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The fecal resistome of dairy cattle is associated
with diet during nursing
Jinxin Liu 1,2, Diana H. Taft1,2, Maria X. Maldonado-Gomez1,2, Daisy Johnson1,2, Michelle L. Treiber 1,3,

Danielle G. Lemay 3,4,5, Edward J. DePeters6 & David A. Mills1,2,7

Antimicrobial resistance is a global public health concern, and livestock play a significant role

in selecting for resistance and maintaining such reservoirs. Here we study the succession of

dairy cattle resistome during early life using metagenomic sequencing, as well as the rela-

tionship between resistome, gut microbiota, and diet. In our dataset, the gut of dairy calves

serves as a reservoir of 329 antimicrobial resistance genes (ARGs) presumably conferring

resistance to 17 classes of antibiotics, and the abundance of ARGs declines gradually during

nursing. ARGs appear to co-occur with antibacterial biocide or metal resistance genes.

Colostrum is a potential source of ARGs observed in calves at day 2. The dynamic changes in

the resistome are likely a result of gut microbiota assembly, which is closely associated with

diet transition in dairy calves. Modifications in the resistome may be possible via early-life

dietary interventions to reduce overall antimicrobial resistance.
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Antimicrobial resistance (AMR) is a worldwide public
health threat1 with increasing incidence of multidrug
resistance found in clinical pathogens2,3. The global dis-

semination of antimicrobial resistance genes (ARGs), including
emerging resistances to “last resort” antibiotics such as carbape-
nem and colistin, prompts the study of novel methods to control
the bacterial clades that harbor and propagate ARGs4,5. In
addition to pathogens, commensal bacteria are also reservoirs of
ARGs and influence AMR transmission6,7. Compared with
human applications, antibiotics are used considerably more for
livestock. AMR in livestock limits therapeutic options and creates
reservoirs of resistance that can be transmitted to humans via the
food chain or environmental effluents. Although such transmis-
sion may compromise treatment of human infections8,9, in-depth
investigations employing metagenomic sequencing to study the
diversity and abundance of ARGs, and in particular the genes
possessed by commensal bacteria in food-producing animals (e.g.,
cattle), remains limited10.

The reservoirs of ARGs present in food-producing animals
commonly confer resistance to clinically important antibiotics11.
The prevalence of antibiotic-resistant bacteria, such as Escherichia
coli and Salmonella species, in dairy cattle is typically age-
dependent with a higher abundance in earlier stages of life (i.e.,
pre-weaned calf) albeit this pattern is not necessarily associated
with recent use of antimicrobials12,13. Data on the impact of other
factors such as diet (milk vs. solid food)14, herd size and farm
type15 on the presence of antibiotic-resistant E. coli in calves
remains inconclusive. In addition, antibacterial biocides and
heavy metals, e.g. copper sulfate, are commonly used as additives
in animal feed and may impose a long-term selection pressure for
AMR16. Studies have suggested the co-selection of biocide and
antibiotic resistances in agricultural soil, water17, and swine
manure18; however metagenomic validation of co-occurrence
between ARGs and biocide/metal resistance genes (BMRGs) in
cattle during nursing is currently lacking.

In dairy cattle, the rumen microbial community is necessary to
convert dietary plant substrates into accessible nutrients and has
been studied from birth to adulthood19,20. Dietary transitions
during the early life (i.e., nursing) of calves drive changes of the
gut microbiota21, including the progressive acquisition of species
capable of digesting complex carbohydrates. In a recent study,
Auffret et al.22 tested the influence of diet on rumen functional
genes by comparing the rumen contents from concentrate-fed
and forage-fed beef cattle. Interestingly, the authors found that
the rumen resistome (the collection of all ARGs) composition is
significantly related to diet, and that both the diversity and
abundance of ARGs were higher in concentrate-fed animals22.
These findings clearly suggest that diet-driven dynamic change of
the gut microbiome has the potential to modify the gut resistome.
While the microbial communities of all compartments in the
gastrointestinal tract (GIT) of dairy cattle are important23, bac-
teria harboring ARGs in the fecal microbiota, are more likely to
contaminate the wider environment24. Studies have profiled the
fecal microbial community of dairy animals from birth25 to first
lactation26, but the profile of resistome over time has not been
characterized. In particular, the relationship between the chan-
ging bacterial populations in cattle feces and antimicrobial
resistance remains unknown.

To address these knowledge gaps, this study examines the
hypothesis that the early developing gut microbiome of dairy
calves serves as an initial point of establishment for bovine-
associated ARGs and is driven, in part, by dietary changes during
early life. To test this, time-series feces from newborn calves (n=
22) were collected to understand the accumulation of the
microbiome with a subset of the samples metagenome sequenced
to explore the resistome. Maternal colostrum from corresponding

mothers was also studied to identify potential migration of both
bacterial strains and ARGs to dairy calves. The co-occurrence of
BMRGs and ARGs was explored to assess the risk of heavy metals
and biocides in selecting for resistance in the absence of anti-
biotics. A time-course comparison of carbohydrate-active
enzymes in the fecal microbiome of dairy calves documented
the relationship between diet and the resistome over time. These
findings provide a comprehensive view of the dairy cattle resis-
tome in early life and shed light on interventions leveraging
dietary modifications to mitigate AMR in food-producing
animals.

Results
The gut microbiota is rapidly assembled in dairy calves. In
order to explore how the bovine resistome changes during early
life it was necessary to first profile the taxonomic changes in
calves. To assess these dynamic microbiota variances, fecal sam-
ples were collected from 22 dairy calves (n= 484) over the first
10 weeks of life (Fig. 1a). All DNA samples were initially sub-
jected to ribosomal marker gene sequencing, and ~9 million
quality-filtered 16S rRNA gene sequences were obtained with
18992 ± 5370 (mean ± s.d.) reads per sample. The data revealed
that the fecal microbial community was assembled rapidly with
alpha diversity as measured by both Chao1 richness and Shannon
index significantly increasing over time (GEE; P < 0.001 for both
models) (Fig. 1b). Sequencing data also displayed a temporal
change in microbial structure (GUniFrac, PERMANOVA test by
adonis2; P= 0.005) (Fig. 1c, d). Over 60% of the fecal microbiota
was represented by the bacteria classified into the families
Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae (Fig. 1d).
Interestingly, Enterobacteriaceae accounted for ~25% of the fecal
microbiota in the first week of life of dairy calves, during provi-
sion of colostrum and milk replacer, but the relative abundance of
this family decreased significantly afterward to less than 5%
(Kruskal–Wallis; P < 0.05) (Fig. 1d). Although dairy calves had
constant access to a calf starter diet from day 2, milk replacer
served as the primary source of nutrients and energy during the
first few weeks of life, but as time passed calves ate an increasing
amount of calf starter (Fig. 1a). In summary, the fecal microbiota
of dairy calves increased in diversity over time as the animals aged
and their diets became more diverse.

Bovine colostrum, the first food given to calves, serves as a
reservoir of bacteria27,28, and likely contributes to seeding the
early-life calf gut microbiota. To examine this, colostrum samples
collected from dairy cows (n= 22) were also sequenced. After
quality filtration, a total of 250184 16S rRNA reads were obtained
for 44 colostrum samples with 5686 ± 427 (mean ± s.d.) sequences
per sample. The first and second colostrum that the calves were
given during the first day of life, exhibited similar alpha diversities
(Shannon index; Kruskal–Wallis; P > 0.05) (Supplementary
Fig. 1a) and indistinguishable composition based on beta diversity
measurements (GUniFrac; PERMANOVA; P > 0.05) (Supple-
mentary Fig. 1b). Colostrum was dominated by bacteria classified
into the families Streptococcaceae, Enterobacteriaceae, and
Enterococcaceae, representing a combined ~90% of the micro-
biota (Supplementary Fig. 1c). A substantial portion (~30.6%) of
the early dairy fecal microbiota (week 1) were comprised of these
families (Fig. 1d) which suggests bacterial transmission.

To further test the possibility of bacterial transmission from
colostrum to dairy calves, we employed shotgun metagenomic
sequencing on paired feces and colostrum samples randomly
selected from the larger cohort. Fecal samples from four time
points were included: day 2, day 5, week 3, and week 7.
Metagenome binning has the tendency to group closely related
species and subspecies29,30, making it a less than ideal approach
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to evaluate bacterial transmission at the strain level. Therefore, we
performed metagenome strain profiling of the species E. coli using
two independent approaches, PanPhlAn31 and StrainEst32. E. coli
was chosen for this analysis because Enterobacteriaceae occurred
at high relative abundance in feces in dairy calves during the first
days of life and in colostrum; E. coli represents the majority of
sequences classified in this family (see Methods). The PanPhlAn
results indicate that the E. coli strains from this study have similar
genetic profiles and thus were clustered together amongst all the
strains analyzed, including 118 E. coli reference genomes
(Supplementary Fig. 2a). In particular, the dominant E. coli
strains from colostrum and fecal samples at day 2 showed similar
functional capacities (Jaccard; PERMANOVA; P= 0.15) (Sup-
plementary Fig. 2a). At day 5, in the fecal samples of dairy calves,
dominant E. coli strains started to diverge from colostrum

samples which eventually demonstrated distinct genetic profiles
at week 3 (Jaccard; PERMANOVA; P= 0.004) (Supplementary
Fig. 2a).

In addition, StrainEst data suggests that there was a greater
diversity of co-existing E. coli strains in dairy calves at day 2
compared to colostrum samples, and this diversity increased to
day 5 but decreased dramatically at week 3 (Friedman’s test; P=
0.02) (Supplementary Fig. 2b). On average, there were 63 distinct
E. coli strains observed in colostrum samples, with 33.13% of
them were shared with dairy calves at day 2. When looking at the
overlap between colostrum samples, day 2, and day 5 samples,
15.63% of strains were found in all three samples. By week 3, only
one of the three calves included in the metagenomic sequencing
subset had high enough levels of E. coli detected for the strain
analysis. In this calf, 3.08% of E. coli strains in colostrum were in
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the day 2, day 5, and week 3 fecal samples (Supplementary
Fig. 2c). For both strain profiling analyses, E. coli was below our
detection limit at metagenomes from week 7. This is likely due to
the gradually increased gut microbiome diversity and decreased
relative abundance of E. coli over time. Overall, our findings
clearly suggest that colostrum acts as a carrier of specific bacterial
species that seed and temporally persist in the gut microbiome of
dairy calves.

Fecal resistome significantly changes over time in dairy calves.
To understand the resistome dynamics during early life, shotgun
metagenomic sequences used for strain analysis were tested for
the presence of ARGs. Sequencing sample size (n= 3 dairy
calves) was determined based on the fact that dairy calves of the
same breed in our cohort have limited genetic diversity, and they
were housed in the same way with identical diets, more impor-
tantly, at the same age they possess very similar microbiota (16S
rRNA gene sequencing analysis) and thus we expect small
resistome variance between subjects. 135 Gb of Illumina
sequencing data were produced from 12 fecal microbiomes of
dairy calves, and we acquired 11.2 million 150 bp paired-end
reads per sample (on average) after host-subtraction and trim-
ming. Our analysis with the AMR++ pipeline (see Methods)
revealed that dairy calves are a source of 329 ARGs belonging to
139 ARG groups (Supplementary Fig. 3, Supplementary Data 1),
which represent 39 antibiotic resistance mechanisms. The
detected ARGs were predicted to confer resistance to a collection
of 17 classes of antibiotics in an abundance range of 0–3.75 copies
of ARG per 16S rRNA gene among samples (Fig. 2a). Over 50%
of the ARGs observed in the day 2 samples were predicted to
confer a multidrug resistance phenotype; however, the relative
abundance of these ARGs decreased afterward. In contrast, tet-
racycline resistance gradually increased over time reaching a
relative abundance above 70% of all ARGs at week 7 (Fig. 2a).
ARGs predicted to confer resistance to aminoglycosides repre-
sented a substantial portion of the resistome (~30% of total
ARGs), and their abundance was relatively stable throughout the
7 weeks included for analysis (Fig. 2a). In general, we observed
that the fecal resistome of dairy calves significantly changes over
time (Bray-Curtis; PERMANOVA; P= 0.002), with early-life
samples (day 2 and day 5) forming separate clusters while later
samples (week 3 and week 7) were more similar (Fig. 2b).

In addition to the progressive change in the structure of the
fecal resistome, the total abundance of observed ARGs decreased

significantly over time; starting at 5.14 copies of ARG per 16S
rRNA gene at day 2, and then declined to 0.77 copies of ARG per
16S rRNA gene at week 7 (Friedman’s test; P= 0.02) (Fig. 3a). As
expected, we observed small resistome variances between calves
and the sequencing sample size did offer sufficient statistical
power to capture the dynamic changes of ARGs abundance over
time (effect size is 6.68-fold decrease of ARG abundance from day
2 to week 7). In contrast to the progressively reduced overall
abundance of ARGs, the number of ARG types (ARG richness)
present in dairy calves increased significantly from day 2 to day 5
and declined gradually afterward (Friedman’s test; P= 0.04)
(Fig. 3b).

By assigning the taxonomy to ARG-containing metagenomic
contigs, we were able to predict the bacterial origin of observed
ARGs. ARGs detected were predicted to belong to 75 different
bacterial families, with families Enterobacteriaceae, Lachnospir-
aceae, Enterococcaceae, Ruminococcaceae, Bacteroidaceae, Strep-
tococcaceae, and Clostridiaceae representing 69.45% of the total
ARG abundance and accounting for 96.66% of all detected ARGs
(Fig. 3c). Among these microbial clades, Enterobacteriaceae
harbors the most ARGs and the abundance of ARGs assigned to
this family gradually decreased over time (Fig. 3c). Over 90% of
the microbes classified in Enterobacteriaceae were E. coli
(Supplementary Fig. 4). Consistent with the overall dynamics of
observed ARG richness, the number of different ARGs was
highest at day 5 for all bacterial families and showed a gradual
reduction afterward (Fig. 3d).

Given the prevalence of ARGs potentially contributed by
Enterobacteriaceae, we assessed the absolute abundance and
explored the resistance profile specifically for this family. The
absolute population of Enterobacteriaceae, as determined by
qPCR, remained relatively constant throughout the sampling
period (Supplementary Fig. 5a), however the relative abundance
as determined by amplicon sequencing (Fig. 1d and Supplementary
Fig. 5b) showed a dramatic reduction. This reflects the expected
increase in total bacterial population during this early stage of gut
microbiome development. Interestingly, the abundance of ARGs
within the Enterobacteriaceae decreased after week 1 during our
sampling period (7.6-fold decrease from week 1 to week 7;
Supplementary Fig. 5c) despite the persistent absolute abundance
of this group throughout.

Importantly, ARGs conferring resistance to MLS (macrolides,
lincosamides, and streptrogramin A and B) and tetracyclines—
two medically-important classes of antibiotics—increased within
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the first week but remained high at day 5 until the end of
sampling (Friedman’s test; P < 0.05) (Fig. 4). In particular,
tetracycline resistance genes tet32, tet40, tetO, tetQ, and tetW,
and MLS resistance genes including ermB, lnuC, and mefA
showed a gradual increase in abundance from day 2 to week 7
(Supplementary Fig. 6). As a separate validation to metagenomic
sequencing, quantitative PCR confirmed that the absolute
abundance of tetQ, one highly abundant tetracycline resistance
gene, increased over time. Specifically, a 900-fold increase was
observed from day 2 to week 7 in this cohort (Supplementary
Fig. 7). This qPCR approach confirmed our resistome findings
obtained from metagenomic sequencing across a larger number
of samples (n= 41) from additional calves.

Transferrable ARGs, which greatly contribute to the overall
dissemination of antibiotic resistance, are of specific concern. To
assess the prevalence of these genes in dairy calves, assembled
metagenomic contigs were run through ResFinder, a database
which focuses on acquired ARGs (see Methods). A total of 67
ARGs with transfer potential were detected in dairy calves,
conferring resistance to 10 classes of antibiotics (Fig. 5). The
observed ARGs were predicted to exhibit a wide distribution
across 23 families of bacteria; Enterobacteriaceae, Enterococca-
ceae, Peptostreptococcaceae, and Streptococcaceae were the
families have the most ARGs (Fig. 5). Interestingly, a recently-
discovered gene, optrA, which confers transferable resistance to
oxazolidinones and phenicols33, was detected in one of the dairy
calves at day 5. This gene was predicted to originate from a
Staphylococcus sciuri and has not been reported from an animal
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source in the United States (Fig. 5). In agreement with the total
ARGs prevalence analysis with the AMR++ pipeline, an overall
increased diversity of transferrable ARGs were observed in dairy
calves over time, with day 5 samples enriched with the highest
number of different ARGs (Supplementary Fig. 8a). In general,
the predicted transferrable ARGs were mostly harbored by two
bacterial phyla, Firmicutes (34 genes) and Proteobacteria (28
genes), while the bacterial phyla Bacteroidetes, Actinobacteria,
and Spirochaetes possessed a lesser number of ARGs (4, 5, and 1
genes, respectively; Supplementary Fig. 8b). Only limited ARGs
were shared across phyla (Supplementary Fig. 8b), indicating that
bacterial phylogeny shapes the gut resistome in dairy cattle. For
example, the gradually increased ARG, tetQ (Supplementary
Figs. 6 and 7), was mainly predicted in Bacteroidaceae (Fig. 5).

Colostrum seeds >90% of early-life ARGs in dairy calves. Given
that dairy calf fecal and colostrum samples share several ARG-
enriched taxa (e.g., E. coli) and the abundance of ARGs in feces
reached its highest levels at day 2 (very early stage), we hypo-
thesized that colostrum serves a significant initial vector of ARGs
to calves. To assess this, shotgun metagenomic sequenced
colostrum samples were analyzed for the presence of ARGs (see
Methods). We produced 38.6 GB Illumina sequencing data from
6 colostrum microbiomes, and ~1.5 million 150 bp paired-end
reads per sample were obtained. As expected, of the 105 ARGs
detected in colostrum, 73 were present in feces, representing
~90.1% (73/81) of total ARGs detected in dairy calves (Fig. 6a).
The overall resistome structure in early-life feces (day 2) closely

matched the pattern in colostrum (Fig. 6b). Fecal samples indi-
cated an overall higher abundance of observed ARGs than
colostrum, but colostrum samples showed a higher number of
different ARGs present (Fig. 6a, b). In all instances, there was a
strong and significant correlation of the resistome pattern
between paired colostrum-feces samples (Spearman’s rho= 0.62
to 0.75, P < 2.2e-16) (Fig. 6c). These data support findings pre-
sented earlier (Supplementary Fig. 2) suggesting that colostrum
serves as a carrier for ARGs.

BMRGs co-select with ARGs. Animals enrolled in this study
were not treated with any traditional antibiotics. However,
exposure of cattle to other compounds, such as antibacterial
biocides and metals, may contribute to the promotion of anti-
biotic resistance through co-selection16. Thus, understanding the
biocide/metal resistome structure will help illuminate possible
sources of indirect selective pressure for antibiotic resistance in
dairy calves. Metagenomic sequencing reads of fecal samples were
aligned to the BacMet database, matches were tallied, and nor-
malized data were used for comparisons (see Methods). A total of
104 MRGs (Supplementary Fig. 9, Supplementary Data 2) were
detected in dairy calves conferring resistance to a series of 15
different antibacterial metal compounds including Sb, As, Cd, Cu,
and Ag (Supplementary Fig. 10). In addition, 34 genes found in
samples from dairy calves were predicted to confer a biocide
resistance phenotype in the present study (Supplementary Fig. 11,
Supplementary Data 2). Similar to the dynamics of ARGs in dairy
calves, we observed diminishing BMRG abundance with time
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(Friedman’s test; P < 0.05) (Fig. 7a), but the number of different
resistance genes did not change significantly over time (Fried-
man’s test; P > 0.05) (Fig. 7b). In summary, the abundance of
BMRGs, together with ARGs, decreased over time, in concert
with a relative reduction in Enterobacteriaceae.

To assess the potential for co-selection34, the ARGs and
BMRGs with transfer capability that were present in at least half
of the metagenomic sequenced fecal samples, were used to predict
co-occurrence patterns. Network inference modeling35 revealed
that ARGs and BMRGs were strongly correlated in dairy calves.
In the predicted correlation model, 40 resistance genes (nodes)
formed three separate clusters while one tetracycline resistance
gene, tet44, did not show strong correlation with any other genes
(Fig. 8). In cluster #1, several biocide resistance genes (ttgH, ttgI
and ttgG) co-occurred with the copper resistance genes cusC, cusB
and cusA, and all demonstrated a strong connection to a variety
of betalactam ARGs (mecA, blaEC, ampH, and AmpC). In cluster
#2, another set of copper resistance genes (actP, copR, pcoR, and
tcrB) were positively correlated with Cd and Ag resistance genes.
Importantly, the majority of these metal resistance genes
exhibited a significant correlation with aminoglycosides ARGs
(aac(6’)-Im, aph(2”)-Ig, ant(6)-Ia and aph(3’)-Ia) and one MLS
ARG (ermB). Antibacterial heavy metals are a common
“contamination” of animal feed36, and our analysis hereby
indicated that a co-occurrence between ARGs and BMRGs is
likely occurring in dairy cattle.

Changing diet covaries with the fecal resistome in dairy calves.
Because the calf fecal resistome changed significantly during a
period of dietary transition, we sought to understand the con-
nection between the modification of the diet-related microbiome
and changes in ARG structure. We primarily focused our func-
tional analysis on enzymes involved in the digestion of complex
carbohydrates, which represent a large portion of the calves’ diet
that is inaccessible to the host37,38. Fecal metagenomes analyzed
for COG and CAZy content revealed a significant change in the
functional configuration of fecal microbial communities over time
(Bray-Curtis; PERMANOVA; P < 0.05 for both cases), with the
most substantial differences occurring in the first week (day 2 vs.
day 5) (Fig. 9a, b). Specifically, a progressive increase in the
number of CAZy enzyme families (CAZy family diversity) was
observed (Friedman’s test; P= 0.04) (Fig. 9c). The dairy fecal
microbiome was composed of 6 classes of CAZy-annotated
enzymes, of which over 70% characterized CAZy proteins were
classified as either a glycoside hydrolase or a glycosyltransferase
(Fig. 9d). Of these, the relative abundance of glycoside hydrolases
increased after day 2, and that of glycosyltransferase decreased.
Genes encoding polysaccharide lyases did not appear in the
samples until day 5, and other CAZy-associated enzymes (aux-
iliary activities) were only present on day 2 and day 5 (Fig. 9d).

Differential abundance analysis with DESeq2 revealed that 71
CAZy families significantly changed over time in dairy calves,
50% of which were glycoside hydrolases (Fig. 10a). Furthermore,
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metagenomic assembly was used to retrieve the potential bacterial
origin of the enzymes by assigning taxonomy to assembled
contigs, and the most abundant taxon at the family level for each
significantly changed CAZy family is shown in Fig. 10b.
Enterobacteriaceae was predicted to contribute most of the CAZy
enzymes that exhibited higher abundance during early days and
decreased at later time points (CE8-GH108 and GH127-GT51)
(Fig. 10b). Among these enzymes, the family GH1 which includes
lactase (EC 3.2.1.108) showed the highest abundance on day 2,
reflecting the milk-dominant diet at that time. In contrast, CAZy
enzymes, GH20-GH30 and CE6-GH27, which showed higher
abundance in later time points were predicted to mostly originate
from Bacteroidaceae (Fig. 10b). Two GH families, family GH97,

which includes glucoamylase (EC 3.2.1.3) and α-glucosidase (EC
3.2.1.20)), and family GH57, which includes α-amylase (EC
3.2.1.1), increased significantly over time, likely a result of the
increased intake of calf starter of which starch serves as the major
carbohydrate component (Fig. 1a). The changes in the CAZy
enzyme abundances suggest that the decrease in ARGs over time
is not merely due to the absence of colostrum, but due to the
presence of new carbon sources in the diet that drive abundance
of taxa that harbor enzymes which can digest plant polysacchar-
ides and are, coincidentally, also low in overall ARGs.

The predicted taxonomy of significantly changed CAZy
enzymes is in agreement with gradual changes observed in the
gut microbiota of dairy calves (Fig. 1d), as well as the OTU-OTU
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network analysis based on 16S rRNA sequencing data. In this
network, the relative abundance of organisms within the families
Enterobacteriaceae and Enterococcaceae was negatively correlated
with microbes belonging to Bacteroidaceae (Supplementary
Fig. 12). Taken together, our data support the hypothesis that
diet and time (age) contribute to the taxonomic composition of
the gut microbiota in dairy calves, and this influences the fecal
resistome.

Discussion
The early development of gut microbiota is associated with
growth in pre-weaned calves, is important for optimal calf per-
formance post-weaning, and is believed to contribute to the
profitability of the cattle enterprise39. However, young animals
typically have both a higher prevalence and a higher abundance
of antibiotic-resistant bacteria than adult animals13,40; thus
understanding the early acquisition and scope of AMR in calves
during nursing is of great importance. This work, together with
other studies25,26, documents the dynamic changes in the taxo-
nomic composition of the fecal microbiota of dairy calves,
revealing an actively assembling gut microbiome during early life.
For example, we clearly demonstrated that facultative anaerobes,
such as Escherichia, Streptococcus, and Enterococcus (genera
which are commonly associated with broad-spectrum ARGs)
represented notable portions of the microbiota in dairy calves
during early days, but their relative abundance decreased over
time. The early arrival of these bacteria is at least partially linked

with colostrum feeding, and their dynamic changes in relative
abundance contribute to the gradually modified resistome during
nursing. This study examined the fecal microbiota of dairy calves
from birth until slightly after weaning, and the microbial com-
munity is likely to continue changing until 1 year of age, when it
reaches an adult-like (mature) microbiota26. Therefore, a more
extended period of sampling may be needed to fully track changes
in ARGs as the cow matures.

The fecal microbiome of dairy calves was predicted to harbor
resistance to 17 classes of antibiotics according to MEGARes (out
of the 22 classes of antibiotics present in this database), a fact
which is important because fecal shedding is a critical route of
AMR contamination to the environment24. In addition, the ARGs
observed in this study are closely relevant to human medicine as
they include resistance to several medically-important antibiotics,
e.g. beta-lactams. Specifically, two major classes of plasmid-
mediated extended-spectrum beta-lactamases (ESBL), class A
betalactamases (e.g. CTX and cepA) and class D betalactamases
(e.g. OXA) were detected in this cohort. The overall ARG
abundance (0.77–5.14 copies ARGs per 16S rRNA gene), is of the
same magnitude as that observed in recently published meta-
genomes from livestock-associated samples (0.54–3.1 copies
ARGs per 16S rRNA gene) which are significantly higher than the
prevalence of ARGs detected in sediments, soil and river
water35,41. The coherence between these results indicates that the
present cohort is a typical livestock group, and our findings
herein could be potentially generalized to other populations.
Consistent with the hypothesis that a high prevalence of AMR is
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not necessarily associated with recent antibiotic use13, animals
involved in this study did not receive any antibiotic treatment, but
their gut microbiome remained a natural reservoir of ARGs.

Interestingly, dairy calves had an overall reduction (6.68-fold)
in the abundance of ARGs as they aged, and this pattern was
directly correlated with the decrease in relative abundance of
microbial taxa, for example, Enterobacteriaceae, which was pre-
dicted to harbor the most ARGs, during early life. The correlated
reduction of both ARGs and specific taxa is promising because it
suggests that interventions targeting the reduction of these
taxa may further reduce the ARG reservoir in the gut of cattle.
This possibility is supported by this study and other work,
which found the resistome is mainly structured by the bacterial
phylogeny, and that Proteobacteria (which includes Enter-
obacteriaceae) were more likely to carry resistance than other
phyla42,43.

Despite the decrease in total ARGs, we observed an increase in
resistance to MLS and tetracyclines antibiotics over time, raising
concerns that not every ARG decreases in abundance with age.
The increase in MLS and tetracycline ARGs is also consistent with
the hypothesis that community membership shapes the resistome
because neither MLS nor tetracycline ARGs primarily originate in
Enterobacteriaceae. In contrast, tetracycline ARGs, including the
highly abundant tetQ, were predicted to originate in Bacter-
oidaceae. While no antibiotics were given to the animals in this
study, the increased tetracycline resistance may reflect historical
antibiotic use. In the United States tetracycline has been widely
used in cattle representing ~30.1% of the total antibiotic usage in
food-producing animals44. Because MLS is categorized as criti-
cally important and tetracyclines as highly important drugs
according to FDA45 the increase of corresponding resistance is a
source of concern.
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Another approach to assess the risk of AMR is to specifically
study the transferrable ARGs (via ResFinder) as these genes are
more likely transferred to pathogens and compromise clinical
treatment46. The results counterbalanced the decreased abun-
dance of total ARGs over time by identifying an increase in the
variety of transferable ARGs. Of these ARGs, a recently-
discovered multidrug resistance gene, optrA33, was present in
our cohort. This gene confers resistance to several medically-
important antibiotics including linezolid, which is often pre-
scribed to treat Gram-positive infections such as vancomycin-
resistant enterococci (VRE) and methicillin-resistant Staphylo-
coccus aureus (MRSA). Another gene, fosA, is also of clinical
significance because it causes resistance to fosfomycin which is a
last-resort antibiotic against carbapenem-resistant bacteria47. The
increased diversity of transferable ARGs partially reflects the
accumulation of new species during community assembly.

Given that enrichment of ARG diversity in dairy calves is
undesired, a next logical question is: what is the source of these
antibiotic-resistant organisms? Routes of microbial transfer may
include vertical transmission from the dam, horizontal trans-
mission from other animals in the herd, or transmission from the
housing environment and feed. As a result, colostrum may serve
as an important vehicle for bacteria in early life since it is the first
feed27,48. Doyle et al.49 indicated that teat surface and herd (i.e.,
dam) feces are the major contributors of the raw milk microbiota.
These data suggest that organisms observed in colostrum are
likely environment-specific contaminants. This is supported by
the fact that our findings on the bovine colostrum microbiota
differed from a recent study in upstate New York which found the
samples were dominated by Staphylococcus spp.28. Moreover, the
dominant taxa in colostrum within our cohort are taxa expected
to contain high levels of ARGs, suggesting that colostrum serves
as a vector of ARGs transmitted to dairy calves. This inference
was confirmed by metagenomic data at two levels. Metagenome
strain profiling revealed that the dominant E. coli from colostrum
and fecal samples at day 2 have very similar functional capacity
(PanPhlAn), and 33.13% of the observed E. coli strains in
colostrum were shared with dairy calf at day 2 (StrainEst) which
suggests bacterial transmission. In addition, the dairy fecal sam-
ples at day 2 shared ~90% ARGs with the colostrum resistome
and the distribution of ARGs show very similar patterns in these
two samples types. In general, colostrum samples had a greater
diversity of ARGs than fecal samples, but shared ARGs showed
relatively higher abundance in the feces suggesting that the gut
provides better conditions for the proliferation of these ARGs and
the microbes that carry them.

Although there was no direct antibiotic use in this cohort,
heavy metals and antibacterial biocides, which are commonly
detected in animal feed, could contribute to the promotion of
AMR16. Co-selection of antibiotic and metal/biocide resistance,
which may be driven by either cross- or co-resistance, is critical
mainly because it can promote and maintain the high prevalence
of AMR in the absence of antibiotics50. Network inferences from
the present study indicated a correlation among ARGs and
BMRGs in dairy calves, and resistance genes harbored in the same
taxa42 or co-existing on a transferrable plasmid51 can lead to a co-
occurrence of these genes. While the strain-level proof of the
network analysis linking ARGs and BMRGs will need further
validation via an independent approach, the metagenomic data
certainly suggest that co-selection of antibiotic and metal/biocide
resistance is occurring in livestock.

To understand the mechanism responsible for the dynamic
change of fecal resistome, and to further understand the rela-
tionship between dietary transition and gut microbiota assembly,
we examined the functional changes of the gut fecal community
in dairy calves. Our findings greatly reflect the connection

between diet and functional capacity. Specifically, the CAZyome
analysis revealed that the composition of carbohydrate associated
enzymes in dairy calves changed significantly over time. The early
diet transition from colostrum to milk replacer with a gradual
increase of consumption of calf starter mirrors the decrease of
lactose associated enzymes (e.g., lactase) and the increase of
enzymes related to starch and other complex carbohydrates (e.g.,
amylase). The CAZy families which were more abundant in early
days mostly originated from Enterobacteriaceae while the
enzymes that increased over time were predicted to be most likely
from Bacteroidaceae and others. Intriguingly, the species within
Bacteroidaceae were shown to harbor tetQ and other tetracycline
resistance genes, suggesting a possible link between diet-driven
changes in microbiome composition and the structure of the
resistome. The link between bacterial phylogeny and AMR is
suggested by the concomitant decrease in the relative abundance
of Enterobacteriaceae, and the reduction in ARGs. This is also
evidenced by the gradual increase (demonstrated by both meta-
genomic sequencing and qPCR data) of tetQ, occurring con-
comitantly with the increase in Bacteroidaceae. Furthermore,
colostrum containing endogenous microbes, seeded the calves
with high level of ARGs in early hours, highlighting the potential
role of diet as a direct source of ARGs. Diet may also represent an
indirect influence on the resistome by enriching certain taxa, such
as Bacteroidaceae, in the gut microbiota.

The global spread of antimicrobial resistance compromises
clinical treatments for human infections and actions are needed
to reduce the environmental transfer of ARGs and preserve the
effectiveness of existing antibiotics. This study suggests that pre-
weaned dairy calves serve as a reservoir for ARGs with enriched
diversity over nursing. While age and diet are clearly associated
with a change in the gut microbiota assembly and an overall drop
in ARGs, several resistance genes encoding resistance to clinically
important antibiotics (i.e., MLS and tetracyclines) increased.
Analyses in this study relied on high-throughput sequencing of
DNA, representing both live and dead bacteria. The presence of
DNA, especially DNA released from dead microbes, does not
ensure antibiotic resistance phenotypes. Future studies involving
functional characterization of specific ARG phenotypes are nee-
ded. Studies suggest that naturally competent bacteria are able to
uptake DNA released from dead bacteria52, which may contribute
to the transmission of ARGs, however, the probability of this
occurrence is unknown. In order to reduce these antibiotic (and
heavy metal) resistance reservoirs during nursing, novel mitiga-
tion strategies are needed. For example, control measures might
be incorporated into colostrum handling practices to reduce
transmission of ARG-containing microbes to dairy calves.
Moreover, tailored prebiotic or probiotic applications might serve
to displace ARG-containing bacteria and thus reduce the like-
lihood of further environmental spread.

Methods
Animals, sample collection, and DNA extraction. A cohort of 22 newborn dairy
calves (20 Holstein, 2 Jersey) were raised at the UC Davis Dairy Teaching and
Research Facility (Davis, CA). Calves were separated from their dams within a few
hours of birth and then housed in a separate hutch. They were given two feedings
(3 L/feeding with nursing bottle) of high-quality colostrum within the first 12 h
followed by milk replacer (Calva Products, Acampo, CA) and a commercial calf
starter (Associated Feed & Supply Co., Turlock, CA) until weaning (Fig. 1a). The
milk replacer was given twice a day based on weight, and calf starter was provided
ad libitum until weaning. Corn, soybean, barley, wheat, oat, and rice are the major
ingredients in calf starter and, starch accounts for a 57–77% of this diet53. During
weaning (week 8–10), supplementation of calf starter was halted, milk replacer was
reduced to a single feeding, and a total mixed ration (TMR) diet was introduced.
Calves were offered water ad libitum at all times (Fig. 1a). All animals involved in
this study were healthy during our sampling period and received no recorded
therapeutic or prophylactic antibiotic treatments.

Fresh feces (n= 484) were obtained from dairy calves, from at birth to week 10
between April and September of 2015, by swabbing the rectum with a sterile cotton
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swab. Two colostrum samples (~5 mL each), one per colostrum feed, were collected
per calf prior to feeding. Sampling was conducted following relevant ethical
regulations for animal research under protocol #18540. Fecal samples were then
kept on ice after sampling and then stored at −80 °C until extraction using the ZR
Fecal DNA MiniPrep kit (ZYMO, Irvine, CA, USA). Approximately 2 mL vortexed
colostrum samples were centrifuged at 10,000×g for 10 min to separate cells and fat
from whey. The supernatant and the fat layer were removed, and the pellet were
kept frozen (−20 °C) until the Zymo DNA extraction54.

16S rRNA gene sequencing and data analysis. The microbiota was profiled by
sequencing the V4 region of the 16S rRNA gene for all DNA samples and negative
controls. Specifically, we modified the forward F515 primer55 to include an eight-
nucleotide barcode unique to each sample and a two-nucleotide linker sequence:
5′-NNNNNNNNGTGTGCCAGCMGCCGCGGTAA-3′. The reverse R806 primer
(5′-GGACTACHVGGGTWTCTAAT-3’) was unmodified. PCR reactions were
carried out in triplicate in a 15-μL reaction containing 1 × GoTaq Green Mastermix
(Promega, Madison, WI, USA), 1 mM MgCl2 and 2 pmol of each primer. The PCR
amplification conditions included an initial denaturation step of 2 min at 94 °C,
followed by 25 cycles of 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s, followed by
a final extension step at 72 °C for 10 min. Triplicate reactions were combined and
purified using a Qiagen PCR purification column and submitted to the UC Davis
Genome Center DNA Technologies Sequencing Core for sequencing on an Illu-
mina MiSeq platform (250-bp paired-end).

The resulting reads were merged using PEAR (version 0.9.8) with a minimum
overlap of 120 bp, a maximum merged length of 380 bp, and a minimum merged
length of 250 bp56 and merged reads were demultiplexed using FASTX (version
0.0.14) tools57. Primers and barcodes were trimmed from reads using cutadapt
(version 1.8.3), and then reads were loaded into QIIME58. QIIME1 (version 1.9.1)
defaults were used except for as follows: operational taxonomic unit (OTU) picking
was completed using the SWARM algorithm59, the representative sequence set was
chosen using the most abundant read in each OTU, and the OTU table was filtered
to remove singletons and OTUs that only occurred in a single sample. In addition,
samples with low sequencing depth including all the negative controls (< 5000
reads) and OTUs without any reads in any of the remaining samples were excluded
for further analysis.

Statistical analysis was performed in R (version 3.4.1)60. Generalized estimating
equations (GEE) model from the geepack package61 was implemented to test for
associations between the sampling time (predictor variable) and the alpha diversity
(outcome variable). Beta diversity was visualized based on generalized UniFrac
(GUniFrac) distance matrices62 using non-metric multidimensional scaling
(NMDS) in the vegan package. A 2D plot was used if stress was < 0.2; the number
of dimensions was increased until a plot with stress < 0.2 was produced. Ellipses
shapes/paths were calculated with a function veganCovEllipse from the vegan
package in R. Differences in beta-diversity based on UniFrac distance measures
were tested using adonis2 in the vegan package after checking for differences in
dispersion using betadisper. SPIEC-EASI (SParse InversE Covariance Estimation
for Ecological Association Inference)63 was used to model OTU-OTU interaction
with fecal samples (n= 22) at week 2, and the network was visualized at the family
level using Gephi (0.9.2).

Shotgun metagenomic sequencing, metagenome assembly. Fecal samples (n=
12) from dairy calves (n= 3) at 4 time-points per calf (day 2, day 5, week 3 and
week 7), as well as the corresponding colostrum samples (n= 6; two of each calf),
were subjected to metagenomic sequencing. This design allows us to characterize
the dynamics of resistome in dairy calves over time, with a specific focus on
nursing. Dairy calves at the same age had limited variances in the gut microbiota,
and bacterial phylogeny greatly shapes the microbial antibiotic resistome42, and
thus we expect a comparable fecal resistome between subjects. Consequently, a
number of three calves would allow us to observe the dynamic changes of ARGs
abundance over time if any.

The sequencing library was prepared in the UC Berkeley Functional Genomics
Laboratory (FGL). Briefly, each sample was sheared using the 150 bp setting of the
Diagenode Bioruptor, then purified and concentrated with the Qiagen Minelute
cleanup kit. End repair, a tailing of DNA fragments, and adapter ligation were
preformed using the KAPA Hyper Prep library kit. Next, 9 cycles of indexing PCR
were performed using the KAPA Hi-Fi Hotstart amplification kit. Cleanup and
dual-SPRI size selection were completed using AMPure beads. Libraries were
checked for quality on the AATI fragment analyzer.

Shotgun metagenomic sequencing was completed using the Illumina HiSeq
4000 with 150 paired-end reads in the Vincent J. Coates Genomics Sequencing
Laboratory at the University of California, Berkeley. Because early life and
colostrum samples had high levels of host contamination, BMTagger in bmtools
(version 1) was used to remove reads aligning to the bovine genome (version
UMD3.1) from all samples. The resulting reads were then trimmed using
Trimmomatic (version 0.36)64 and merged using FLASH (version 1.2.11)65 prior to
downstream analysis. To account for the limitations of the existing database in
taxonomy profiling of rumen-associated metagenomes66, sequencing reads were
classified using Kraken267 to against a custom database including RefSeq68 and
4941 metagenome-assembled rumen genomes69. The relative abundance of E. coli

within Enterobacteriaceae was estimated using Bracken70. Metagenome assemblies
were generated with trimmed but un-merged reads for each sample using
MEGAHIT (version 1.0.6) with default parameters71.

Metagenomic strain profiling of E. coli. To assess the bacterial transmission from
colostrum to dairy calves, the microbial composition of both colostrum and feces
were characterized at the strain level using two independent pipelines, PanPhlAn31

and StrainEst (version 1.2.4)32. The sequencing reads from the first and second
colostrum samples were analyzed together for the colostrum-calf paired strain
transmission analysis. PanPhlAn was used to track the dominant strain across
samples by identifying a unique combination of genes in the pangenome of a
species, and StrainEst was used to determine the number and identity of co-existing
strains of a species (i.e., E. coli) in a metagenome. Because Enterobacteriaceae
harbors the most ARGs (Fig. 3c) and E. coli represents the majority of sequences
classified in this family (Supplementary Fig. 4), we elected to track the presence of
strains belonging to this species in our cohort. The PanPhlAn results were visua-
lized via a NMDS ordination and pairwise permutation MANOVAs (post-hoc test
for multiple comparisons) was performed in R with the RVAideMemire package
(version 0.9–69–3)72, and significant differences between groups were evaluated
after FDR adjustment for α= 0.05. Statistical analysis of Shannon diversity esti-
mated with StrainEst was performed with a Friedman’s test.

Resistance gene analysis. Sequencing reads were aligned to the ARG database
MEGARes (version 1.0.1)73 to characterize the resistome structure following the
AMR++ pipeline [https://megares.meglab.org/amrplusplus/latest/html/index.
html] with minor modifications. Briefly, merged reads were mapped to the data-
base using BWA with default settings74, and the SAM formatted alignment file was
then analyzed through ResistomeAnalyzer (version 1) by setting the threshold to
80% identity for quantification of ARGs [https://github.com/cdeanj/
resistomeanalyzer]. The AMR++ pipeline outputs data into gene, group,
mechanism and class levels corresponding to the levels of the annotation in the
database hierarchy73. The gene-level data (e.g., TEM-77, TEM-107, TEM-73, etc.)
were used to calculate the ARG richness; normalized data aggregated from the
gene-level output to the group (e.g., TEM, OXA, etc.) and class (e.g. beta-lactams
resistance) levels were used for heatmap visualization in this study. MEGARes is a
manually curated database that consists of a collection of 3824 ARGs with the
reference sequences ranging in size from 211 to 4185 bp73. To avoid bias related to
variation in ARG size, both ARG sequence length and sequencing depth were
included in data normalization prior to statistical comparisons. We normalized the
counts data by 16S rRNA gene and the ARG abundance was expressed as “copy of
ARG per copy of 16S rRNA gene” as suggested by Li et al.35,75 using the formula:

Abundance ¼
Xn

1

N ARG� like sequenceð Þ � L readsð Þ=LðARG reference sequenceÞ
N 16Ssequenceð Þ � LðreadsÞ=Lð16SsequenceÞ

ð1Þ

where n represents each individual ARG (defined by different sequences), N(ARG-
like sequence) is the number of reads annotated as n specific ARG mapped to
MEGARes database, L(reads) is the length of the sequencing reads matching ARG
n, L(ARG reference sequence) is the length of ARG n in the MEGARes database, N
(16S sequence) is the number of reads mapping to 16S rRNA bacterial gene
determined by METAXA2 (version 2.1.3)76, and L(16S sequence) is the average
length (1432 bp) of a 16S rRNA gene sequence in the Greengenes database. To
visualize dissimilarity between samples, NMDS was performed using a Bray-Curtis
dissimilarity calculation.

Bacterial origin of ARGs were predicted by assigning taxonomy to
metagenomic-assembled contigs harboring antibiotic resistance genes. Specifically,
the ARG-aligned sequencing reads (see AMR++ pipeline) were used to align to
assembled contigs (from MEGAHIT) with BWA-MEM74, and contigs which
contain ARG sequences were kept for taxonomic assignment. taxator-tk (version
1.3.3)77, software designed to perform taxonomic analysis of assembled
metagenomes, was applied to predict the bacterial origin of specific contigs. In
particular, we used taxator-tk with our custom database which includes both
RefSeq68 and 4,941 metagenome-assembled genomes69 with parameters -a megan-
lca -t 0.3 -e 0.01 to assign taxonomy of ARG-containing contigs at the family level.

In addition to the evaluation of all sequencing data described above, an
independent analysis was performed on metagenomic reads obtained from dairy
calves that were predicted to fall within Enterobacteriaceae (by alignment to RefSeq
genomes68), The AMR++ pipeline was implemented separately for these reads in
order to study the prevalence of ARGs in this particular family.

Transferrable ARGs are typically of greater concern clinically. To specifically
assess these genes, a separate ARG database, ResFinder (version 2.1)46, focusing on
acquired ARGs, was used based on assembled contigs. Briefly, contigs were
submitted to the ResFinder webpage while the identity threshold was set to 90%
with 60% minimum length match. A custom script (resParse.py) was used to
predict the bacterial origin of contigs possessing ARGs and the top candidate was
chosen for further analysis.

Resistance to antibacterial biocides and metals were also included as part of the
resistome analysis to assess the co-occurrence potentials of BMRGs and ARGs. To
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examine this, merged reads were aligned to the BacMet database (version 1.1)78

using DIAMOND79 with an E-value cutoff ≤10−10. Since resistance genes with
transfer potentials are of greater interest than chromosomal genes, analysis of
antibacterial biocide and metal resistance protein sequences was restricted to
plasmid-borne sequences. A total of 161 metal resistance genes and 37 biocide
resistance genes from the BacMet database78 were detected in the samples and
included in this analysis. Data were normalized by 16S rRNA gene as performed
with ARGs counts prior to comparisons.

In summary, three independent databases were implemented in this resistome
analysis pipeline to assess the profile of all resistance genes, transferrable genes and
heavy metal/biocidal resistance genes, respectively. Taxonomy prediction of ARGs
was summarized at the family level of bacteria to obtain better accuracy.

Functional capacity analysis. To study the functional composition of fecal
microbial communities, merged metagenomic sequence reads were annotated
using DIAMOND (cutoff E-value ≤10−10)79 against two reference databases, the
Carbohydrate-Active EnZymes database (CAZy)80 and the Clusters of Ortho-
logous Groups of proteins database (COG)81. Data were normalized using the
total number of trimmed reads, and normalized counts were used to calculate
the Bray-Curtis dissimilarity between samples. The Bray-Curtis dissimilarity
matrix was then used to perform NMDS. In addition, DESeq282 was used to
estimate fold-change and dispersion over time. Sequencing reads that were
predicted to encode CAZy families and identified to be differentially distributed
over time (padj <0.01 with Benjamini–Hochberg correction), were aligned to
metagenomic-assembled contigs (see above) by using BWA-MEM83. Contigs
carrying sequences which encode differentially distributed CAZy enzymes were
further used to map our custom database including RefSeq68 and 4941
metagenome-assembled genomes69 using taxator-tk (version 1.3.3)77 with
parameters -a megan-lca -t 0.3 -e 0.01 to predict the bacterial origin. The most
abundant predicted taxon at the family level for each CAZy family was chosen
for further analysis.

Absolute quantification (qPCR) of Enterobacteriaceae and ARGs. In addition
to metagenomic sequencing, quantitative PCR was conducted for two purposes: (1)
to determine the absolute abundance of Enterobacteriaceae and (2) to validate the
ARG results obtained with sequencing. This independent approach will help to
generalize our resistome analyses by assessing more samples (n= 41). E. coli strain
sldp 38-1 was used to generate standard curve for Enterobacteriaceae. Standard
curve was prepared using a ten-fold dilution series of DNA isolated from a late
exponential phase liquid cultures for which cell numbers were determined by
quantitative culture. For validation of ARG results, tetQ, one highly abundant
tetracycline resistance gene (Supplementary Fig. 6), was chosen to represent the
ARGs that gradually increased over time. Ct and delta-Ct values were calculated to
assess the dynamic change in the abundance of tetQ over time. Primers used for
quantitative PCR are listed in Supplementary Table 1. A one-way ANOVA was
applied to assess the statistical significance of qPCR results after checking
normality.

Shotgun metagenomic sequencing statistical and network analysis. Statistical
significance for time-series data of ARG/BMRG abundance and richness, and of
CAZy family richness was assessed by using a Friedman’s test followed by multiple
pairwise comparisons using Nemenyi post-hoc test within the PMCMR package
(version 4.3) in R. Differences in beta-diversity of fecal resistome and community
function (i.e., CAZy and COG analysis) based on a Bray-Curtis dissimilarity cal-
culation were tested using adonis2 in the vegan package after checking for dif-
ferences in dispersion using betadisper84.

ARGs predicted from the AMR++ pipeline and BMRGs predicted with the
BacMet database were used to model the co-occurrence patterns. Resistance genes
with transfer potential that were present in at least 6 (of 12) dairy fecal samples
were included in this analysis. A correlation matrix was calculated based on
normalized abundance data using Spearman’s rank correlation between resistance
genes. Only correlations that were strong (rho > 0.8) and significant after
Benjamini–Hochberg correction (padj <0.01)35 were kept in the matrix. The
correlation network was visualized using Gephi (0.9.2).

Ethics approval. All animal work was approved by the University of California,
Davis Animal Care and Use Committee prior to beginning of the experiment under
protocol #18540.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data generated from both amplicon and shotgun metagenomes in this study
have been deposited with the NCBI SRA (PRJNA438833) and are publicly available. The
source data underlying Figs. 2a, 6b and 10b and Supplementary Fig. 2c are provided as a
Source Data file. Other data that support the findings of this study are available from the
corresponding author upon request.

Code availability
A python custom script, resParse.py, based on BLAST, which was used to predict the
bacterial origin of metagenomic contigs possessing ARGs estimated from ResFinder
database, is freely available at [https://github.com/akre96/ResistBlast].
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