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Forecasting the magnitude of the largest expected
earthquake
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The majority of earthquakes occur unexpectedly and can trigger subsequent sequences of
events that can culminate in more powerful earthquakes. This self-exciting nature of seis-
micity generates complex clustering of earthquakes in space and time. Therefore, the pro-
blem of constraining the magnitude of the largest expected earthquake during a future time
interval is of critical importance in mitigating earthquake hazard. We address this problem by
developing a methodology to compute the probabilities for such extreme earthquakes to be
above certain magnitudes. We combine the Bayesian methods with the extreme value theory
and assume that the occurrence of earthquakes can be described by the Epidemic Type
Aftershock Sequence process. We analyze in detail the application of this methodology to the
2016 Kumamoto, Japan, earthquake sequence. We are able to estimate retrospectively the
probabilities of having large subsequent earthquakes during several stages of the evolution of
this sequence.
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ayesian methods offer indispensable tools in studies of

natural hazards, particularly, earthquakes!'=3. They can

provide a suite of approaches to analyze statistical aspects
of natural seismicity, where the occurrence of earthquakes is a
single realization of an underlying stochastic process. They also
can be used to provide inferences about future evolution of
seismicity. Specifically, one can compute predictive distributions
by studying past seismicity to provide probabilistic constraints,
for example, on the occurrence of subsequent large
earthquakes®*. The occurrence of large magnitude earthquakes is
a direct manifestation of multi-scale physical processes operating
in the crust and upper mantle>-8. However, the comprehensive
understanding of the mechanisms and underlying stochastic
dynamics that control the occurrence of earthquakes remains one
of the challenging tasks in earthquake seismology. Therefore, the
problem of formulating a reliable and operational scheme for the
estimation of the magnitudes of the extreme earthquakes to occur
is of critical importance.

Earthquakes form clusters in space and in time. This clustering is
a result of several physical mechanisms operating in the seismo-
genic crust. One of them is the triggering by preceding earthquakes
that can lead to a cascade of events with a complicated branching
structure®. To account for such a clustering, the Epidemic Type
Aftershock Sequence (ET'AS) model offers a realistic and quantifi-
able approximation!9-12. Specifically, it can model the earthquake
rate before and after strong earthquakes. This, in turn, allows to
quantify the increased earthquake hazard after a mainshock by
incorporating the triggering ability of foreshocks, a mainshock, and
subsequent aftershocks. It also can be used for short-term fore-
casting of large earthquakes by studying past seismicity!2-16.

The problem of estimating the largest expected magnitude of
an earthquake during a future time interval has been considered
in the past!”-18, In addition, it was also addressed in case of
aftershocks!20, A closely related problem is the estimation of the
absolute maximum magnitude of an earthquake for a given
seismogenic zonel21-23, In this regard, the Bayesian approach
combined with extreme value statistics was used to analyze this
problem by assuming that the occurrence of earthquakes can be
approximated by a homogeneous Poisson process>?4. The
Bayesian methods were also used to constrain the magnitudes of
the largest expected aftershocks, where the earthquake rate was
modeled by the Omori-Utsu law and the events were assumed to
follow a non-homogeneous Poisson process®2>. However, those
approaches do not fully incorporate the complicated triggering
structure of earthquake sequences, which are important for short-
term earthquake forecasting.

A notable exception is the application of a spatio-temporal
version of the ETAS model to the retrospective forecasting of
early seismicity associated with the 2016 sequence of several large
earthquakes in Amatrice, Italy!%. In that work, the MCMC
approach was used to sample the posterior distribution of the
ETAS parameters, in order to estimate the rates of seismicity
during short forecasting time intervals. However, the parameters
of the ETAS model were subjected to certain constraints in order
to facilitate the sampling.

The expected large aftershocks can significantly increase the
earthquake hazard after the occurrence of a mainshock!9-26,
Several approaches were proposed to address this problem16:27:28,
In this context, the issue of the catalog early incompleteness was
also incorporated in a number of studies?%->-31. In the majority
of these studies, the point estimators for the model parameters
were used to compute the associated rates or probabilities. As a
result, the incorporation of the uncertainties of the model para-
meters was not fully addressed.

In earthquake clustering, foreshocks, which precede large
earthquakes, are less consistent than the occurrence of

aftershocks®32-34, As a result, the retrospective analysis is typi-
cally performed by stacking many foreshock sequences associated
with particular regions333>-40, Therefore, the incorporation of
the seismicity prior to the occurrence of large mainshocks is
important for short-term earthquake forecasting approaches.

In this work, we developed a framework to constrain the
magnitudes of the largest expected earthquakes to occur during a
future time interval by analyzing past seismicity. To accomplish
this, we combined the Bayesian analysis with extreme value sta-
tistics to compute the Bayesian predictive distribution for the
magnitude of the largest expected event to exceed a certain value
in the near future. In the analysis, we assume that the earthquake
occurrence rate can be modeled by the ETAS process, where each
earthquake is capable of triggering subsequent events!®-11, We
also assume that the distribution of earthquake magnitudes can
be approximated by the left-truncated exponential distribution*!.
To model the uncertainties of the model parameters, we
employed the Markov Chain Monte Carlo (MCMC) method to
sample the posterior distribution of the model parameters and to
use the generated chain of the parameters to simulate forward in
time an ensemble of the ETAS processes. In addition, we showed
that the extreme value distribution for the magnitudes of the
largest events in the ETAS model deviates from the Gumbel
distribution. To illustrate our approach, we analyzed one recent
prominent sequence, the 2016 Kumamoto, Japan, earthquake
sequence, where we were able to compute the probabilities of
having the largest expected events above certain magnitudes to
occur during several stages of the sequence. We also applied the
analysis to several past major aftershock sequences and compared
the obtained probabilities with the ones computed using several
methods based on the Omori-Utsu approximation of the after-
shock rate. As a main result of this work, we developed an
inference procedure to estimate the probabilities of having largest
expected events during an earthquake sequence described by the
ETAS process. The suggested approach can be implemented in
current or future operational earthquake forecasting schemes,
where the constraints on the magnitudes of future large earth-
quakes are taken into account.

Results

Bayesian predictive distribution. The occurrence of earthquakes
can be modeled as a stochastic marked point process in time#2. In
this description, the earthquakes are characterized by their
occurrence times #; and the earthquake magnitudes m; represent
marks. The seismicity during a specified time interval can be
described by an ordered set S= {(t;, m;)}:i=1, .... A reasonable
approximation is to assume that earthquake magnitudes can be
described by a parametric distribution function Fg(m), where 0 is
a set of parameters. In addition, the occurrence of earthquakes is
controlled by a conditional time-dependent rate, A, (¢|H,), where
w is a set of model parameters and H, represents the history of
past seismicity up to time ¢

In the analysis that follows, we consider past earthquakes
during a training time interval [Ty, T.]. In order to take into
account the effect of early events, we use the earthquakes in the
first part of this interval [T, T,] to estimate properly the
conditional earthquake rate during the target time interval [T,
T.], for which the model parameters 0 and w can be inferred. We
also consider a forecasting time interval [T, T.+ AT] during
which we compute the probabilities of having extreme events
above a certain magnitude (Fig. 1).

The power of the Bayesian approach is in its ability to provide
predictions for an unobserved quantity of interest>*3. It goes
beyond the traditional methods of the parameter estimation and
the computation of a future outcome based on a prescribed
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Fig. 1 Schematic illustration of an earthquake sequence in time. The star symbols indicate individual earthquakes with the symbol sizes proportional to
earthquake magnitudes. The earthquake times and magnitudes, S={(t, m)}:i=1, ..., are used to sample the model parameters during the training time
interval [To, Te] (with dark cyan color indicating significant events). Darker symbol colors separate the events in the training time interval from the events
in the forecasting time interval (lighter symbol colors). The probabilities to have strong earthquakes are estimated during the forecasting time interval [T,
Te + AT] (the symbol with light cyan color indicates the largest expected earthquake)

distribution. Within the Bayesian framework, it is possible to
formulate a problem of constraining the magnitudes of extreme
earthquakes to occur in a future time interval [T, T, + AT]. For
this problem, assuming that the occurrence of earthquakes is
described by a parametric stochastic point process, one is interested
in computing the extreme value distribution, Py (1., >m|0,
w, AT). The extreme value distribution allows to estimate the
probability to have the maximum event larger than a certain
magnitude m during the future time interval [T, T. + AT] given
the specific values of the model parameters 6* and w*. However,
the precise value of the model parameters is not known for real
seismicity. To overcome this difficulty, one can analyze past
seismicity during the training time interval [Ty, T.] in order to
compute the posterior distribution p(6, w|S) for the variability of
the model parameters. Therefore, using this inferred information
on the model parameters one can assess the plausibility for the
distribution of extreme earthquakes. This can be accomplished by
computing the Bayesian predictive distribution for the largest
expected event m,, to be larger than a certain value m?42>;

Py(m, >m|S, AT) ://PEV(meX>m|9,w,AT)p(67a)\S)d0dw,
Q e

(1)

where ® and Q define the multidimensional domains of
frequency-magnitude distribution and earthquake rate para-
meters. The predictive distribution, Eq. (1), is computed by
marginalizing the model parameters and effectively incorporates
into the analysis the uncertainties associated with them.

Similarly, it is possible to consider the problem of estimating a
time interval AT to the next largest expected earthquake to be
above m,,, where the time interval is a random variable?4. In this
case, the probability of the next largest expected earthquake
during this time interval is

Py(AT < ]S, m.) — / / Py (AT < £]6, 0, m_)p(6, w|S)d0da.
Q 0

(2)

By fixing a given probability level, one can estimate the
interarrival time t= AT to the next largest earthquake with the
magnitude greater than my.

As stated above, the occurrence of earthquakes can be modeled
as a marked point process. From this point process one can
extract a sequence of exceedance events, where each event has a
magnitude above a certain threshold m.,. This threshold model is
characterized by exceedance arrival times and exceedances*4%>.
The statistics of extreme events can be obtained from the analysis
of exceedances over a predefined high threshold. In this
framework, Eq. (2) gives the distribution of interarrival time
intervals between such exceedance events.

Extreme value distribution. A specific functional form for the
extreme value distribution, Pgy(mey > m|0, w, AT), depends on
the underlying distribution function for magnitudes, Fg(m), and
whether they are independent and identically distributed (ii.d.)
events. In the case of i.i.d. events and the exponential distribution
for Fy(m), this is a well-known Gumbel distribution, which is a
special type of the general extreme value (GEV) distribution®4.
The standard Gumbel distribution is defined as follows

Gi(2)= Pr{max (X] < z) } = exp(—e ?) and plays an important
i

role in extreme value statistics. It provides the distribution of
maxima for physical quantities that can be described by the
exponential family of distributions*44>. However, when con-
sidering marked point processes, the extreme value distribution
for extreme events may deviate from the GEV distribution due to
stochastic nature of the process. In this case, one can construct
the estimate of the extreme value distribution by stochastic
simulation of the underlying marked point process and extracting
the maximum magnitude from each simulated sequence (see the
“Methods” section).

Posterior distribution function. In statistical parametric mod-
eling using the Bayesian framework, the observed data can be
used to constrain the variability of the model parameters by
computing the posterior distribution. The prior information on
these parameters is provided by using, for example, expert opi-
nion or past studies. For the current study, considering the
information for the magnitudes and times of N, earthquakes Sy
observed during the time interval [T, T], the posterior dis-
tribution function, p(6, w|Sy_ ), updates any prior information on
the model parameters 6 and w by incorporating the observational
data Sy through the likelihood and has the following form:

p(0,wlSy) o L(sNe|e, w)n(@, w), (3)

where 7(6, w) is the prior knowledge for the model parameters.

The likelihood function LQSN |6, wj for a marked point
process driven by the time-dependent conditional rate A (¢[H,)
with event magnitudes distributed according to Fg(m), can be
written#2

N, N,
L(8y16,0) = O [T t/m,) [[fotm), @)
i=1 i=1

where fy(m) :ng—(m) is the probability density function and

A, (T) = f?/\w(tﬂ—l,)dt is the productivity of the process during
the time interval [T,, T.]. When specifying the likelihood
function, Eq. (4), we explicitly assume that event magnitudes
are i.i.d. random variables.
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Parametric earthquake model. To proceed with the analysis, we
need to specify parametric models for the frequency-magnitude
distribution of earthquake marks and for the occurrence rate of
earthquakes conditioned on the past seismicity. The choice of the
models is typically based on some physical grounds or past
empirical studies. In this analysis, we assume that the earthquake
magnitudes follow a left-truncated exponential distribution:

fo(m) = Bexp[=p(m —m)], (5)
Fo(m) =1 —exp[-B(m —m)],  for m=>m. (6)

where 0= {f}. The parameter f§ is related to the b-value of the
Gutenberg-Richter scaling relation, = 1In(10)b%1. m, is a given
lower magnitude cutoff set above the catalog completeness level.

For the conditional rate (intensity) for the occurrence of
earthquakes A, (t|H,) at a given time ¢, we assume that it can be
described by the ETAS model with a given set of parameters w =
i K, ¢, p, a}l012;

a(m;—my)

N,
€
N(tHH) =p+ K> 7
( | t) Au = (tcti+ l)p ( )

where my is a reference magnitude. The summation is performed
over the history, H,, of past events up to time t during the time
interval [Ty, f[. N; is the number of earthquakes in the interval
[To, t[above the lower magnitude cutoff m.. We also assume that
my=mc. In the ETAS model, it is postulated that some of the
earthquakes occur randomly with a background rate y. These
earthquakes are typically associated with tectonic driving and are
modeled by a Poisson process. In addition, each earthquake is
capable of triggering subsequent earthquakes. This is reflected in
the summation term in Eq. (7). As a result, the combined
conditional earthquake rate at any given time, A, (t|H,), is a
superposition of contributions from the background seismicity
and the triggering by preceding earthquakes defined by its history

t

The 2016 Kumamoto earthquake sequence. To illustrate the
applicability of the above formulated method, we analyzed in
detail, the 2016 Kumamoto, Japan, earthquake sequence®®. The
sequence started on 14 April 2016 (12:26 UTC), when a large
magnitude M6.5 foreshock occurred (Fig. 2). It is followed by the
aftershock sequence that resulted in the occurrence of a magni-
tude M7.3 mainshock on 16 April 2016 (16:25 UTC on April 15).
The largest aftershock in the sequence had magnitude M5.9,
which occurred in the first day after the mainshock. In this
analysis, we considered the sequence of events starting from the
first foreshock of magnitude M6.5. We assigned Tp=0 to the
time of this event and all subsequent event times in days are
measured from this date.

To calculate the Bayesian predictive distributions and the
probabilities for the largest expected earthquakes, we first
generated the Markov chains for all the model parameters {0,
w} = {B, u, K, ¢, p, a} by specifying the training time interval from
Ty to T. and extracting the earthquakes in this interval above a
certain threshold m.. The Markov chains were simulated using
the Metropolis-within-Gibbs algorithm as described in the
“Methods” section. Finally, for each set of the model parameters
from the generated MCMC chain, we simulated the ETAS process
forward in time using the well-established thinning algorithm#?
and extracted the maximum magnitude event. The distribution of
these maxima converges to the Bayesian predictive distribution
(see the “Methods” section). For the prior distribution, (6, ), of
the model parameters, we used a Gamma distribution (specific
values for the mean and variance of the priors for each model
parameter are provided in Table 3). We used the point estimates

of the ETAS parameters as the mean values for the prior
distributions. We also considered a truncated Normal distribu-
tion as a prior distribution. Both these distributions produced
statistically similar results. As these distributions are used to
constrain any prior knowledge on the model parameters, we
assumed that this information can be represented by a bell-
shaped distribution with a well-defined mean value and variance.
The prior distribution plays an important role in the Bayesian
analysis and we explore the sensitivity of the obtained results due
to the variation of the prior parameters later in the analysis.

For the proposal distribution J(x|X), we used a truncated
Normal distribution with the support defined as the positive real
axis x € [0, o] to assume the positive values for the model
parameters (the variances are provided in Table 3). The choice of
the proposal distribution depends on how well it can approximate
the posterior distribution. It also plays a critical role for the
convergence of the Markov chains. Typically, standard statistical
distributions are used. For each combination of the training and
forecasting time intervals, we simulated total of 200,000 samples
and discarded 100,000 samples as burn-in. One particular
example of the Markov chains for the ETAS model parameters
is given in Supplementary Fig. 1. For the MCMC sampling of the
ETAS parameters we used only events during the training time
interval [Ty, T.].

For the first sequence, we considered the following training
time interval Ty=0, Ty=0.05, and T.=2.16 days, which
included the time of the occurrence of the M7.3 mainshock
(Fig. 2). This includes 1 day of aftershocks that occurred after the
M7.3 mainshock. We used the times and magnitudes of the
earthquakes above magnitude m. > 3.3 during this training period
to compute the Bayesian predictive distribution and estimate the
probabilities for the largest expected earthquakes above magni-
tudes m=5.8 and 6.3 to occur in the next AT =5, 10, and
15 days. The corresponding distributions and probabilities are
shown in Fig. 3. The probabilities display a gradual increase with
increasing forecasting time interval AT. The computed prob-
ability of Pp(me>5.8)=0.63 to have an aftershock above
magnitude 5.8 during the next AT =5 days can be appreciated
by examining retrospectively the actual earthquakes that occurred
during this forecasting time interval. In the sequence 2 strong
aftershocks with magnitudes 5.8 and 5.5 happened during this
forecasting time interval (Fig. 2).

For this sequence, we also analyzed the distribution of the
interarrival time intervals AT to the next largest expected
earthquake to be above a certain magnitude m,, (Fig. 4). We
computed the distribution of interarrival times to the next
extreme earthquake above several magnitude thresholds m., =
5.8, 6.3, and 6.5. For the fixed probability levels of 5%, 10%, and
20% the estimated interarrival times are given in the legend of
Fig. 4.

gIn addition to the sequence analyzed above, we also considered
the training time interval from T, =0 to T.=1.16 days with
T;=0.03 days, which ended right before the occurrence of the
M7.3 mainshock. We used the times and magnitudes of the
earthquakes above magnitude m,. = 3.1 during this training period
to compute the Bayesian predictive distribution and estimate the
probabilities for the largest expected earthquakes above magni-
tudes m=6.5 and 7.3 to occur in the next AT =5, 10, and
15 days. This is illustrated in Supplementary Fig. 4.

Sensitivity analysis of the Bayesian predictive distribution. To
check the sensitivity of the computed Bayesian predictive dis-
tribution with respect to the lower magnitude cutoff m,, we fixed
the forecasting time interval at AT = 10 days and varied m.. The
results for the sequence with the target time interval [T, T.] =
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Fig. 2 The 2016 Kumamoto earthquake sequence. The start of the sequence To = O corresponds to the time of the occurrence of the M6.5 April 14, 2016,
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following ETAS parameters: p=9.36, K=0.67, c=0.019, p=1.27, and a =214
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NATURE COMMUNICATIONS | (2019)10:4051 | https://doi.org/10.1038/541467-019-11958-4 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

0.5 AR
----- Pg(AT<t|S,, m,)=0.05
- me, =5.8, AT=0.2 days
— m,,=6.3, AT=0.3 days
0.4

0.3 {H

0.2 {H

Pg(AT< t]S,, mgy) or pg(t] S, Mgy)

0.1

i i

me, = 6.5, AT =0.5 days

—-—- Pg(AT<t|S,, m,)=0.1
me, = 5.8, AT=0.3 days

— M, =6.3, AT= 0.8 days
m, =6.5, AT=1.2 days

—--— Pg(AT<t|S, m,) =02
Mg, = 5.8, AT = 0.7 days

—— m,, =6.3, AT=2.0 days
Mg, = 6.5, AT = 3.4 days

0 2 4

]} g HHiilili JHHHHHULHUHHMUHLJUHHHUDumﬂqgﬂunmuumJnu

8 10 14

t (days)
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the figure legend) to the next largest expected earthquake with the magnitudes larger than mey

[0.05, 1.16] days and for m.=3.1, 3.3, and 3.5 are plotted in
Supplementary Fig. 5a. Similarly, the sensitivity to the lower
magnitude cutoff m, for the sequence with the target time interval
[T, Te] =[0.05, 2.16] days is shown in Supplementary Fig. 5b for
m.=3.3, 3.5, and 3.7. The results show relatively weak depen-
dence on the lower magnitude cutoff.

In addition, we summarize the sensitivity of the obtained results
with respect to the variability of the mean and variance of the prior
distribution used for each model parameter. This is shown in
Supplementary Fig. 6 for the sequence with the target time interval
[Ts, T.]=1[0.05, 2.16], the forecasting time interval AT =10 days,
and the lower magnitude cutoff m.=3.3. The solid bold curve
corresponds to the case of the noninformative flat prior. In
Supplementary Fig. 6a we plot the results when the mean value of
the Gamma prior corresponding to the parameter y of the ETAS
model is varied i = 0.01, 0.1, 1.0, 4.0, 8.0, 10.0 and the rest of the
mean values corresponding to the other parameters are fixed at
{B,K,¢c,p,a} = {1.8,0.7,0.019,1.27,2.14}. In Supplementary
Fig. 6b we plot the variability of the Bayesian predictive distribution
due to changes in the mean value of the Gamma prior
corresponding to the parameter K = 0.05, 0.1, 0.5, 0.7, 1.0, 2.0.

Finally, we analyzed the effect of the functional form of the
proposal distribution and the prior distribution on the obtained
results. For the same sequence with the target time interval [T,
T] =[0.05, 2.16], the forecasting time interval AT = 10 days, and
the lower magnitude cutoff m.=3.3, we considered several
combinations of the proposal and prior distributions. In addition
to the truncated Normal distribution and the Gamma distribu-
tion, we used the lognormal distribution. The possible combina-
tions of the proposal and prior distribution pairs are compared in
Supplementary Fig. 7. It indicates that using either the truncated

Normal or the lognormal distributions as a proposal distribution
produces statistically equivalent results. The choice of the prior
distribution produces a small difference in the predictive
distributions. This is an expected result in the Bayesian analysis
as prior knowledge on model parameters can influence the
posterior or predictive distributions.

Comparison of the ETAS process with the Omori-Utsu law. In
Fig. 5, we compare the distributions for the magnitudes of the
largest expected aftershock of the 2016 Kumamoto sequence to
occur during the next AT=10 days using two training time
intervals and several methods based on the approximation of the
earthquake rate by either the ETAS process or the Omori-Utsu
law. For the training time interval starting from the occurrence of
the M6.5 foreshock and 1 day of aftershocks after M7.3 main-
shock with [T, T.] =[0.0, 2.16] days, we plot the Bayesian pre-
dictive distributions computed using the ETAS process as the rate
and the flat noninformative prior for the model parameters (solid
blue curve) or the Gamma prior (solid dark brown curve). For the
second time interval, we only considered the aftershocks during
1 day after the M7.3 mainshock. For this time interval, we plot the
Bayesian predictive distribution with the ETAS rate with the
Gamma prior for the model parameters (solid pink curve). In
addition to using the ETAS model, we plot the Bayseian pre-
dictive distribution computed using the Omori-Utsu law for the
earthquake rate as suggested in ref. 4 (dashed violet curve) and
also using the MCMC sampling with the Gamma prior for the
model parameters (dashed orange curve). Finally, we also plot the
distribution to have a strong aftershock employing the extreme
value (Gumbel) distribution by using the point estimates of the
parameters (=19, K=54.0, ¢=0.017, p=1.04) of the
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Fig. 5 Comparison of the Bayesian predictive distributions. Several predictive distributions are plotted for the largest expected aftershock to be greater than
m during the next AT =10 days for the 2016 Kumamoto sequence. The distributions were computed employing: the ETAS rate and MCMC sampling with a
flat prior (solid blue curve); the ETAS rate and MCMC sampling with the Gamma prior (solid dark brown curve) in both cases using the foreshocks and
1 day of aftershocks after the M7.3 mainshock. For the rest of the distributions, 1 day of aftershocks after the M7.3 mainshock was used. The distributions
were computed using: the ETAS rate and MCMC sampling with the Gamma prior (solid pink curve); the Omori-Utsu (OU) rate with a flat prior (dashed
violet curve); the OU rate and MCMC sampling with the Gamma prior (dashed orange curve); the Gumbel distribution and OU rate (dashed dark
cyan curve)

Table 1 Comparison of the probabilities to have the largest expected aftershock magnitude to be above m., for the 2016
Kumamoto sequence computed using several methods

Probability ETAS (flat) with foreshocks ETAS (Gamma) with ETAS (Gamma) ou OUmcmc EVD
foreshocks

Pg(Mey >5.8) 0.82 0.79 0.68 0.45 0.59 0.7

Pg(mMey > 6.3) 0.53 0.48 0.37 0.21 0.30 0.38

Pa(Mey >7.3) 0.3 0.10 0.07 0.03 0.05 0.07

In columns 2 and 3 the probabilities are computed using the earthquakes during the time interval [To, To] = [0.0, 2.16], which includes the foreshocks and 1 day of aftershocks after the M7.3 mainshock:
ETAS (flat) with foreshocks—the Bayesian predictive distribution using the ETAS model and a flat noninformative prior for the model parameters; ETAS (Gamma) with foreshocks—the Bayesian

predictive distribution using the ETAS model and the Gamma prior. In columns 4-7 the probabilities are computed using only the aftershocks during 1 day after the M7.3 mainshock: ETAS (Gamma)—the
Bayesian predictive distribution using the ETAS model and the Gamma prior; OU—the method developed in ref. 4 with the Omori-Utsu (OU) law and a flat prior; OUpycmc—the Bayesian predictive

likelihood method

distribution with the Gamma prior and using the OU law; EVD—the Gumbel distribution as the extreme value distribution with the parameters of the OU law estimated using the maximum-

Omori-Utsu law (dashed dark cyan curve). This last plot is based
on the Reasenberg and Jones approach!®. The summary of the
probabilities to have the largest expected aftershocks above cer-
tain magnitudes is given in Table 1. For both time intervals the
earthquakes above magnitude m > 3.3 were used.

We point out to the difference between the two computed
Bayesian predictive distributions using the ETAS process by
considering two different training time intervals. The first
predictive distribution (solid dark brown curve) was computed
by incorporating the foreshocks and 1 day of aftershocks after the
M?7.3 mainshock. The second distribution (solid pink curve) only
used 1 day of aftershocks. The inclusion of foreshocks resulted in
higher probabilities for the occurrence of the largest expected
aftershock during the forecasting time interval (see also Table 1).
This result emphasizes the importance of the incorporation of the
clustering nature of seismicity. The extreme value distribution

based on the Gumbel distribution with the Omori-Utsu rate
(dashed dark cyan curve) is similar to the Bayesian predictive
distribution based on the ETAS process with only 1 day of
aftershock activity. This can be related to the fact that for this
particular sequence the ETAS process and the Omori-Utsu
model give similar estimates for the earthquake rate using only
1 day of aftershocks. The other two methods based on the
Omori-Utsu law give lower probabilities of occurrence for the
largest expected aftershock.

Comparative analysis of several past prominent aftershock
sequences. In addition to the analysis of the Kumamoto sequence,
we studied several other past aftershock sequences in order to
compare the probabilities to have the largest expected aftershocks
during the forecasting time interval. Specifically, we computed the
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for several prominent past aftershock sequences

Table 2 Comparison of the probabilities for the magnitudes of the largest expected aftershocks to be larger than m =M, — 1.0

Date Name M.« mg ETAS (Gamma) ou OUpncmc EVD My
2018/11/30 Anchorage 71 25 0.10 0.08 0.2 0.7 4.8
2016/11/13 Kaikoura 7.8 3.7 0.10 0.40 0.49 0.52 57
2016/04/16 Kumamoto 73 33 0.24 0.5 0.19 0.26 5.8
2011/03/1 Tohoku 9.0 53 0.27 0.5 0.19 0.26 6.7
2010/04/04 El Mayor 7.2 33 0.24 0.5 0.23 0.22 53
2008/06/14 Iwate 7.2 31 0.06 0.06 0.08 on 53
2007/03/25 Noto 6.9 3.1 0.15 0.3 0.7 0.23 49
2005/03/20 Fukuoka 7.0 3.1 0.02 0.01 0.02 0.03 5.4
2003/09/26 Tokachi-oki 8.0 33 0.27 0.23 0.28 0.40 6.5
2002/11/03 Denali 7.9 3.0 0.08 0.24 0.38 0.47 55

that occurred during the forecasting time interval AT =10 days

The Bayesian predictive distribution Pg(me, >m|S, AT) was computed using: ETAS—the ETAS model with the Gamma prior for the model parameters; OU—the method developed in ref. 4 with the

Omori-Utsu law and a flat prior; OUpcpmc—the MCMC sampling with the Omori-Utsu law and the Gamma prior. These are compared with the probabilities computed using the Gumbel distribution as
the EVD for the non-homogeneous Poisson process with the parameters of the Omori-Utsu law estimated using the maximum-likelihood method. The training time interval [Ty, T.] = [0.0, 2.0] days and
the forecasting time interval AT =10 days were used, where To = O corresponds to the time of the occurrence of the mainshocks. The last column gives the magnitudes of the actual largest aftershock

Bayesian predictive distributions for each sequence using the
ETAS approximation and assuming a Gamma prior for the model
parameters. In addition, we also considered the Omori-Utsu
approximation for the earthquake rate and assumed a flat prior
distribution*. We also considered the approach suggested in this
work but we replaced the ETAS model with the earthquake rate
approximated by the Omori-Utsu law. Finally, we considered the
model, which is equivalent to the Reasenberg and Jones
approach!?, with the parameters of the Omori-Utsu law esti-
mated for each individual sequence. The last model assumed that
the probabilities were computed using Eq. (11) and the estimated
values of the Omori-Utsu parameters. For all these computations,
we considered the training time interval [T, T.] = [0.0, 2.0] days
and the forecasting time interval AT=10 days, where To=0
corresponds to the time of the occurrence of each mainshock. The
summary of the results is given in Table 2.

Discussion

The obtained results indicate that the proposed method computes
robustly the Bayesian predictive distribution for the magnitude of
the largest expected earthquake to be above a certain magnitude
and during a specified forecasting time interval. It also allows the
estimation of the interarrival time interval during which the
largest expected earthquake above a certain magnitude can occur
at a given probability level.

The MCMC method was used to sample the posterior dis-
tribution, Eq. (3). The sampling generates the Markov chains of
the model parameters that allows the estimation of their varia-
bility. The MCMC chain for the ETAS parameters generated for
the studied sequence of events is given in Supplementary Figs. 1-
3. Particularly, in Supplementary Fig. 2, we provide the dis-
tribution of the model parameters for this sequence and report
the 95% Bayesian credibility intervals for each model parameter.
This differs from a standard practice, where the model para-
meters are estimated using the maximum-likelihood approach,
and are used, for example, in the computation of the extreme
value distribution.

The ETAS model generates a stochastic sequence of events,
where magnitudes are drawn from the exponential distribution,
Eq. (6). However, when comparing the Bayesian predictive dis-
tribution constructed from the ensemble of realizations of the
ETAS process using the MCMC chain of the model parameters,
with the Bayesian predictive distribution using the Gumbel dis-
tribution, Eq. (11), one observes a statistically significant devia-
tion between these two distributions (Supplementary Fig. 8). The

Kolmogorov-Smirnov test showed that the null hypothesis that
these two distributions came from the same distribution was
rejected at the 1% significance level. This is due to the fact that the
probability that the magnitude m,, of the maximum event in the
forecasting time interval [T, T. + AT] is greater than m cannot
be expressed by a closed formula, because the conditional
intensity function Eq. (7) changes stochastically with each new
event during the forecasting time interval. This differs from a
stationary or non-stationary Poisson processes, where the event
rate A(t) is a deterministic function of time, and thus the calcu-
lation of the extreme value distribution using the theorem of total
probability becomes straightforward. However, in Supplementary
Note 1, we show that the analytic calculation of the extreme value
distribution for the ETAS process (or a Hawkes process in gen-
eral) leads to an integral equation that, in principle, can be
evaluated numerically.

The prior distribution for the model parameters plays an
important role in the Bayesian analysis. In our implementation,
we used the Gamma distribution. However, we also considered
the lognormal distribution. We examined the influence of the
initial knowledge of the model parameters on the final predictive
distributions. The distributions of the model parameters {3, K, ¢,
p> } in the MCMC chain are reasonably stable with respect to the
changes of the mean and variance of the prior distribution. On
the other hand, the background rate y is strongly affected by the
choice of the mean and variance of the prior distribution for this
specific sequence we analyzed (Supplementary Fig. 6). This can be
explained by the relative flatness of the likelihood function
associated with the y parameter. As a result, the convergence of
the Markov Chain is strongly affected by the prior distribution.

The formulated approach was applied, in detail, to the 2016
Kumamoto, Japan, earthquake sequence. This sequence had a
complex structure with well-observed foreshocks, the mainshock
and subsequence aftershocks. We were able to compute suc-
cessfully the probabilities of having strong earthquakes to occur
during the future time intervals by analyzing two sequences of
events of varying length. The first sequence comprised the first
day of aftershocks of the mainshock in addition to the 1.16 days
of foreshocks. In this case, we estimated the probabilities of
having large aftershocks above magnitudes 5.8 and 6.3 to occur
during the fixed future time intervals (Fig. 3). The second
sequence comprised only the foreshocks of the M7.3 mainshock
and we estimated the probability of having a mainshock above
magnitude 7.3 to occur in the next AT =5, 10, and 15 days
(Supplementary Fig. 4). The obtained probability for the occur-
rence of the M7.3 mainshock is rather small for such large
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earthquakes. We think that this is limited by the information
content the seismicity rate provides. To improve such forecasting,
one needs to consider, in addition, other physics-based processes,
for example, the stress transfer, geometry and distribution of
faults, and more accurate rheological description of the crust and
mantle.

The method differs from several past studies®!%20 by using the
ETAS model instead of the Omori-Utsu law for the conditional
earthquake rate. To illustrate this, we compared the method
suggested in this work to several approaches of computing the
probabilities for the magnitudes of the largest expected after-
shocks based on the Omori-Utsu approximation of the earth-
quake rate. Specifically, we used the Gumbel distribution for the
extreme value distribution and the point estimates for the
Omori-Utsu parameters, which is the model proposed by Rea-
senberg and Jones!'?. The comparison of the obtained results for
several past prominent aftershock sequences (Table 2), suggests
that the method based on the Gumbel distribution and the point
estimates of the model parameters provides typically higher
probabilities for the occurrence of the largest expected aftershocks
than the methods based on the Bayesian predictive statistics. For
this comparison, we used only aftershocks during 2 days after
each mainshock. However, the inclusion of the complicated
clustering structure of seismicity can result in higher probabilities
for the occurrence of the largest expected aftershocks, as illu-
strated by the 2016 Kumamoto sequence (Table 1).

One of the important advantages of the implemented method
is that it fully incorporates the uncertainties of the model para-
meters into the analysis and the clustering structure of seismicity.
To account for these uncertainties, we used the MCMC method
to sample the posterior distribution of the model parameters
(Eq. (3)). We found that the ETAS-based method deviates clearly
from other approaches, e.g. non-homogeneous Poisson process
driven by the Omori-Utsu rate (Fig. 5). This demonstrates that
complex triggering including foreshocks and/or higher-order
aftershocks cannot be neglected for purposes of earthquake/
aftershock forecasting.

Methods

Computation of the Bayesian predictive distribution. The direct computation of
the Bayesian predictive distribution, Eq. (1) or (2), is prohibitive for several rea-
sons. First, the integration is performed over a multidimensional parameter space
{®, Q}. In case of the parametric model, Eqgs. (6) and (7), it has total of six
parameters. Second, the evaluation of the ETAS productivity, A,(AT), during the
forecasting time interval [T, T. + AT] has to be performed stochastically by
simulating the ETAS model forward in time using the ETAS parameters sampled
from the posterior distribution (Eq. (3)). Third, the functional form of the extreme
value distributions Pry(te, > m|6, 0, AT) or Ppy(AT< 16, w, me,) is typically
known for i.i.d. random variables.

For the ETAS model, the distribution of the magnitudes of extreme events deviates
from the Gumbel distribution. For the above reasons, the Bayesian predictive
distribution can be estimated by employing the MCMC samyling procedure to
generate Markov chains of the ETAS model parameters ©0, 00}, i=1, ..., Nym
drawn from the posterior distribution®*”. To sample the posterior distribution,
Eq. (3), we use the Metropolis-within-Gibbs algorithm. To compute the Bayesian
predictive distribution one can generate sequences of the stochastic point process
under consideration and extract the maximum magnitude event from each
sequence. This will allow one to construct the empirical distribution function for
the largest magnitudes that approximates the Bayesian predictive distribution. In
addition, this allows to incorporate the uncertainties of the model parameters into
the estimation of the predictive distributions.

MCMC sampling. To sample the posterior distribution, Eq. (3), we used the
Metropolis-within-Gibbs algorithm?7:48. In this algorithm, the updates of the
parameters are performed one at a time during each Markov step. The proposal
distribution is univariate and the samples are drawn from the conditional dis-
tribution. The Metropolis-Hastings ratios are defined as follows:

_ p(B.alM,) 1(6.0]8.@)
MHy, = 5l 13.600.0)
_ L(4,0.)7(00) j(0.)p.0)

= LM, [6.0)m(0.0) J(6,8]6,0) ’

®)

where 6, @ indicate the proposed values of the model parameters. This ratios are
applied individually for each model parameter when generating the corresponding
Markov chains. The truncated Normal distribution is used for the proposal dis-
tribution, J(6, w|6, @), to constrain the parameters to the positive values. For the
prior distribution, 77(6, w), the Gamma distribution is used.

The Metropolis-within-Gibbs sampler combines two MCMC methods: the
Gibbs sampler and the Metropolis-Hastings algorithm®#47, The Gibbs sampler can
be used to generate random variables from multivariate distributions by drawing
each random variable component from a univariate fully conditional distribution
one at a time. To use the Gibbs sampler alone, one needs to generate efficiently the
random samples from the fully conditional univariate distributions constructed
from the original multivariate distribution under consideration. When this is not
possible one can substitute this step by drawing the univariate samples using the
Metropolis—Hastings algorithm. In Algorithm 1, we outline the Metropolis-within-
Gibbs sampler, which was used in our analysis. The Metropolis-Hastings algorithm
is given in Algorithm 2.

Algorithm 1

The Metropolis-within-Gibbs (MwG) algorithm

1: procedure METROPOLIS-WITHIN-GIBBS (Wo, Nim)

2:m® — w, > set a starting value for the chain
3:for k=1 : Ng,, do > iterate Ny, times

4: p < mk-1) > the vector of parameters at (k — 1)th step

5: for n=1: Ny, do Diterate Np,, times

6: m®)(n) — Merroporis-Hastings(m&—1D(n), p1

7: p(n) « m®(n) > update the value to the newly generated sample
8: return m > return the chains for all parameters

The Metropolis-within-Gibbs sampler (Algorithm 1) takes as input the initial
values of the model parameters wo = {8, i, K, ¢, p, a} and the number of samples to
generate Ny,. During each iteration of the main loop (Line 3) it updates each
parameter of the model individually by calling the Metropolis-Hastings sampler
(Algorithm 2). This is done in the second loop (Lines 5-7). The parameters are
updated one at a time from the list p={B, u, K, ¢, p, a}. When updating the
individual parameters (Line 7) the vector p is updated by a newly generated sample
of each parameter. The Metropolis-within-Gibbs algorithm allows to sample
multidimensional posterior distributions by sampling each parameter individually.
During the sampling it generates the Markov chain of the parameters by exploring
the parameter space given by the posterior distribution.

The Metropolis—Hastings sampler takes as input the initial value v, of a given
model parameter, the full vector of model parameters p, and the number of
iterations N = 1. The Metropolis—Hastings sampler performs only a single
sampling (N = 1) of a given parameter while the other parameters are kept fixed. So
effectively it performs MCMC sampling of a univariate distribution. It generates a
new candidate from a proposal distribution J(y, x) (Line 4). Then it computes the
acceptance ratio r = MH,, using Eq. (8) (Line 5). If min(1, r) > u, where u is a
random number generated from a uniform distribution 2(0, 1), it accepts a new
candidate, otherwise it does not update the parameter. The Metropolis-Hastings
ratios, MH, = MHy,,, are given in Eq. (8).

Algorithm 2

The Metropolis-Hastings (MH) algorithm

1:procedure METROPOLIS-HASTINGS (vg, P, N)

2:x0) v, > set a starting value for the chain
3:fori=1:N do > eiterate N times

4 X J(yxtY) > generate a candidate value from the proposal distribution

5: r« MH, > compute the acceptance ratio

6: u—U(0,1) > generate a uniform random number
7: if min(1, r) > u then

8: x) —% > accept the candidate X

9: else

10: x() — x(i=1) > reject the candidate X

11: return x > return a single chain

The MCMC chains of the ETAS model parameters were generated for total of
Ngim = 200,000 steps and 100,000 steps were discarded as burn-in. Particular
generated chains for each model parameter are shown in Supplementary Fig. 1
using the sequence of the 2016 Kumamoto events using the training time interval
[T, Te] =[0.05, 2.16] and the lower magnitude cutoff m = 3.3.

The Gamma distribution was used as a prior for the model parameters,

n({6, w}) = g(P)g(u)g(K)g(c)g(p)g(a):

g(xla, b) e, (9)

" b°T(a)
where I'() is a Gamma function, a is a shape parameter and b is a scale parameter.

The parameters of the Gamma distribution, a and b, can be expressed in terms of
the mean and the variance of the Gamma distribution:

2
0 E(x) 7 _ Var(x) ' (10)
Var(x) E(x)

The truncated Normal distribution was used as a proposal distribution, J(y|x),
where parameters y and x stand for the mean and standard deviation of the
truncated Normal distribution, respectively. The parameters of the prior
distributions and the variance of the proposal distribution are provided in Table 3
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parameters of the ETAS model {0, v} =18, u, K, ¢, p, a}

Table 3 Summary of the parameters used for the prior distribution and the proposal distribution corresponding to the

Parameter /] U K c p 4
The sequence: [T, T.]=1[0.03, 1.16]
Mean (Gamma) 1.7 1.0 0.7 0.019 1.27 2.1
Var (Gamma) 0.1 0.05 0.01 0.0005 0.05 0.1
Var (TN) 0.05 0.05 0.05 0.001 0.01 0.01
The sequence: [T, T.]=1[0.05, 2.16]
Mean (Gamma) 1.8 9.4 0.67 0.019 1.27 214
Var (Gamma) 0.1 0.1 0.01 0.0001 0.05 0.1
Var (TN) 0.05 0.05 0.05 0.001 0.01 0.01

with the specified variance for each model parameter

For the priors #({0, }) the Gamma distribution was used with the mean and variance specified for each parameter. For the proposal distribution J(y|x) the truncated normal (TN) distribution was used

The distributions of each ETAS parameter from the MCMC chains
(Supplementary Fig. 1) are shown in Supplementary Fig. 2. The solid curves
represent the prior distribution for each model parameter. Supplementary Fig. 3
shows the cross plots for each pair of the parameters. Some of the parameters show
strong correlation.

The extreme value distributions for the ETAS process. For sequences of
earthquakes, for which event magnitudes are i.i.d. random variables, the probability
that the maximum event magnitude is greater than m for all possible number of
events during a given time interval [T, T, + AT] is}:242:4445

Pgy (Mo, >m|6, 0, AT) = 1 — exp{—A,(AT)[1 — Fy(m)]}, (1

where the productivity is A, (AT) = ;‘:+AT/\w(t|Ht)dt. Using the exponential
model for the magnitude distribution, which is considered in this work, this results
in the Gumbel distribution. Equation (11) was used by Reasenberg and Jones!® to
formulate the model for the distribution of extreme aftershocks in California
assuming that the aftershock rate can be approximated by the Omori-Utsu law.

If the functional form of the extreme value distribution is known, the Bayesian
predictive distribution, Eq. (1), at a given magnitude m can be computed by
using the MCMC chain of the parameters of the ETAS model. Each sample of
the chain {8, Q0} can be used to estimate the productivity of the ETAS
model A, (AT) during the future forecasting time interval [T, T, + AT] by
performing the stochastic simulation of the ETAS process. Using the obtained
productivity, one can compute the value of the extreme value distribution for a
given magnitude m.

The extreme value distribution can be also computed empirically by generating
the ensemble of earthquake sequences by using the ETAS process and extracting
the maximum magnitude from each sequence and constructing the empirical
distribution function for the extreme magnitudes. We performed such calculations
when estimating the Bayesian predictive distribution in this work. The ETAS
model was simulated using the thinning algorithm?2. In Supplementary Fig. 8, we
compare this empirically computed predictive distribution with the one computed
using the extreme value distribution given in Eq. (11). For this latter case, we
performed ensemble simulation of the ETAS processes with the parameters taken
from the MCMC chain, which were sampled from the posterior distribution. For
each parameter sample, the productivity of the ETAS model A,(AT) was
approximated by the number of events above magnitude m, generated in the
stochastic simulation of the ETAS model. The two distributions given in
Supplementary Fig. 8 exhibit a statistically significant deviation. Therefore, the
extreme value distribution given in Eq. (11) is not applicable to the ETAS process.
We provide the analytical derivation of the extreme value distribution for the ETAS
process in Supplementary Note 1.

Data availability
The earthquake catalogs were downloaded from: the Japan Meteorological Agency
(http://www.jma.go.jp/en/quake/); Hauksson et al.*> waveform relocated catalog for
Southern California (http://web.gps.caltech.edu/~hauksson/catalogs/index.html); Alaska
Earthquake Information Center (http://www.aeic.alaska.edu/htmldocs/db2catalog.html);
New Zealand GEONET (http://quakesearch.geonet.org.nz/).

The computed data used to plot Figs. 2-5, Supplementary Figs. 1 and 4 are provided in
Source Data.xlsx file.

Code availability

The computer code to perform the analysis can be requested from the authors.
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