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Stability criteria for complex microbial communities
Stacey Butler1 & James P. O’Dwyer2,3

Competition and mutualism are inevitable processes in microbial ecology, and a central

question is which and how many taxa will persist in the face of these interactions. Ecological

theory has demonstrated that when direct, pairwise interactions among a group of species

are too numerous, or too strong, then the coexistence of these species will be unstable to any

slight perturbation. Here, we refine and to some extent overturn that understanding, by

considering explicitly the resources that microbes consume and produce. In contrast to more

complex organisms, microbial cells consume primarily abiotic resources, and mutualistic

interactions are often mediated through the mechanism of crossfeeding. We show that if

microbes consume, but do not produce resources, then any positive equilibrium will always

be stable to small perturbations. We go on to show that in the presence of crossfeeding,

stability is no longer guaranteed. However, positive equilibria remain stable whenever

mutualistic interactions are either sufficiently weak, or when all pairs of taxa reciprocate each

other’s assistance.
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Early ecological intuition suggested that tightly woven net-
works of interactions would lead to more stable and robust
communities1–3. But this intuition was later overthrown by

the realization that large, complex, interacting systems will tend
to become unstable to small perturbations once either the number
or strength of interactions passes a certain threshold4,5. These
original analyses were based on the strength and type of inter-
actions between pairs of species, and initially pertained to random
mixtures of interaction types, including predation, competition,
and mutualism. More recently, similar results were derived for
purely competitive interactions among a group of species, with
the same bottom line: if pairwise competitive interactions are too
numerous, or too strong, then any equilibrium of coexisting,
competing species will be unstable6.

In parallel, theory had also been developed for groups of spe-
cies consuming a set of distinct resources3,7–12. In these models,
the resources actually being competed for are treated explicitly.
Typically these models make several simplifying assumptions,
including the timescales on which resources are replenished, and
the way that consumer preferences differ. Some treat resources as
biological organisms, with the capacity to grow and compete
among themselves7,13, while others consider abiotic resources,
which are replenished from outside the system14. Microbial
communities composed of bacterial or archael cells provide an
example of an ecological system where we can (almost) unam-
biguously separate the component parts into biological organisms
and abiotic resources, where by abiotic we mean resources that
are not capable of reproduction on their own. Even though a rich
range of metabolites exchanged by microbial communities are of
biological origin, we count these as abiotic for this reason. Direct
predatory interactions among bacteria are somewhat rare15,
while consumption and production of abiotic resources
likely mediates much of microbial competition (via resource
scarcity16) and mutalism (via crossfeeding17), suggesting that a
consumer–producer–resource framework will provide a more
general and appropriate framework for microbial interactions
than direct, pairwise interactions. However, the broad-ranging
properties of such large systems of consumers, producers, and
abiotic resources are under-explored.

With these motivations in mind, we present a model of con-
sumers that compete for a set of dynamical, abiotic resources,
governed by a set of preferences for those resources, an influx rate
for resource replenishment, and a mortality rate for consumers.
We will prove that any positive densities of consumers and
resources can be an equilibrium solution in our model, with no
finite limit to the similarity of consumers. Moreover, in contrast
to results for pairwise competition, these equilibria are always
stable to small perturbations, so long as there are at least as many
resources as consumers. We place no specific constraint on the set
of preferences of consumers for resources to obtain this result—in
other words, we do not need to assume a particular functional
form (neither random, modular, or highly structured in some
other way). For a fixed set of preferences of consumers for
resources, we also use this model to examine the range of influx
and mortality rates that lead to stable coexistence. We find that
pairwise species similarity alone is not sufficient to determine the
size of this range, thus clarifying and refining the classical
expectation of limiting similarity in this context3,9,18,19.

Finally, we extend our model to include production of
resources. Mutualistic pairwise interactions have been found to
push communities closer to instability6, leading to a debate over
how widespread mutualistic interactions can reasonably be in
microbial communities20,21. We introduce a model for the
exchange of resources, where microbes can both consume and
now also produce resources, and choose a form for these equa-
tions that is interpretable as either a species-specific leakage of

resources, or as a kind of recycling of biomass following mor-
tality. In this model, we find a similar result in our
consumer–producer–resource system, and for a range of cases
bound the possible strength and prevalence of resource produc-
tion. On the other hand, we find that if mutualistic interactions
are completely symmetric, then stability is again guaranteed for
feasible equilibria, a result at odds with earlier pairwise analyses.

Results
Model of competition for abiotic resources. Our model for
consumers and resources is defined in terms of competition for
substitutable resources:

_Ri ¼ ρi � Ri

P
j
CijSj;

_Si ¼ ϵSi
P
j
CT
ij Rj � μiSi:

8><
>: ð1Þ

Here, i can take any value from 1 to N, the Ri represent a set of N
resources, while the Si are a set of N consumers, and the non-
negative quantity Cij is the rate of consumption of resource i by
consumer j, per unit consumer and resource. ρi and μj represent
influx rates for resource i and mortality rate for consumer j,
respectively, while ϵ is a free parameter characterizing the effi-
ciency with which consumers convert resources into biomass. We
could include an outflow, or leaching rate −ηiRi for resources14,
though here we assume that consumption is sufficiently fast that
this rate will be negligible (and moreover our results below for
local stability are unchanged even when this outflow is incorpo-
rated). We also note that we could straightforwardly generalize
these equations to include more general functional responses22

(for example it would be perfectly reasonable to consider a
Monod-type form for the uptake rate of resources). However, we
consider solely the mass action terms above in the spirit of the
vast range of Lotka–Volterra analyses undertaken for pairwise
interactions: if we can understand the properties of these idealized
communities, we then have a baseline on which to layer further
biological complexity.

Finally, we note that this is a model for substitutable resources,
and while there may be families of resources which are to some
extent substitutable (for example different carbon sources) the
general picture for microbial consumers is likely colimitation by
multiple, qualitatively different types of resource14,23,24. In many
cases, we might expect that only one of these resources is actually
rate-limiting (roughly, the rarest in a given environmental
context), and this assumption leads to Liebig’s law of the
minimum25, where growth rate of a consumer depends only on
this single resource. In other circumstances, two or more
resources may turn out to be limiting in any given environmental
context, in which case growth rate has typically has been modeled
as proportional to the product of these limiting resources, and
termed multiplicative colimitation24. Beyond these phenomen-
ological approximations of colimitation, there might be still more
general functional dependencies26. Taking these possibilities into
account, our analysis of substitutable resource consumption and
production here may be seen as a starting point for these more
general cases, and a good approximation for circumstances where
a single ‘type’ or family of resources is rate-limiting.

The consumer–resource system represented by (1) has a set of
equilibrium solutions

~R� ¼ CTð Þ�11
ϵ ð~μÞ;

~S� ¼ ~R�
diag

� �
C

h i�1
~ρ:

8<
: ð2Þ

where ~R�
diag denotes a diagonal matrix with the components of ~R�
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along the diagonal. The only biologically reasonable solutions are
those with positive densities of consumers and resources, known
as feasible solutions27. For our model, for any positive ~R�;~S�

� �
,

there are always positive influx and mortality rates ~ρ and ~μ that
result in these feasible solutions, independent of the form of the
matrix C (our Methods Section details the proof of this
statement). In other words, any feasible set of densities can be a
solution of our equations, for an appropriate set of influx and
mortality rates defining the environmental context. We now
present two results. First, we will show that feasible solutions are
stable to small perturbations. Then we will consider what range of
parameter values for ρi and μi will lead to such feasible solutions.

Feasibility and stability under competitive interactions. We
now demonstrate a departure from earlier results for pairwise
competiton between species6: any and all of these feasible solu-
tions are guaranteed to be stable to small perturbations. The
Jacobian matrix corresponding to the equilibrium solutions given
by (2) is

ð3Þ

If all the eigenvalues of this Jacobian have negative real part,
then this equilibrium is locally stable. In our Methods Section, we
show that for a feasible solution (i.e., an equilibrium with positive
abundances) this equilibrium is guaranteed to be stable to local
perturbations, independent of the form of the matrix C, implying
that competition alone in systems of consumers and resources is
never sufficient to lead to an unstable, feasible equilibrium. We
illustrate this (along with the full distribution of eigenvalues) for
some example cases in Fig. 1. These plots demonstrate visually the
form of the spectrum across a range of cases (both generalist and
specialist consumers, and ordered and unordered resources).
Beyond the fact that the largest eigenvalue always has negative
real part, as our results state, we also note that the spectra have a
characteristic ‘dragonfly’ form. The wings of the dragonfly will
lead to the potential for oscillatory behavior around this
equilibrium, while the typically large density of real eigenvalues
near zero imply that some types of perturbation away from these
equilibria will have long relaxation times.

We now note several important generalizations. First, includ-
ing the leaching or degredation of resources, which would ensure
that resources would saturate even in the absence of consumers,
does not change the form of this matrix or the result that
feasibility implies stability. Second, we have so far considered
equal numbers of resources and consumers. We can generalize
this result to incorporate uinequal numbers of resources and
consumers, NR and NS, and in our Methods Section we show that
feasibility only implies stability in this case if NR ≥NS, mirroring
the classical expectation that coexistence of NS species will require
at least that number of resources. Finally, we generalize this result
to the case where one or more consumer has zero abundance. In
our Methods Section we show that the remaining group of
consumers (those with positive abundances) will coexist stably so
long as the equilibrium is uninvasible by any of the extirpated
consumers.

These results bear comparison with earlier calculations for the
stability of systems of biotic consumers and biotic resources13,28.
In these systems, resources themselves can grow and compete
with each other, and can be eaten by the consumers. When
treated as a set of Lotka–Volterra equations, in those cases
feasibility also implies stability. The similarity with our results
suggests that the horizontal structure here (i.e., a clear division of
the system into consumers and resources) is key element for the

local stability guarantee to hold. In large systems of consumers
and biotic resources it might be seen as artificial to completely
separate consumers and resources into two groups. On the other
hand, in microbial systems with a clear biological distinction
between abiotic resources and biotic consumers, this separation is
very natural, and so our result applies unambiguously and
generally.

Structural stability under competitive interactions. We now ask
what range of values of ~μ and ~ρ will lead to positive, feasible
solutions for consumer and resource densities, for a given fixed
set of preferences for resources, C. The volume of this parameter
space is known as the structural stability of a given system29, and
biologically it quantifies the robustness of equilibria. Suppose that
the environmental context in which a group of species coexist
shifts over time, and this shift affects ~μ and ~ρ. Then structural
stability characterizes how likely it will be that the same species
will continue to coexist in this new environmental context. In our
Methods Section we derive results for the volume of ~μ and ~ρ
values that will lead to feasible solutions, for a given matrix C. For
example, in the case of mortality rates, this volume is given by

Vμ ¼ 2
detCj j
π

n
2

Z
R

n
þ

e� ξ;CTCξh idξ; ð4Þ

where det C is the determinant of the matrix C and the angled
brackets define the usual dot product. This contrasts with what
perhaps might be the intuitive determinant of structural stability
—something like the average of pairwise species similarity (say,
defined in terms of the overlaps of two consumers’ preferences).
In contrast, the determinant here does not depend in a simple
way on the similarity of any two species—structural stability
depends on C as a whole, rather than being a function just of
pairwise similarities.

We can still ask how this volume changes as we make
consumers more or less similar in terms of the resources they use,
represented mathematically by the inner product of the columns
of C. For example, in the special case where all species begin
equally similar, then a uniform decrease in their similarity leads
to a larger volume for the parameter space, and greater structural
stability (detailed in Methods). This is in agreement with the
ecological intuition that it is ‘easier’ for more dissimilar species to
coexist. However, this is not the general case. Independent of the
size of the system, there are some contexts where a decrease in the
similarity of any pair of species will lead to less, not greater,
structural stability. Figure 2 shows a specific example, for three
species, where a decrease in the similarity of one pair of species
(while keeping other pairwise similarities fixed) leads to a
decrease in structural similarity. What is the general lesson here?
The biological interpretation is that changes in structural stability
as we change the similarity of any two species depend (in general)
on all of the other consumption preferences. This reiterates our
point above, that the determinant in Vμ does not depend in a
trivial way on pairwise comparisons, and consequently the
structural stability of systems of consumers and abiotic resources
does not depend in a simple way on pairwise species similaritities
expressed in terms of consumption preferences.

Model of consumption and exchange of resources. Microbial
taxa that can both consume and also produce resources have the
potential for mutualistic, syntrophic interactions6,20,30. For this
reason we now consider a more general set of dynamics for
species and resources, which includes a matrix, C, representing
the resource use of the consumers and a nonnegative matrix, P,
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representing the production of resources by the consumers:

_Ri ¼ ρi � Ri

P
j CijSj þ

P
j PijSj;

_Si ¼ ϵSi
P

j C
T
ij Rj � Si

P
j P

T
ij � μiSi:

(
ð5Þ

Our approach again makes use of mass action principles, and
we note that we consider production of resources to remove
biomass from the consumer density, meaning that terms
corresponding to this leakage appear in both equations. We have
also chosen a form for production that depends solely on the
density of species that are present in the system, and not on what
resources those species are using to grow. This may be a
reasonable approximation for some processes, for example the

production of various intermediates of the TCA cycle, the
production of which are not substrate dependent31. But in other
cases, we may need to allow for a more general form for
production that depends both on the species that are present, and
the specific resources they are consuming. Another interpretation
of the same terms would be as a kind of recycling—where
mortality does not just remove consumers from the system, but
also returns some portion of their biomass to the common
resource pool.

We now consider the properties of the equilibrium solutions

~R� ¼ CTð Þ�11
ϵ PT~1þ~μ
� �

;

~S� ¼ R�
diag

� �
C � P

h i�1
~ρ:

8<
: ð6Þ
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Fig. 1 Positive equilibria are guaranteed to be stable under competition for abiotic resources. We show four examples demonstrating feasible solutions of
(1) that are stable to small perturbations. Plots show the density (colored from red to blue) of eigenvalues for the Jacobian matrix at this equilibrium,
defined using a fixed matrix of consumer preferences. The form of the consumer preferences is shown inset in blue, where each row represents a distinct
resource, each column represents a distinct consumer, and darker blue indicates a higher rate of consumption. Each plot is obtained over multiple random
draw for consumer and resource densities, drawn from a uniform distribution. In the left-hand panels, we consider a gradient from near-specialism, where
each consumer has a favorite resource (but there are weak, randomly-drawn off-diagonal interactions), to near-generalism, where the off-diagonal
preferences are stronger than the specialism. In the right-hand panels, we show a similar gradient of near-specialism to near-generalism, but where the
resource preferences follow a smooth curve away from the preferred resource for each species. Both left- and right-hand panels therefore show a gradient
from generalism to specialism, but the right-hand case assumes that there is an unambigious spectrum of similarity for resources, and that species that can
consume a given resource also tend to consume similar resources. In all four cases, our theorem for local stability holds: the real parts of all eigenvalues of
the Jacobian matrix are always negative. We also note the similarity in the ‘dragonfly’ shape for this distribution across all cases, contrasting with the
classic circle (or elliptical) distributions for eigenvalues found in the case of pairwise interactions6, but similar to the distribution of eigenvalues found for
bipartite Lotka–Volterra equilibria39
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which have a correspondingly more general Jacobian matrix

ð7Þ

For this system, when the production matrix is nonzero, we do
not know in general what additional constraints beyond feasibility
are needed to ensure a stable equilibrium. However, we present
evidence below that suggests production rates must in general be
bounded for feasible solutions to also be locally stable.
Conversely, we also show that there are some cases in which
production rates can be arbitrarily large and local stability will
still hold.

Feasibility and reciprocity guarantee local stability. To explore
this, we consider the case of specialist consumers, C= cI, i.e.,
where each consumer specializes on just a single resource. We
also tune the influx and mortality rates so that equilbrium species
abundances and resource densities take the simplified form
~S� ¼ s~1, and ~R� ¼ r~1, for positive real values s and r. While this
may seem restrictive, in that competition is solely intraspecific, we
put no other restrictions on the production rates, Pij. Hence, we
can think of this as close to the most general case of purely
mutualistic interspecific interactions. In our Methods Section we
express constraints on the production matrix to ensure that it is
possible to obtain these feasible solutions. We then go on to prove
that a sufficient (though not necessary) condition for feasible
solutions to also be stable is

P
j≠i

Pij

 !2

< cs
ϵ cr � Pii � cs

4ϵ

� �
: ð8Þ

This result is straightforward to interpret. Suppose that
consumers do not produce any of the resource that they
specialize on, so that Pii vanishes. Then this result constrains a
combination of the strength and prevalence of production of the

‘off-diagonal’ resources for each species in terms of consumption
rate, c, conversion efficiency, ϵ, and the equilibrium abundances
and densities s and r of consumers and resources. These results
are reminiscent of constraints on stability for randomly drawn,
pairwise interactions between species. In that case, mutualistic
interactions tend to be more destabilizing than competitive
interactions. Are we just recapitulating results that are qualita-
tively already understood via pairwise interactions? We empha-
size that here our bound is sufficient, but not necessary for
feasibility to imply stability, and there are cases where the bound
above is not necessary for stability. One example is when
production vanishes altogether, and we are back to our earlier,
more general result that feasibility always implies stability.

A second example is when the production matrix is purely
symmetric. In this case, feasibility alone is sufficient to guarantee
local stability of the equilibrium solution, with no further
restrictions on production. We call this case reciprocal, because
symmetry of P ensures that each (specialized) consumer gives
exactly as much of each other consumer’s preferred resource as
they receive from that consumer. Figure 3 demonstrates this for
some particular examples. The importance of reciprocity for
stability seemingly contrasts with analysis of mutualistic interac-
tions using direct interactions between species—for example in
the case of plant-pollinator networks32. In these highly structured
communities, it was found that strong effects of plants on
pollinators (or vice versa) must come with weak interactions of
pollinators on plants, or else the resulting community equilibrium
would tend to be unstable. Even though these communities differ
from the random interactions considered by ref. 6 and others, the
same principle lies behind these results: if overall interaction
strengths exceed a bound determined by intraspecific regulation,
then a positive equilibrium can be unstable. In ref. 32, this bound
means that stability requires a balance of strong and weak
interactions, leading to asymmetry, rather than reciprocity. Our
finding that the asymmetry in mutualistic interactions can be
destabilizing rather than stabilizing demonstrates the quite
different insights to be gained from the analysis of
consumer–producer–resource communities.

Discussion
We have modeled the interactions among biological populations
that can consume, produce, and reproduce; and abiotic resources
that can be introduced, leached, consumed, or produced, but do
not reproduce. Perhaps more than any other biological system,
this clear division is likely to be a good approximation in bacterial
and archaeal communities, and may provide a more accurate
description than modeling pairwise competitive and mutualistic
interactions, which ignore the dynamics of resources. We revisit a
series of classic analyses for ecological communities in this fra-
mework, and identify important differences with earlier theore-
tical results arising from direct, pairwise interactions. First, we
find that any positive densities for consumers and resources can
be an equilibrium solution to our equations, given an appropriate
environmental context. We also find that these feasible solutions
are always locally stable, unlike the classical results for pairwise
interactions between species, which allow for unstable, feasible
solutions5,6 unless particular restrictions are placed on species
interactions27,33.

For systems of consumers and resources, we derived results for
structural stability given a set of consumer preferences, a measure
of robustness to environmental changes. In contrast to the clas-
sical expectation, we showed that structural stability is not
guaranteed to increase as species become more dissimilar in terms
of their resource preferences, echoing other recent work showing
the complexity of structural stability for direct, pairwise

�3

�2

�1

�3

�2

�1

Fig. 2 Structural stability changes non-monotonically with species
similarity. The volume of the set of mortality rates leading to feasible
densities for the resources, R*, can decrease even when species similarity is
decreased. Here, we show an example in three dimensions, where each axis
represents one of the three mortality rates, μi, and the volume is a kind of
wedge extending from the origin outwards. The measure, Vμ, of the size of
this volume is then equivalent to the area (colored green or blue) of a
triangle on the surface of the unit sphere, where the dissimilarity of each
pair of species is proportional to the length of one of the triangle’s sides. On
the left, this volume is shown for the particular 3 × 3 matrix CT detailed in
our Methods section, and is colored green. When the angle between one
pair of column vectors is increased while the other angles are unchanged,
we get the volume shown on the right-hand side. The resulting volume
decreases in size, despite the average similarity of these three species
having decreased

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05308-z ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2970 | DOI: 10.1038/s41467-018-05308-z | www.nature.com/naturecommunicationsnaturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


interactions27,33. Our results clarify how this more general picture
plays out when resource dynamics are modeled explicitly. Finally,
we extended our approach to include the production of resources,
which allows for mutualistic interactions via crossfeeding, where
one species may produce a resource that another needs. In this
case, we find that when production is too large, feasible solutions
no longer guarantee local stability. But we also find that when
mutualistic interactions are precisely balanced, that stability again
is guaranteed. If species reciprocate with each other cooperatively,
positive equilibria will be locally stable.

There are several opportunities for the extension of our results:
including the consideration of more complex functional respon-
ses22,34 allowing for the saturation of resource usage or multi-way
interactions; demographic or environmental stochasticity with
(for example) their effects on local extirpation of resources or
consumers35; and extending the more general analyses of global
stability that have been developed in the case of Lotka–Volterra
competition and mutualism13,36 to this system of consumers and
abiotic resources. We also do not rule out that direct, pairwise
interactions are likely to play a role (perhaps as an approximation
to antagonistic interactions mediated by antiobiotic production,
or even in rare cases direct cannibalism of microbial cells by each
other), and clearly more general forms of colimitation and pro-
duction are both possible and likely relevant in real communities.
Finally, in the cases we have analyzed, we have been able to prove
that there are circumstances when feasibility implies stability. But
even in these cases, there is more to investigate in terms of the
form of the eigenvalue spectrum. Exact or approximate solutions
for the full spectrum, including what controls its overall shape
and the size of its largest eigenvalues, will shed light on the
dynamics near equilibrium.

In summary, our results reflect a general lesson. In any com-
plex ecological system we inevitably draw lines around what we
choose to model, and what we leave out. Our results here show

that explicitly modeling the resources that mediate interactions
between biological organisms can significantly alter our conclu-
sions regarding stability, and hence what kinds of community
structure we can expect to observe in nature.

Methods
Feasibility of solutions. For any solution for ~R� and~S� with positive consumer
and resource densities, we can identify positive-valued influx and mortality rates
that will lead to these solutions as follows:

~μ ¼ ϵdiagC
T~R�;

~ρ ¼ ~R�
diagC~S

�:

(
ð9Þ

Because C is positive, any positive ~R� will result in~μ > 0. And if~S� is positive,
~ρ> 0. Thus for appropriate choice of parameters, any positive ~R�;~S�

� �
can be

found as a solution to Eq. (1) in the main text.

Stability of feasible equilibria for competition. The Jacobian matrix corre-
sponding to the equilibrium solutions given by Eq. (2) in the main text is

ð10Þ

If all the real parts of the eigenvalues of this Jacobian are negative, then this
equilibrium is locally stable. To compute these eigenvalues, we first note that the
eigenvalue equation det(L− λI)= 0 is given by

ð11Þ

Next, we note that �C~S�
� 	

diag�λI
h i

is invertible, so long as λ is not an

eigenvalue of �C~S�
� 	

diag. If it is an eigenvalue, then for nonnegative, invertible C

and positive ~S� , the entries of C~S� are positive. And so for λ an eigenvalue of
�C~S�
� 	

diag, we have λ < 0. On the other hand, if λ is not an eigenvalue of

4
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Fig. 3 Positive equilibria are guaranteed to be stable if exchange of resources is reciprocal. We show two examples demonstrating feasible solutions of (5).
Plots show the density (colored from red to blue) of eigenvalues for the Jacobian matrix at this equilibrium, defined using a fixed, diagonal matrix of
consumer preferences. This is shown inset in blue, where each row represents a distinct resource and each column represents a distinct consumer; blue
squares indicates a nonzero rate of consumption. We also consider a fixed, more general matrix of production rates (inset in green). Again, each row
represents a distinct resource, each column represents a distinct consumer, and darker green indicates a higher rate of production. Each plot is obtained
over multiple random draws for consumer and resource densities s and r, defined in the main text, and drawn from a uniform distribution (subject to the
constraints necessary to ensure that these densities can be obtained with positive influx and mortality rates ρ and μ). In the left-hand panel, we consider a
random set of production rates, which does not satisfy the bound necessary to guarantee stability, and indeed we see that there are some positive
eigenvalues of the Jacobian matrix, to the right of the black dashed line. In the right-hand panel, we show a similar case but where we impose that the
production matrix P is symmetric, meaning that each consumer gets as much of its favored resource as it gives. Even though the production matrix looks
‘similar’ to the naked eye in each case, this symmetry in the latter example is enough to guarantee local stability, with the largest eigenvalue bounded away
from zero by a gap related to the consumer abundances
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�C~S�
� 	

diag then

detðL� λIÞ ¼ det �C~S�
� 	

diag�λI
� �

´ det �λI � ϵ ~S�diag
h i

CT �C~S�
� 	

diag�λI
h i�1

� ~R�
diag

h i
C

h i
 �
:

Defining D1 ¼ ϵ ~S�diag
h i

, D2= �C~S�
� 	

diag�λI
h i�1

� ~R�
diag

h ih i
and

k ¼ det �C~S�
� 	

diag�λI
� �

then

detðL� λIÞ ¼ kdet �λI � D1C
TD2Cð Þ

¼ kdet �λI � ffiffiffiffiffiffi
D2

p
C
ffiffiffiffiffiffi
D1

p½ �T ffiffiffiffiffiffi
D2

p
C
ffiffiffiffiffiffi
D1

p½ �
� �

:
ð12Þ

We now assume λ is a nonnegative real number. Then so long as D1, D2, and C
are invertible (true by previous assumption and with ~S�;~R� > 0, thenffiffiffiffiffiffi

D2
p

C
ffiffiffiffiffiffi
D1

p½ �T ffiffiffiffiffiffi
D2

p
C
ffiffiffiffiffiffi
D1

p½ � is positive definite and thus λ < 0, contradicting the
assumption. Biologically, our assumption that C is invertible only rules out
essentially trivial cases, where e.g. a resource (or a linear combination of resources)
can be removed from the system altogether, or the resource preferences of two
species overlap identically.

More generally, assume Re(λ) ≥ 0. From (12) we have

0¼ det �λI � D1C
TD2Cð Þ

¼ det �λI � ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ: ð13Þ

We wish to find a contradiction by proving the eigenvalues of
ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

p
have positive real part and so it will be sufficient to show that the Hermitian part,
H

ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ is positive definite.

H
ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ ¼ 1
2

ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

p þ ffiffiffiffiffiffi
D1

p
CTDy

2C
ffiffiffiffiffiffi
D1

p� �
¼ ffiffiffiffiffiffi

D1
p

CTRe D2ð ÞC ffiffiffiffiffiffi
D1

p

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

C
ffiffiffiffiffiffi
D1

p� 	T ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðD2Þ

p
C
ffiffiffiffiffiffi
D1

p� 	 ð14Þ

Note that Re(D2) > 0, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðD2Þ

p
, C and

ffiffiffiffiffiffi
D1

p
are all invertible and so

H
ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ is positive definite. Thus, we must have that Re(λ) < 0
Equivalently, we can give a more explicit proof, where we assume that λ= c+

di is complex with real part c ≥ 0. Then we can choose the jth diagonal entry offfiffiffiffiffiffi
D2

p
to be written as aj+ bji where jajj>jbjj for all j, because each of the entries of

the diagonal matrix D2 has positive real part. Now, let
ffiffiffiffiffiffi
D2

p
C
ffiffiffiffiffiffi
D1

p ¼ Aþ Bi with
A ¼~adiagC

ffiffiffiffiffiffi
D1

p
and B ¼~bdiagC

ffiffiffiffiffiffi
D1

p
. Let ~x be an eigenvector associated with the

eigenvalue −λ of [A+ Bi]T[A+ Bi]. Then~x�½Aþ Bi�T ½Aþ Bi�~x should have non-
positive real part; however,

~x�½Aþ Bi�T ½Aþ Bi�~x¼ ~x�ATA~x �~x�BTB~x

þ ~x�ATB~x þ~x�BTA~x½ �i ð15Þ

and the real part of ~x�½Aþ Bi�T ½Aþ Bi�~x is

~x�ATA~x �~x�BTB~x ð16Þ

and because

A~x ¼~adiagC
ffiffiffiffiffiffi
D1

p
~x ¼~adiag~r ð17Þ

and

B~x ¼~bdiagC
ffiffiffiffiffiffi
D1

p
~x ¼~bdiag~r ð18Þ

where~r ¼ C
ffiffiffiffiffiffi
D1

p
~x, we have that~x�ATA~x �~x�BTB~x � 0. If~x�ATA~x �~x�BTB~x ¼ 0,

then it must be true that~r ¼ 0. Because C is assumed to be invertible, this
means that

ffiffiffiffiffiffi
D1

p
~x ¼ 0; however, this is not possible based on the definitions of D1

and ~x. Therefore we contradict our initial assumption that λ has nonnegative
real part.

Structural stability for competition. Feasible solutions for this system correspond
to positive values for ~R� and~S� . The size of μ-space that lead to such positive
solutions then depends on C, while similarly the size of ρ-space depends on CT. The
size of the parameter space depends on det(C) which considers the relationship
among all consumers’ resource use vectors and so it is more than just pairwise
similarity that is important for the size of the parameter spaces33,37. This can be

seen from mathematical expressions for these volumes, which are given by37

Vμ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detMμ

q
π

n
2

Z
R

n
þ

e� ξ;Mμξh idξ ð19Þ

and

Vρ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detMρ

q
π

n
2

Z
R

n
þ

e� ξ;Mρξh idξ: ð20Þ

Here, Mμ ¼ ĈĈT and the columns of ĈT are the normalized columns of CT and

Mρ ¼ ~CT ~C and the columns of ~C are the normalized columns of R*C. We note that
while Vμ depends only on the properties of the consumer preference matrix, Vρ

depends also on ~R� , which in turn depends on a specific choice of ~μ. In other
words, the volume Vρ changes with choice of ~μ.

In the special case where all angles between pairs of column vectors are initially
the same, a uniform increase in all angles does lead to a larger volume for the
parameter space. To see this for a system with N consumers, let a= cos(θ) where θ
represents the angle between each pair of normalized column vectors of C. The
determinant of M is given by

detðMÞ ¼ det

1 a � � � a

a 1 . .
. ..

.

..

. . .
. . .

.
a

a � � � a 1

2
666664

3
777775

0
BBBBB@

1
CCCCCA

¼ ð1� aÞn�1ð1þ ðn� 1ÞaÞ:

ð21Þ

Thus if the angle, θ, increases, then a= cos(θ) decreases and det(M) will increase.
However, it is not always the case that increasing angles between one or more

species will increase Vμ or Vρ. We now consider the following example for N= 3,
shown graphically in Fig. 2. Suppose initially that consumer preferences are given
by the matrix

CT ¼
1 1ffiffi

2
p 1ffiffi

3
p

0 1ffiffi
2

p 1ffiffi
3

p

0 0 1ffiffi
3

p

2
664

3
775; ð22Þ

while after shifting species preferences we have the new matrix

~CT ¼
1 1ffiffi

2
p a

0 1ffiffi
2

p b

0 0 c

2
64

3
75; ð23Þ

where a ¼ 1ffiffi
3

p � 1
4

ffiffiffiffiffi
194
75

q
, b ¼ 1ffiffi

3
p þ 1

4

ffiffiffiffiffi
194
75

q
, and c ¼ 1

10. The angles between the

column pairs for CT are θ12f ¼ π
4, θ13 � 0:304π, θ23 � 0:196πg and the angles

between the column pairs for ~CT are {~θ12 ¼ π
4,
~θ13 � 0:444π, ~θ23 � 0:196π}. So that

θ12 ¼ ~θ12, θ13<~θ13 and θ23 ¼ ~θ23. The volumes of the associated parameter spaces
are Vμ ≈ 0.0417 and ~Vμ � 0:008 for CT and ~CT , respectively. We note that these are
just exemplars, and this counterintuitive result can be found for many different
contexts, and is not limited to three species.

Feasibility and stability for competition and crossfeeding. For the case of
specialized consumers and equilibria with equal abundances for species and equal
densities for all resources, the equations for equilibrium abundances are (from Eq.
(6) in the main text)

r~1 ¼ 1
cϵ PT~1þ~μ
� �

;

s~1 ¼ ½crI � P��1~ρ:

(
ð24Þ

Then, solving for the parameters ~μ and ~ρ we have

~μ ¼ crϵ~1� PT~1;

~ρ ¼ s½crI � P�~1:

(
ð25Þ

To ensure that positive resource density (i.e., positive r) can be obtained by
positive rates, ~μ, we need that crϵ>

P
j P

T
ij , for all i. Similarly, to ensure that we

obtain positive values for s from positive ρ, we need that cr>
P

j Pij for all i. In
summary, not all possible values of consumer and resource density (i.e., not all
positive values of r and s) can be obtained as solutions of these equations,
conditioning on positive influx and mortality rates. That is, unlike the case of P=
0, there are now constraints for what subsets of feasible solutions are possible.
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From Eq. (7) in the main text, we then find the Jacobian reduces to the form

ð26Þ

We let λ represent an eigenvalue of ~L. Then, γ ¼ λðλþcsÞ
ϵcs þ cr is an eigenvalue of P.

Hence,

λ ¼ �cs
2

±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcsÞ2 � 4ϵcsðcr � γÞ

q
:

When all Re(λ) < 0 the equilibria above are stable to local perturbations.
We first consider a special case: where all γ are all real. An example of this

occurs when P is symmetric, when (as discussed in the main text) each consumer
species will get as much of its preferred resource as it gives to other species (of their
preferred resources). In this case, if also all γ < cr, then all λ will be <0 and the
equilibrium is locally stable. Using Gershgorin’s theorem38, this will be guaranteed
when

cr>
P
j
Pij 8i

In fact, this is the same as the criterion above that ensures~S� > 0. So we
conclude that feasibility and reciprocity together imply local stability, visualized in
an example case of Fig. 3 in the main text.

To find necessary and sufficient conditions on γ ensuring this for non-
symmetric P, first let γ̂= γ̂j jeiθ = cs� 4ϵðcr � γÞ. Then we want

Re
ffiffiffî
γ

p� �
<

ffiffiffiffi
cs

p
;ffiffiffiffiffi

γ̂j jp
cos θ2 <

ffiffiffiffi
cs

p
;

γ̂j j 1þcos θ
2

� �
< cs;

γ̂j j þ Re γ̂ð Þ < 2cs

ð27Þ

or equivalently

ϵ Im γð Þð Þ2 < cs cr � Re γð Þð Þ: ð28Þ

Can we reexpress this in terms of direct criteria for P that will guarantee
stability? Again using Gershgorin’s theorem38, for each eigenvalue, γ, of P we know
that for some i

γ� Piij j<
X
j≠i

Pij ð29Þ

or equivalently:

ImðγÞð Þ2<� ReðγÞð Þ2þ2PiiReðγÞ þ
X
j≠i

Pij

 !2

� Piið Þ2 ð30Þ

We can now rewrite our criteria for local stability as

ϵ �ðReðγÞÞ2 þ 2PiiReðγÞ þ
P

j 6¼i Pij
� �2

�ðPiiÞ2

 �

<csðcr � ReðγÞÞ : ð31Þ

Rearranging terms and maximizing the quadratic in Re(γ) gives

P
j≠i

Pij

 !2

< cs
ϵ cr � Pii � cs

4ϵ

� � ð32Þ

which is sufficient for stability when it holds for all i.

Unequal numbers of consumers and resources. For any solution for ~R� and~S�
with positive consumer and resource densities where the number of consumers is
NS and the number of resources is NR, with NS not necessarily equal to NR, we can
identify positive-valued influx and mortality rates that will lead to these solutions as
follows:

~μ ¼ ϵdiagC
T~R�;

~ρ ¼ ~R�
diagC~S

�:

(
ð33Þ

Because C is positive, any positive ~R� will result in~μ > 0. And if~S� is positive,
~ρ > 0. Thus for appropriate choice of parameters, any positive ~R�;~S�

� �
can be

found as a solution to Eq. (1) in the main text.
Let the number of consumers be NS, and the number of resources be NR.

Assume an equilibrium solution such that all resources and all consumer species
have positive density. The Jacobian matrix corresponding to any such equilibrium

solution is

ð34Þ

If all the real parts of the eigenvalues of this Jacobian are negative, then this
equilibrium is locally stable. To compute these eigenvalues, we first note that the
eigenvalue equation det(L− λI)= 0 is given by

ð35Þ

Next, we note that �C~S�
� 	

diag�λI
h i

is invertible, so long as λ is not an

eigenvalue of �C~S�
� 	

diag. If it is an eigenvalue, then the entries of C~S� are

nonnegative and so λ ≤ 0. However, if for some j, C~S�
� �

j¼ 0, then from Eq. (1),

there is no nontrivial, finite equilibrium value for the corresponding resource, Rj.
Thus, we consider this a degenerate situation and assume the entries of C~S� to be
strictly positive. And so for λ an eigenvalue of �C~S�

� 	
diag, we have λ < 0. On the

other hand, if λ is not an eigenvalue of �C~S�
� 	

diag then

0¼ detðL� λIÞ
¼ det �C~S�

� 	
diag�λI

� �
´ det �λI � ϵ ~S�diag

h ih
CT �C~S�

� 	
diag�λI

h i�1
� ~R�

diag

h i
C

h i
 �
:

Note that det �C~S�
� 	

diag�λI
� �

≠ 0. Thus, the above equation implies

0 ¼ det �λI � ϵ ~S�
� �

diag

h i
CT �C~S�

� 	
diag�λI

h i�1
� ~R�

diag

h i
C

h i
 �
: ð36Þ

Defining D1= ϵ ~S�
� �

diag

h i
and D2= �C~S�

� 	
diag�λI

h i�1
� ~R�

diag

h ih i
then

0¼ det �λI � D1C
TD2Cð Þ

¼ det �λI � ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ: ð37Þ

Assume Re(λ) ≥ 0. We wish to find a contradiction by proving the eigenvalues
of

ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

p
have positive real part and so it will be sufficient to show that

the Hermitian part, H
ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ is positive definite.

H
ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ ¼ 1
2

ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

p þ ffiffiffiffiffiffi
D1

p
CTDy

2C
ffiffiffiffiffiffi
D1

p� �
¼ ffiffiffiffiffiffi

D1
p

CTRe D2ð ÞC ffiffiffiffiffiffi
D1

p

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

C
ffiffiffiffiffiffi
D1

p� 	T ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

C
ffiffiffiffiffiffi
D1

p� 	
:

ð38Þ

Note that Re(D2) > 0. Now
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðD2Þ

p
C
ffiffiffiffiffiffi
D1

p
is an NR ×NS dimensional matrix.

We claim that rank
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

C
ffiffiffiffiffiffi
D1

p� �
=NS. First, because the entries of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

and
ffiffiffiffiffiffi
D1

p
are positive, rank

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

C
ffiffiffiffiffiffi
D1

p� �
= rank(C). Now we assume rank(C)

=NS. This is possible only when NS ≤NR, in keeping with the expectation that
coexistence of a group of NS species requires at least that many resources. Viewed
another way, this means that the consumer species have sufficiently unique
resource preferences. Now, with rank

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

C
ffiffiffiffiffiffi
D1

p� �
=NS, we may conclude

that H
ffiffiffiffiffiffi
D1

p
CTD2C

ffiffiffiffiffiffi
D1

pð Þ is positive definite.
Next, let the number of consumers be NS, and the number of resources be NR.

Assume an equilibrium solution such that all resources have positive density, and
all consumer species have nonnegative density. The Jacobian matrix corresponding
to any such equilibrium solution is

ð39Þ

If all the real parts of the eigenvalues of this Jacobian are negative, then this
equilibrium is locally stable. To compute these eigenvalues, we first note that the
eigenvalue equation det(L−λI)= 0 is given by

ð40Þ

Next, we note that �C~S�
� 	

diag�λI
h i

is invertible, so long as λ is not an

eigenvalue of �C~S�
� 	

diag. If it is an eigenvalue, then the entries of C~S� are
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nonnegative and so λ ≤ 0. However, if for some j, C~S�
� �

j¼ 0, then from Eq. (1),

there is no nontrivial, finite equilibrium value for the corresponding resource, Rj.
Thus, we consider this a degenerate situation and assume the entries of C~S� to be
strictly positive. And so for λ an eigenvalue of �C~S�

� 	
diag, we have λ < 0. On the

other hand, if λ is not an eigenvalue of �C~S�
� 	

diag then

0¼ detðL� λIÞ
¼ det �C~S�

� 	
diag�λI

� �
´ det ϵCTR� � μ½ �diag�λI � ϵ ~S�diag

h i
CT �C~S�

� 	
diag�λI

h i�1
� ~R�

diag

h i
C

h i
 �
:

Note that det �C~S�
� 	

diag�λI
� �

≠0. For simplicity, assume that there is only one

consumer with non-positive density, S�j ¼ 0. For all other consumers, the

corresponding entries of ϵCTR� � μ½ �diag are zero. Thus, the above equation implies

0¼ ϵCTR� � μ½ �j�λ
� �

´ det �λI � ϵ ~S�m
� �

diag

h i
CT
m �Cm

~S�m
� 	

diag�λI
h i�1

� ~R�
diag

h i
Cm

h i
 � ð41Þ

With

~S�m ¼~S�with the jth entry removed

Cm ¼ C with the jth column removed

Defining D1 = ϵ ~S�m
� �

diag

h i
and D2= �Cm

~S�m
� 	

diag�λI
h i�1

� ~R�
diag

h ih i
then

0 ¼ ϵCTR� � μ½ �j�λ
� �

´ det �λI � D1C
T
mD2Cm

� �
¼ ϵCTR� � μ½ �j�λ
� �

´ det �λI � ffiffiffiffiffiffi
D1

p
CT
mD2Cm

ffiffiffiffiffiffi
D1

p� � ð42Þ

So we have that ϵCTR� � μ½ �j is an eigenvalue. Now looking at 0= det

�λI � ffiffiffiffiffiffi
D1

p
CT
mD2Cm

ffiffiffiffiffiffi
D1

p� �
, assume Re(λ) > 0. We wish to find a contradiction by

proving the eigenvalues of
ffiffiffiffiffiffi
D1

p
CT
mD2Cm

ffiffiffiffiffiffi
D1

p
have positive real part and so it will be

sufficient to show that the Hermitian part, H
ffiffiffiffiffiffi
D1

p
CT
mD2Cm

ffiffiffiffiffiffi
D1

p� �
is positive definite.

H
ffiffiffiffiffiffi
D1

p
CT
mD2Cm

ffiffiffiffiffiffi
D1

p� �¼ 1
2

ffiffiffiffiffiffi
D1

p
CT
mD2Cm

ffiffiffiffiffiffi
D1

p þ ffiffiffiffiffiffi
D1

p
CT
mD

y
2Cm

ffiffiffiffiffiffi
D1

p� �
¼ ffiffiffiffiffiffi

D1
p

CT
mRe D2ð ÞCm

ffiffiffiffiffiffi
D1

p

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

Cm
ffiffiffiffiffiffi
D1

p� 	T ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

Cm
ffiffiffiffiffiffi
D1

p� 	 ð43Þ

Note that Re(D2) > 0. Now
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

Cm
ffiffiffiffiffiffi
D1

p
is an NR ×NS− 1 dimensional

matrix. We claim that rank
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

Cm
ffiffiffiffiffiffi
D1

p� �
=NS− 1. First, because the entries

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

and
ffiffiffiffiffiffi
D1

p
are positive, rank

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

Cm
ffiffiffiffiffiffi
D1

p� �
= rank(Cm). Now we

will have rank(Cm)=NS− 1 if rank(C)=NS. This is only possible when NS ≤NR.
This is again a biologically reasonable assumption to make, as it means that the
consumer species have sufficiently unique resource preferences. Now, with
rank

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re D2ð Þp

Cm
ffiffiffiffiffiffi
D1

p� �
=NS− 1, we may conclude that H

ffiffiffiffiffiffi
D1

p
CT
mD2Cm

ffiffiffiffiffiffi
D1

p� �
is

positive definite. Thus the stability of the equilibrium ~R�;~S�
� �

depends only on the
sign of ϵCTR� � μ½ �j . If ϵCTR� � μ½ �j<0, the system is uninvasible by species j and
the equilibrium is stable.

Code availability. The authors used python code to generate matrices of appro-
priate structure to produce Figs. 1–3. The code necessary to generate these figures
(or related) will be made available in the O’Dwyer lab github repository (https://
github.com/odwyer-lab/consumer_producer).

Data availability. No datasets were generated or analyzed during the current
study.
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