
data, phylogenetic data, and trait data are available from Wilfried Thuiller (wilfried.
thuiller@univ-grenoble-alpes.fr) on reasonable request. The source data underlying the
main results (Figs. 2a, 3c—e, 4, and 6) are provided as a Source Data file.

Code availability

All analyses were conducted in the R environment®3 (version 3.4.2). The packages used
include ade4%* (version 1.7-13), ape® (version 5.2), apTreeshape®” (version 1.4-5),
geiger®® (version 2.0.6), mgev? (version 1.8-20), and raster®’ (version 2.8.19). Code
generated for analyses and illustrations is available from the corresponding author.
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