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Angiogenesis after ischemic stroke
Jie Fang1, Zhi Wang1 and Chao-yu Miao1✉

Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the
pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception
of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an
important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process
of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular
remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular
mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for
exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors,
cytokines, non-coding RNAs, etc.
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INTRODUCTION
Stroke is the second leading cause of mortality and the leading
cause of disability worldwide. It has high morbidity, mortality and
disability rates, and its treatment methods are limited [1]. Stroke is
a pathological condition that causes the cessation of blood supply
to a portion of the brain, which results in abnormal blood
dynamics, neurovascular function, and energy metabolism [2].
Ischemia or hemorrhage caused by a thrombus or systemic
hypoperfusion can lead to the development of stroke [3]. Stroke is
categorized into ischemic and hemorrhagic, wherein approxi-
mately 87% of cases are cerebral ischemia [4]. Currently, acute
focal stroke is managed using three major approaches: neuropro-
tective, endovascular thrombectomy and thrombolytic therapy [3].
Theoretically, neuroprotection is a common strategy in treating
ischemic and hemorrhagic stroke, and animal experimental
models of stroke showed the effectiveness of neuroprotective
drugs [5–7]. However, only a few have been proven clinically
effective. Recent studies have shown that endovascular throm-
bectomy could improve recanalization rates in patients with
ischemic stroke caused by large-artery occlusion, but surgical
intervention could only be performed in select patients [8].
Additionally, the only FDA-approved drug for ischemic stroke
treatment is tPA, which binds to fibrin via its lysine residue and
activates the conversion of fibrinogen-bound plasminogen to
plasmin, thereby achieving thrombolytic therapy [9]. However, its
narrow therapeutic window (within 4.5 h after stroke) results in
only 3%–5% of patients receiving timely treatment in practice,
which hinders its better and broader clinical application [9].
Currently, no drugs can be used as a treatment for hemorrhagic
stroke, which has a higher mortality rate [10]. Therefore, the
pathological mechanism of stroke should be elucidated, and
better drugs or methods should be available to treat stroke.

Neurovascular networks have been recently proposed, and the
close communication between neurons and blood vessels is
essential for brain function [11]. Certainly, angiogenesis is an
important protective mechanism promoting nerve regeneration
and functional recovery during stroke. Studies have shown that
cerebral ischemia could induce transient angiogenesis [12].
Moreover, ischemic stroke treatment involves the promotion of
angiogenesis in the peri-infarct area, which could effectively
reduce the infarct volume, promote nerve cell survival and recover
neurovascular network function [13]. With the development of
stem cell technology and the discovery of molecular targets, cell
and molecular therapies have been proposed, including stem cells
such as endothelial progenitor cells (EPCs), mesenchymal stem
cells (MSCs), and molecules such as vascular endothelial growth
factor (VEGF), angiopoietin-1 (Ang1), microRNA, etc. This review
summarized the cellular and molecular mechanisms affecting
angiogenesis after cerebral ischemia in PubMed, and provided
pro-angiogenic strategies to mainly explain ischemic stroke
treatment, including EPCs, MSCs, growth factors, cytokines, non-
coding RNAs (ncRNAs), etc.

ANGIOGENESIS AFTER ISCHEMIC STROKE
The most basic requirement in embryonic development is the
development of blood vessels, which takes precedence over the
development and differentiation of other tissues and organs, and
guarantees reproductive function, wound healing and tissue injury
and repair in adults [14]. Neovascularization occurs via two main
cellular processes: vasculogenesis and angiogenesis [15]. Vasculo-
genesis, occurring mostly during embryonic blood vessel forma-
tion, refers to the differentiation of undifferentiated precursor cells
(angioblasts) into endothelial cells (ECs), which assemble into the
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primitive vascular network [14]. Angiogenesis refers to the growth
of new vascular structures from existing blood vessels and
involves various physiological and pathological processes
in vivo, such as menstruation, pregnancy, wound healing, fracture
repair, and “therapeutic angiogenesis” caused by ischemia [16].
More importantly, new blood vessels are mainly formed through
angiogenesis in adults, although vasculogenesis has also been
reported [3]. Angiogenesis has three main forms: remodeling of
blood vessels to form smaller microvessels, sprouting angiogen-
esis, and arteriogenesis, which is the remedial formation of mature
new arteries, increasing in length and width, from preexisting
interconnected arterioles after arterial occlusion [17]. Evidence
showed that angiogenesis after cerebral ischemia occurs through
sprouting, which involves EC proliferation, migration, angiogenic
sprouting and lumen formation, and endothelial network matura-
tion [3] (Fig. 1).
After the development of stroke, the ischemic penumbra tissue

releases a complex mix of angiogenic factors, such as VEGF,
angiopoietins, platelet-derived growth factor (PDGF), angiogenin,
transforming growth factors (TGFs), basic fibroblast growth factor
(bFGF), matrix metalloproteinase (MMP), nitric oxide (NO), etc [18].
These angiogenic factors initiate and regulate angiogenesis, of
which VEGF is a critical stimulator of angiogenesis. In humans,

angiogenesis occurs 3–4 days after ischemic stroke [19]. Post-
mortem analyses of stroke patients showed an increased cerebral
blood vessel density in the peri-infarct region compared with the
contralateral normal area [19]. Moreover, blood vessel density in
the ischemic border correlates with survival in stroke patients, and
those with greater cerebral blood vessel density have better
survival [19].

Initiation of angiogenesis after ischemic stroke
As the primary effector cells of the angiogenic response, ECs
surrounding the infarcted brain area start to proliferate as early as
12–24 h after the development of ischemic stroke [20]. Moreover,
VEGF upregulation in the peri-infarct region was described as early
as 3 h after an ischemic insult, indicating that angiogenesis was
initiated within hours of stroke onset [21]. Upon onset of ischemia
stroke, VEGF and NO increase vascular permeability, leading to
plasma protein extravasation that forms a temporary scaffold for
endothelial cell migration [17]. For ECs to migrate from their
resident sites, the contacts between ECs are loosened, and the
support of the surrounding cells (pericytes and smooth muscle
cells) is weakened, which ultimately leads to vascular instability
[17]. After ischemic stroke onset, the reactive astrocytes restruc-
ture the extracellular matrix (ECM), leading to the formation of

Fig. 1 Schematics of key steps in angiogenesis after ischemic stroke. a Pro-angiogenic molecules such as NO and VEGF induce local
vasodilation, antagonize tight junctions between ECs, and initiate angiogenesis after ischemic stroke. Pericytes and smooth muscle cells are
also loosened, resulting in extravasation of intravascular plasma proteins. b Activated ECs (graded pink) are induced to proliferate and migrate
by a variety of angiogenic factors (VEGF, FGF, PDGF, αvβ3 integrin, etc.) to form subulate vascular buds. c Stimulated by VEGF, integrins (αvβ3 or
α5) and other factors, activated EC continue to proliferate and migrate outwards, forming lumen with adjacent budding. d The newly formed
lumen is not stable and needs to ensure endothelial cell survival and function, for example, tight junctions between ECs, orderly support of
pericytes and smooth muscle cells, and deposition of the extracellular matrix.
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ECM tracts that are used by migrating endothelial cells to establish
new capillary buds [22, 23]. After establishing the sprouting path,
VEGF binds to its receptors on vascular ECs to directly initiate an
angiogenic response, promoting the proliferation and migration
of endothelial cells [15].

Angiogenic sprouting after ischemic stroke
After initiation of angiogenesis, ECs are activated, which release
proteases to degrade the ECM, and they proliferate and migrate to
a distant space [3]. This process leads to vascular sprout formation,
and depends on the involvement of various proteases and
angiogenic cytokines, such as VEGF, placental growth factor
(PLGF), Ang 1/2, FGF, PDGF, αvβ3 integrin, etc.

Lumen formation after ischemic stroke
After vessel sprouting, ECs accumulate continuously outward from
the sprouting like solid cords, and the lumen is formed from the
adjacent new budding [3]. Endothelial embedding and fusion with
native vessels increase the vessel diameter and length in response
to angiogenic factors, such as VEGF, Ang1, integrins (αvβ3 or α5),
myocyte enhancer-binding factor 2 C, etc. Excessive matrix
proteolysis may lead to cystic EC aggregation, which prevents
lumen formation.

Maturation of the endothelial network after ischemic stroke
Endothelial network maturation includes the survival and differ-
entiation of ECs in the neovascular lumen and vascular remodel-
ing [24]. Studies showed that reduced endothelial cell survival led
to vascular degeneration, which was detrimental to angiogenesis
[17]. After the onset of ischemic stroke, ECs acquire special
characteristics determined by the local tissue to adapt to the
needs of the microenvironment [25]. For example, ECs involved in
the exchange of substances in the endocrine glands differentiated
into discontinuous and porous cells [26]. One of the most
important parts of a mature endothelial network is remodeling,
wherein new vessels are trimmed into capillary-like vessels that
are organized irregularly into a structured branched vascular
network [17]. Additionally, vascular smooth muscle cells and
pericytes migrate around the blood vessels and contribute to ECM
deposition. At this stage, various pro-angiogenic factors play an
important role, such as VEGF, Ang and its receptor Tie, GTP-
binding protein Gα13, cell adhesion molecules, chemokine
receptor 4, integrin α4, etc.

CELLULAR REGULATION OF ANGIOGENESIS AFTER ISCHEMIC
STROKE
The vasculature in the brain originates from vasculogenesis during
embryonic development and has some plasticity in adults. When
cerebral ischemia occurs, various endogenous protective mechan-
isms are activated within a few minutes in the peri-infarct area,
including angiogenesis, neurogenesis, glial cell infiltration, etc.
After transient focal cerebral ischemia, a delayed increase was
observed in cerebral blood flow and blood volume in the
ipsilateral cortex, which may be related to angiogenesis [12].
Meanwhile, the cerebral ischemia-induced microvascular forma-
tion also promotes macrophage infiltration and clearance of
necrotic tissue in the infarct area [13]. This enhanced angiogenesis
in ischemic tissue is known as therapeutic angiogenesis. However,
endogenous angiogenesis after ischemia was transient and
completely disappeared weeks after ischemia. Endogenous
angiogenesis was activated in the peri-infarct area in early
cerebral ischemia [27]. Moreover, the remodeling area has
different emerging progenitor cell populations [27, 28], such as
EPCs, neural progenitor cells and oligodendrocyte progenitor cells
(OPCs) [29]. Subsequently, evidence showed that various stem/
progenitor cells had beneficial angiogenic effects [30], including
embryonic stem cells (ESCs) [31], peripheral blood hematopoietic

stem cells (CD34+) [32], mesenchymal stem cells [33], neural stem/
progenitor cells [34], oligodendrocyte precursor cells [35], human
umbilical cord blood cells (huCBCs) [36], skin-derived progenitor
cells (SKPs) [37], and EPCs [29].

EPCs
In an observational case-control study on 100 stroke patients,
including 50 lacunar strokes and 50 cortical strokes, circulating
EPCs were identified as potential biomarkers for the diagnosis and
prognosis of cerebral ischemia [38]. EPCs play an important role in
adult angiogenesis [39]. In response to the pathophysiological
needs of neovascularization, EPCs could be mobilized from the
bone marrow into the peripheral blood and differentiated into
functional ECs, which participate in the neovascularization and
blood vessel repair and remodeling [29].
The upregulation of high-mobility group box 1 caused by

reactive astrocytes could induce the activation and accumulation
of endogenous EPCs [40], promoting angiogenesis through
chemokine (C-X-C motif) receptor 4 (CXCR4)/stromal cell-derived
factor-1 (SDF-1) axis [41]. Interestingly, the secretome of EPCs from
stroke patients promotes angiogenesis and endothelial tightness,
thereby preventing vascular leakage caused by ischemia [42].
Moreover, the mobilization of endogenous EPCs might be
beneficial to the repair of cerebral ischemia.
Furthermore, several studies reported that intravenous admin-

istration of EPCs [43–45] or transplantation of bone marrow-
derived EPCs [46] or endothelial colony-forming cells [47], a
homogeneous EPC subtype, could effectively promote neovascu-
larization and improve functional repair after acute focal cerebral
ischemia. The mechanism may involve increased plasma VEGF
levels [44] and upregulation of hypoxia-inducible factor (HIF-1α)
signaling [45], which reduce blood-brain barrier (BBB) leakage and
degradation of tight junction proteins. Moreover, EPC transplanta-
tion induces vascular remodeling, which is related to MMP9 in the
brain [48]. EPC-derived exosomes increase CD31 and VEGF
expressions to promote angiogenesis and improve cerebral
ischemic injury [49] (Table 1). Furthermore, a single EPC injection
could prolong the lifespan of stroke-prone spontaneously
hypertensive rats [50]. Additionally, EPCs played a role in
promoting angiogenesis in a mouse model of permanent cerebral
ischemia [51]. The chemokine CXCL12 promoted endothelial cell
migration and tube formation through its receptor CXCR4 [52].
Therefore, VEGF expression, endothelial cell proliferation, and tube
formation increased more significantly, which increases vessel
density, if EPCs overexpressing chemokine cxcl12 gene were used
as a treatment for permanent damage caused by middle cerebral
artery occlusion (MCAO) [51]. Although EPCs are the most
important progenitor cells in angiogenesis, repair and remodeling
after cerebral ischemia, and both endogenous EPC mobilization
and exogenous EPC transplantation were effective, the exact
mechanism has not been fully elucidated (Fig. 2).

MSCs
MSCs, also known as bone marrow stromal cells (BMSCs), are a
class of stem cells found primarily in the bone marrow, and they
can differentiate into various cell types in vivo, including
osteoblasts [53], adipocytes [54], chondrocytes [55], hepatocytes
[56], astrocytes [57], neurons [58], etc. MSCs can cross the BBB
without damaging the brain’s structural integrity [57], which has
promoted the recent development of exogenous MSC transplan-
tation in treating cerebral ischemia [33, 59]. Studies showed that
intravenous administration of MSCs or human MSC cell line B10 in
a rat model of focal cerebral ischemia could improve functional
recovery by increasing the expression of neurotrophic factors,
including insulin-like growth factor 1 (IGF-1), glial cell line-derived
neurotrophic factor (GDNF), brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), epidermal growth factor (EGF)
and basic FGF [60, 61] (Table 1).
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Moreover, the transplanted MSCs increase various pro-
angiogenic factor expression through autocrine and paracrine
effects, and induce neovascularization and stability in the ischemic
region [62, 63]. Accumulating evidence showed that BMSC
transplantation after cerebral ischemia promotes angiogenesis
and increases the expression and release of endogenous

angiogenic factors such as VEGF, Hes1, Ang1 and TGF-β1 in
ischemic infarct areas through Notch signaling [64–68] (Fig. 2).
MSC-induced vascular stabilization might be mediated by
increased VEGF and Ang1 expression and their corresponding
receptors Flk1 and Tie2 in mouse brain ECs or astrocytes [69].
Interestingly, systemically delivered MSCs could transfer their

Table 1. Effects and mechanisms of cell transplantation therapy in cerebral ischemia.

Cell types Effects Mechanisms

EPCs; [43]
bone marrow-
derived EPCs; [46]
ECFCs [47]

promoted cerebral neovascularization and
neurovascular repair

increased HIF-1α signaling and plasma VEGF levels to reduce BBB
leakage and tight junction protein degradation; [44, 45]
related to MMP9; [48]
increased the expression of CD31 and VEGF in the brain by
secreting exosomes [49]

MSCs; [65, 68–70]
human MSC cell line
B10 [61]

enhanced the angiogenesis, induced functional
improvement, reduced infarct volume, and
neuroprotection

induced the expression of IGF-1, BDNF, EGF, and bFGF neurotrophic
factors; [60]
increased the expression and release of endogenous pro-
angiogenic factors such as VEGF, Hes1, Ang1 and TGF-β1 in
ischemic infarct area through Notch signaling; [65, 67, 68]
increased expression of VEGF and Ang1 and their corresponding
receptors Flk1 and Tie2 in MBECs or astrocytes; [69]
transferred their functional mitochondria to stroke-injured ECs via
nanotubes to improve endothelial cell function; [70]
upregulated microRNA such as miR-21-5p, miR-210, and miR-126 to
activate the PI3K/Akt/eNOS signaling pathway and induce the
expression of pro-angiogenic factors, including VEGF, VEGFR2, Ang-
1, Tie-2, EGF, and PDGF by secreting exosomes [84–86]

ESCs [31, 96] promoted peri-infarct angiogenesis and decreased
brain lesion

enhanced endogenous endothelial cell proliferation [31, 96]

iPSCs [98] promoted angiogenesis derived MSCs secreted extracellular vesicles that promote tube
formation by inhibiting STAT3-dependent autophagy in ECs [98]

BMMNCs [99] promoted arteriogenesis and angiogenesis differentiated into smooth muscle cells and ECs mediated by cell-
cell interaction mediated by endothelial gap junctions and the
chemokine receptor CCR2 [100, 101]

CD34+ cells [32, 102] induced neuroplasticity and angiogenesis increased β1 integrin expression [32]

NPCs/NSCs [34, 92] facilitated angiogenesis increased tight junction proteins and promoted Ang-1/Tie2 and
VEGF/VEGFR2 signaling pathways in brain capillaries [34, 92]

ADSCs [104] contributed to the migration length and tube extension
in BMECs

down-regulated miR-181b-5p/TRPM7 axis by secreting exosomes
[104]

hUCBCs [36] promoted angiogenesis increased the expression of BDNF, VEGF, Tie-2 and occludin [36]

hTPCs [105] promoted angiogenesis and neurogenesis increased the expression of LHX6, Olig1, PDGFRα, VEGFR1 and
VEGFR2 [105]

hAFSCs [106] improved cerebral vascular remodeling and
angiogenesis

increased CD31, VEGF, vWF and α-SMA [106]

OPCs [35] promoted angiogenesis and remyelination facilitated endothelial β-catenin through Wnt7a [94]

SKPs [37] promoted endogenous angiogenesis and neural stem
cell proliferation

secreted bFGF and VEGF in the ischemic zone [37]

pericytes [117] ameliorated neurovascular injury and promoted the
formation of the blood-brain barrier

up-regulated the expression of NGF and NT3 through activating
PDGFRβ/Akt; [117]
secreted Ang-1 to activate its receptor Tie2 on the surface of ECs;
[116]
expressed and secreted other pro-angiogenic factors, including
VEGF, TGFβ, angiopoietin, S1P and Notch signaling
[21, 116, 118, 119]

microglia [122, 123] regulated blood flow and promoted the proliferation
and migration of ECs and angiogenesis

controlled purine release through PANX1 channel; [123]
secreted the exosomes containing miRNA-26a; [124]
stimulated Smad2/3 signaling from ECs by secreting extracellular
vesicles enriched in TGF-β1; [125]
released some pro-inflammatory cytokines, including MCP-1, TGF-α,
TGF-β, G-CSF, FGF, IL-4, IL-6, IL-1β, which can also increase the
expression of VEGF in ECs [126]

EPCs endothelial progenitor cells, ECFCs endothelial colony-forming cells, MSCs mesenchymal stem cells, ESCs embryonic stem cells, iPSCs induced pluripotent
stem cells, BMMNCs bone marrow-derived mononuclear cells, CD34+ cells peripheral blood stem cell, NPCs/NSCs neural progenitor/stem cells, ADSCs adipose-
derived stem cells, hUCBCs human umbilical cord blood cells, hTPCs human placental trophoblast progenitor cells, hAFSCs human amniotic fluid stem cells,
OPCs oligodendrocyte precursor cells, SKPs skin-derived progenitor cells.
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functional mitochondria to stroke-injured ECs via nanotubes,
thereby improving endothelial cell function and saving the
cerebrovascular system [70] (Table 1, Fig. 2). A study evaluating
the time window of MSC treatment showed that MSC treatment
might have a beneficial effect through angiogenic mechanisms in
the late stage of permanent MCAO (at least >1 month) in rats [71].
This might be related to the survival, migration, homing and
implantation of transplanted cells in the lesion area. Therefore,
methods promoting recruitment, survival and enhanced function
of MSC around the ischemic core have been proposed. For
example, gene modification of delivered MSCs to overexpress
PLGF [72], CCL2 [73], thrombospondin-4 (TSP4) [74], CXCR4 [75], or
Ang-1 [76] further enhanced the angiogenesis function of MSCs.
Hypoxia-pretreated BMSCs enhanced the survival, homing,
migration and differentiation of BMSCs through CXCL12/
CXCR4 signaling [77] or upregulating HIF-1α and growth trophic
factors, such as BDNF, GDNF, VEGF, FIK-1, EPO, EPOR, SDF-1, and
CXCR4 [78]. Similarly, mild hypothermia could induce homing and
angiogenesis of transplanted BMSCs to promote functional
recovery and significantly reduce infarct size [79]. Combined

therapy with drugs could also promote the beneficial effect of
MSC treatment. Icariin and MSCs synergistically promote angio-
genesis after transient MCAO by significantly increasing VEGF and
BDNF expressions by activating the PI3K and ERK1/2 pathways
[80].
Recent studies showed that BMSCs release secretome and

extracellular vesicles to effectively promote angiogenesis [81].
Conditioned medium experiments showed that secretome from
human embryonic MSCs promotes the partial recovery of focal
ischemic injury by improving angiogenesis [82]. Extracellular
vesicles, including exosomes and microvesicles, are nanoscale
vesicles [83]. Exosomes and microvesicles are 30–100 and
40–1000 nm in diameter, respectively [83]. Exosomes derived
from BMSCs promote angiogenesis and improve endothelial cell
injury in ischemic stroke mice by microRNA upregulation, such as
miR-21-5p [84], miR-210 [85], and miR-126 [86]. Subsequently, it
activated the PI3K/Akt/eNOS signaling pathway and induced the
expression of pro-angiogenic factors, such as VEGF, VEGFR2, Ang1,
Tie2, EGF, and PDGF [84–86] (Fig. 2). However, MSC-derived
extracellular vesicles also improved cerebral angiogenesis and

Fig. 2 Major stem cell therapies and its mechanisms for ischemic stroke. After stroke, the administered stem cells arrived the peri-infarct
area and not only replaced the injured cells by directly differentiating into the corresponding ECs, neural cells, etc., but also promoted
angiogenesis in the ischemic area through a variety of mechanisms. Endothelial progenitor cells could not only directly increase HIF-1α
signaling and plasma VEGF levels, but also increase CD31 and VEGF expression by secreting exosomes in the brain. MSCs could promote
angiogenesis in many ways, such as transferring their functional mitochondria to stroke-damaged ECs through nanotubes, and activating the
PI3K/Akt/eNOS signaling pathway by secreting exosomes to up-regulate the expression of microRNAs and angiogenic factors. And the
expression and release of endogenous angiogenic factors such as VEGF/VEGFR, Ang-1/Tie-2 and EGF in the peri-infarct zone were also
increased through Notch signaling. NPCs/NSCs and OPCs could promote angiogenesis by increasing tight junction proteins in brain capillaries
through Ang-1/Tie2 and VEGF/VEGFR2 signaling pathways, and by promoting β-catenin in ECs through Wnt7a.
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neurogenesis after stroke and prevented post-ischemic immuno-
suppression [87, 88] (Table 1). Gregorius et al. showed that the
small extracellular vesicles produced by hypoxia-induced MSCs
could promote cerebral vasculogenesis and brain remodeling in
mice after focal cerebral ischemia by regulating miRNAs related
to angiogenesis in human cerebral microvascular ECs, including
up-regulation of miR-126-3p, miR-140-5p, and let-7C-5p, and the
down-regulation of miR-186-5p, miR-370-3p, and miR-409-3p [89].
Moreover, microvesicles from MSCs treated with normal rat brain
extract (NBE-MSC-MVs) and stroke-induced rat brain extract (SBE-
MSC-MVs) were significantly better than untreated MSC-MVs in
improving inflammation and enhancing angiogenesis and neuro-
genesis [90].

Neural stem cells
Neural stem cells (NSCs) are derived from neural tissue, and they
can self-renew and differentiate into neurons, astrocytes and
oligodendrocytes [91]. To enhance angiogenesis and repair
damaged nerve tissue, endogenous NSCs proliferate, migrate,
and differentiate into neurons and astrocytes in the hippocampus
and cerebral cortex during ischemic brain injury [91]. Intravenous
injection of neural progenitor/stem cells could promote Ang1/Tie2
and VEGF/VEGFR2 signaling pathways in brain capillaries, and
increase tight junction proteins to facilitate angiogenesis
[34, 92, 93] (Fig. 2). Moreover, OPC transplantation promotes
angiogenesis and remodeling in ischemic stroke by acting on
endothelial β-catenin through Wnt7a [35, 94] (Fig. 2).

Additional stem cells
Various experimental and clinical models showed the therapeutic
effects of stem cell transplantation on brain injury, including ESCs,
induced pluripotent stem cells (iPSCs), bone marrow-derived cells
(BMDCs), NSCs, etc [95]. Systemic transplantation of ESCs or
embryonic NSCs enhances endogenous endothelial cell prolifera-
tion to promote angiogenesis in the peri-infarct areas [31, 96].
iPSCs have been shown to derive different cell types to improve
functional recovery after ischemia [97], and iPSC-derived MSCs
could secrete extracellular vesicles that promote tube formation
and angiogenesis by inhibiting signal transducer and activator of
transcription-3 (STAT3)-dependent autophagy in ECs during brain
ischemia [98] (Table 1). Bone marrow-derived mononuclear cells
(BMMNCs) can differentiate into smooth muscle cells and ECs to
promote arteriogenesis and angiogenesis in rats [99]. The
mechanism may be mediated by cell-cell interaction mediated
by endothelial gap junctions [100] and the chemokine receptor
CCR2 [101]. Because BMMNCs are a rich source of human
hematopoietic stem cells, peripheral blood stem cell (CD34+)
transplantation for stroke has also been considered [102]. Shyu
et al. showed that transplanted CD34+ cells increase β1 integrin
expression to promote angiogenesis in chronic ischemic rats [32]
(Table 1).
In addition, SKPs could secrete bFGF and VEGF in the ischemic

zone to promote endogenous angiogenesis and NSC proliferation
[37] (Table 1). Moreover, the mechanism by which adipose-derived
stem cells promote cerebral vascular remodeling was exosomes
secretion containing microRNA-181b-5p, which downregulated
the expression of transient receptor potential melatonin 7 [103],
and contributed to the migration length and tube extension in
brain microvascular endothelial cells [104]. Other stem cells are
also used in vascular remodeling and angiogenesis after cerebral
ischemia, such as hUCBCs [36], human placental trophoblast
progenitor cells [105] and human amniotic fluid stem cells [106].
With the development of stem cell culture technology, three-

dimensional (3D) organ-like tissues, also known as organoids,
provide promising models for studying organogenesis and disease
[107]. An organoid is an in vitro 3D cellular cluster derived from

ESCs or iPSCs that can self-renew and self-organize [108, 109].
Organoids may facilitate stem cell therapies because they contain
stem and progenitor cells. Studies showed that the grafting of
cerebral organoids into the mouse cortex could form functional
vascular connections with the mouse cortex [110–112]. We also
confirmed that cerebral organoid transplantation promoted
neurogenesis, angiogenesis and neurological recovery in stroke
rats [113]. Notably, because cerebral organoids contain various
nerve cell types, their regulation mechanism in angiogenesis has
not been fully clarified.

Pericytes
BMDCs promote angiogenesis after cerebral ischemia [114, 115].
However, the BMDC cell type supporting vascular remodeling
after cerebral ischemia is still unclear. Kokovay et al. used GFP
expression to trace the role of transplanted BMDCs in recipient
mice, and found that BMDCs with vascular remodeling did not
have endothelial cell markers, but expressed desmin and
vimentin, which ultimately identified these cells as pericytes
[115]. Pericytes may be derived from the bone marrow, and they
are involved in vascular remodeling after cerebral ischemia [115].
Pericytes play an important role in the early and late stages of new
blood vessel formation to help angiogenic sprouting and maintain
the vascular lumen composed of ECs. Therefore, pericytes need to
constantly communicate with ECs and exchange information
[116]. PDGF receptor-β (PDGFRβ) was specifically expressed in
pericytes around the infarction area in the rat MCAO model and
gradually increased over time [117]. Meanwhile, PDGF-B expres-
sion is also upregulated in ECs in peri-infarct areas and further
phosphorylates Akt in peripheral pericytes with high PDGFRβ
expression [117]. PDGFRβ-Akt signaling in pericytes upregulates
NGF and neurotrophin-3 expression, thereby improving neuro-
vascular injury after stroke [117]. Ang1 secreted by pericytes also
activates Tie2 on the surface of ECs and promotes BBB formation
[116]. Furthermore, after cerebral ischemia, pericytes also express
and secrete other pro-angiogenic factors, such as VEGF, TGFβ,
angiopoietin, sphingosine-1-phosphate (S1P) and Notch signaling
[21, 116, 118, 119] (Table 1). Subsequently, ECs regulate
angiogenesis and ECM remodeling through STAT3 to improve
long-term recovery after ischemic stroke [120].

Microglia
Microglia, macrophage-like cells residing in the central nervous
system, have similar functions to macrophages, with two opposite
phenotypes, M1 and M2. M1 microglia mainly secrete pro-
inflammatory cytokines and exert a pro-inflammatory effect,
whereas M2 microglia secrete anti-inflammatory cytokines to
exert an anti-inflammatory effect [121]. Studies showed that
perivascular microglia promote vascular collapse in the cerebral
ischemic penumbra region [121, 122]. Subsequently, capillary-
associated microglia control purine release through the PANX1
channel to regulate blood flow and vascular dilatation [123]
(Table 1).
Furthermore, pretreatment of primary microglia with oxygen-

glucose deprivation (OGD) or BV2 cell stimulation with interleukin-
4 (IL-4) polarized them into the M2 phenotype and promoted
angiogenesis and endothelial tube formation after ischemic stroke
by secreting extracellular vesicles [124, 125]. The exosomes
released from IL-4-polarized BV2 cells contain miRNA-26a to
function [124], whereas hypoxia-induced microglia release vesicles
enriched in TGF-β1 to stimulate Smad2/3 signaling from ECs to
induce angiogenesis [125]. Additionally, microglia could secrete
some pro-inflammatory cytokines, which increases VEGF expres-
sion in ECs, promotes the proliferation and migration of ECs and
angiogenesis, including MCP-1, TGF-α, TGF-β, granulocyte colony-
stimulating factor (G-CSF), FGF, IL-4, IL-6, IL-1β, etc [126] (Table 1).
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MOLECULAR REGULATION OF ANGIOGENESIS AFTER
ISCHEMIC STROKE
During and after cerebral ischemia, cerebral blood vessels become
unstable, vascular cells become relaxed, and ECs gradually
proliferate, migrate and sprout, and angiogenesis occurs [15]. In
this series of processes, different cell types and molecules
mediating the crosstalk between cells are involved. These
molecules regulate the biological behavior of various cells in a
complex and coordinated manner and influence angiogenesis
after stroke. Meanwhile, each molecule regulating angiogenesis
shows its unique regulation mode and function. These factors,
including growth factors, cytokines, angiogenic mediators, micro-
RNAs, etc., mediate endothelial cell proliferation and migration, as
well as tube formation and stability.

Growth factors
Accumulating data showed the involvement of several growth
factors in angiogenesis after ischemic stroke, including bFGF, NGF,
PDGF, BDNF, TGF-β1, and VEGF.
Mammals have five VEGF isoforms, such as VEGF-A, VEGF-B,

VEGF-C, VEGF-D and PLGF, of which VEGF-A is the most original
and most potent for angiogenesis [127]. VEGF-A acts via its
receptors VEGFR1 and VEGFR2 in vascular ECs. Because of the low
kinase activity of VEGFR1, VEGF-A angiogenesis is mainly achieved
through its highly homologous VEGFR2 [128]. In 1996, two articles
reported the importance of VEGF for embryonic angiogenesis
[129, 130]. In 1998, a study showed that VEGF was significantly
upregulated in the ischemic penumbra region after focal cerebral
ischemia [131]. Mechanistically, HIF-1α and HIF-2α increased VEGF
expression through ischemia or hypoxia [127, 132, 133] (Fig. 3). In
addition, the transcriptional coactivator PGC-1α, independent of
hypoxia response pathways and HIFs, strongly regulates VEGF
expression and hindlimb angiogenesis in cultured muscle cells
and skeletal muscle in vivo [134]. Moreover, specific p53 inhibition

by pifithrin-α could lead to increased VEGF expression and
angiogenesis after cerebral ischemia [135]. 15-Lipoxygenase (15-
LO) catalyzes 15(S)-hydroxyeicosatetraenoic acid (15-HETE), major
metabolite of arachidonic acid [136]. The 15-LO-1/15-HETE system
was upregulated in cell models induced by OGD and a mouse
model of MCAO, which also increased VEGF expression and
promoted endothelial cell migration and microvessel formation
after ischemic stroke [137] (Fig. 3). Endogenous VEGF was
upregulated during or after cerebral ischemia to participate in
angiogenesis through multiple different mechanisms. Therefore,
exogenous administration of VEGF or in combination with indirect
vasoreconstructive surgery could stimulate angiogenesis, reduce
infarct size, and improve neurovascular function after chronic
cerebral hypoperfusion [138, 139]. Furthermore, intraventricular
injection of recombinant human VEGF also promotes pericyte
coverage around the ECs and stabilizes neovascularization by
increasing N-cadherin expression on cerebral capillaries [140]
(Fig. 3). However, only a few studies support the mechanism of
the VEGF/VEGFR cascade in regulating angiogenesis under the
pathophysiological conditions of stroke. The combination of VEGF
and Ang-2 leads to BBB leakage and promotes angiogenesis by
increasing MMP-9 activity and inhibiting ZO-1 expression [141].
Interestingly, VEGF-B promotes the proliferation and differentiation
of C2C12 myoblasts and skeletal muscle development through the
PI3K/Akt signaling pathway regulated by VEGFR1 [142]. In VEGFR2-
expressing neurons, PGC-1α increases VEGF expression and induces
downstream PI3K/Akt and MEK/ERK signaling pathways to protect
hippocampal neurons from apoptosis [143]. However, increased
VEGF expression in OGD-induced ECs activates ERK signaling via its
receptor Flk-1 but induces cell death [144] (Fig. 3), suggesting that
the same signaling molecules mediate different effects in different
cell types.
In 1991, bFGF, a heparin-binding growth factor, was discovered,

and bFGF intraventricular administration could promote

Fig. 3 Major factors and signaling pathways of angiogenesis after cerebral ischemia. Ischemia or hypoxia resulting from cerebral
ischemia increased VEGF expression by upregulating HIF-1α and 15-LO-1/15-HETE systems, and subsequently VEGF promoted pericyte
coverage of ECs by increasing N-cadherin expression on brain capillaries. NGF promoted angiogenesis by activating p-focal adhesion kinase
(FAK) or PI3K/Akt signaling pathways after ischemic stroke, and similar pathways had also been found in TSLP and its receptor TSLPR. IL-1α,
TNF-1α and SDF-1α also promoted angiogenesis by activating the expression of downstream genes through their receptors, respectively.
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cerebrovascular neovascularization after chronic cerebral ischemia
[145]. Recent mechanistic studies found that intranasal adminis-
tration of non-mitogenic FGF1 could activate the S1P receptor 1
(S1PR1) signaling pathway through its receptor FGFR1 and
promote angiogenesis after stroke in vivo [146]. COX-2 expression
is upregulated in in vitro cerebral microvascular ECs treated with
bFGF, which promotes prostaglandin E2 (PGE2) production and
increases VEGF expression in an autocrine manner [147] (Fig. 3). In
addition, treadmill training increases bFGF expression in the
ischemic brain, which further improves neurogenesis and
angiogenesis through the caveolin-1/VEGF signaling pathway
[148]. Interestingly, FGFR1 expression is up-regulated in intracer-
ebral pericytes after cerebral ischemia or hypoxia [149]. With the
administration of inhibitors, stroke-induced increased bFGF
expression and upregulated PDGFRβ expression in pericytes of
ischemic hemispheres by activating Akt/ERK signaling pathway via
its receptor FGFR1, and improved BBB function after cerebral
ischemia [149] (Fig. 3).
Angiogenesis after cerebral ischemia is also promoted by

neurotrophins, originally found to induce neurogenesis, such as
BDNF [150], hepatocyte growth factor [151], mesencephalic
astrocyte-derived neurotrophic factor [152], PDGF [153], heparin-
binding epidermal growth factor-like growth factor [154], TGF-β1
[155, 156], and growth differentiation factor 11 belonging the TGF-
β superfamily and its downstream signaling molecule activin-like
kinase 5 [157]. NGF also promotes angiogenesis by activating
p-focal adhesion kinase (FAK) or PI3K/Akt signaling pathway after
ischemic stroke [158, 159] (Fig. 3).

Cytokines
After the onset of stroke, cells, such as microglia and astrocytes are
activated in the brain, and immune cells in the periphery, such as
macrophages, also infiltrate into the brain, which releases
cytokines, such as IL-8 [160], IL-6 [161], IL-1α [162], tumor necrosis
factor-α (TNF-α) [163], galectin-3 (Gal-3) [164], Gal-1 [165], SDF-1α
[166], G-CSF [167, 168], thymic stromal lymphopoietin (TSLP) [169],
axon guidance factor netrin-1 [170, 171] and netrin-4 [172].
Although their mechanisms were different, these upregulated
cytokines promote angiogenesis in ischemic brain regions.
Although IL-6 and IL-8 are members of the interleukin family,

their mechanism of action is different. IL-8 promotes angiogen-
esis after ischemic stroke by increasing VEGF expression in
human bone marrow MSCs via the PI3K/Akt and MAPK/ERK
signaling pathways [160], whereas, IL-6 knockout decreases
STAT3 activation and gene expression related to angiogenesis,
such as Cxcl4, Thbs1, Anxa2 and Adamts1, leading to decreased
vessel density [161]. Compared with IL-1β, IL-1α has more
potential to induce endothelial cell activation after cerebral
ischemia [162]. IL-1α increases CXCL-1 and IL-6 expression via its
receptor IL-1R, and promotes the migration and proliferation of
ECs and tube-like structure formation [162] (Fig. 3). In addition,
TNF-α, another pro-inflammatory cytokine, upregulates α5β1
and αVβ3 integrin expression via tumor necrosis factor receptor
1 (TNFR1), inducing endothelial cell proliferation and angiogen-
esis [163] (Fig. 3). Moreover, TSLP activates the PI3K/Akt pathway
in human umbilical vein endothelial cells via its receptor TSLPR
to promote cell proliferation, migration and tube extension [169]
(Fig. 3).
Gal-3, an important angiogenic cytokine, is mainly derived from

activated microglia and astrocytes, and it infiltrates macrophages
in the brain after ischemic stroke [173]. Increased Gal-3 expression
induces integrin-linked kinase/p-Akt/ERK1/2 signaling to promote
microglial migration and angiogenesis [164, 174]. SDF-1α has also
been involved in the mobilization of hematopoietic stem cells
from the bone marrow to the periphery [166]. Shyu et al. showed
that intracerebral injection of SDF-1α increased the arrival of
BMDCs to damaged brain areas and increased pro-angiogenic
factor expression, such as VEGF, BDNF, and GDNF in peri-infarct

areas [166]. SDF-1α overexpression with the adeno-associated
virus in mouse models of MCAO also showed that SDF-1α
activates Akt, ERK, and p38 pathway through its receptor CXCR4
but not JNK [175] (Fig. 3).

Angiogenic mediators
In addition to the above cytokines that directly promote
endothelial cell proliferation and migration, many important
signaling molecules, such as the Ang1-Tie2 signaling pathway
[176], Jagged1-Notch1 signaling pathway [177], HIF-1α/VEGF,
Nrf2/HO-1/eNOS, EPO/EPOR, integrin family systems, etc., mediate
angiogenesis after cerebral ischemia.
Angiopoietin has been identified in four different subtypes,

including Ang-1, Ang-2, Ang-3 and Ang-4, with Ang-1 and Ang-2
being the most widely studied [178]. Ang-1 mediates the
proliferation, migration and survival of ECs and reduces BBB
leakage through its tyrosine kinase receptor Tie-2 during
angiogenesis [176, 179]. Moreover, estradiol and its receptor
estrogen receptor-α increase Ang1 levels in the brain under basal
conditions or in stroke-induced brain damage, further increasing
capillary density [180]. In contrast, Ang2 antagonizes Tie2 and
disrupts the connections between ECs, leading to cell death and
vascular destruction [181]. However, Ang2 and VEGF induce BBB
destruction and promote angiogenesis by increasing MMP-9
activity and inhibiting ZO-1 expression after cerebral ischemia
[16, 141]. Angptl [182] and Angpt4 [183], members of the
angiopoietin-related protein family, improve cerebral microvascu-
lar function after cerebral ischemia. Mechanically, Angpt4 main-
tains the integrity of the brain endothelial barrier by increasing the
stability of the VEGFR2-VE-cadherin complex [183].
MMP9 overexpression or increased endogenous metalloprotei-

nase membrane type 1-metalloprotease levels induced by tread-
mill exercise improves microvessel density after cerebral ischemia
by degrading collagen IV, a major component of the basal lamina
[184, 185]. Besides, Yang et al. found that MMPs damage the tight
junction between ECs in early cerebral ischemia; thus, early
inhibition of MMP may be beneficial to the recovery of BBB after
stroke by affecting the expression of extraendothelial tight
junction proteins, such as ZO-1 and claudin-5 associated with
pericytes and astrocytes [186].
In addition, the expression of Notch1 and its ligands Jagged1

and delta-like ligand (DLL) significantly increases in the infarct area
after cerebral ischemia [187]. Subsequently, the Notch intracellular
domain in ECs dissociates from the cell membrane and
translocates to the nucleus to form a complex with RBPJ protein
to further activate the transcription of Notch target genes [177].
Our previous studies showed that nicotinamide phosphoribosyl-
transferase (NAMPT) stimulates angiogenesis after ischemic stroke
[188]. Mechanistically, NAMPT, a key rate-limiting enzyme for
NAD+ salvage synthesis, modulates DLL4/Notch signaling in
endothelial progenitor cells via NAD+/SIRT1 in a mouse model
of hind-limb ischemia [189].
Furthermore, more studies have shown that integrins such as

β1, α5β1 and αvβ3 play important roles in regulating angiogenesis
and inflammation after cerebral ischemia [190]. The strong
upregulation of αvβ3, α5β1 and their ligand fibronectin in the
ischemic penumbra stimulated the proliferation of vascular ECs
[191], which was mediated by TNFR1 during ischemia-induced
angiogenesis [192].
The most direct biochemical response of cerebral ischemia was

inducing increased oxidative stress levels in the brain [193].
Additionally, reactive oxygen species derived from NADPH oxidase
2 regulate angiogenesis via the PI3K/Akt/NF-κB signaling pathway
after focal cerebral ischemia [194]. Signaling molecules, such as
HIF/VEGF [195] and Nrf2/HO-1, were associated with oxidative
stress-related angiogenesis after stroke. Therefore, targeting these
two signaling pathways was affected by many molecules,
including Int6 [196], intelectin-1 [197], x‐box binding protein l
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splicing [198], PTEN [199], hemopexin [200], immunoproteasome
subunit low molecular mass peptide 2 [201], sestrin2 [202],
sphingosine kinase 1/S1P [203], C1q/LAIR1 [204], etc. Of these,
Nrf2 activated by sestrin2 could also regulate the interaction
between p62 and Keap1 by increasing p62 expression to induce
angiogenesis after ischemic stroke [205]. Furthermore, erythro-
poietin (Epo) regulates HIF-1α and eNOS expression by activating
the AMPK-KLF2 signaling pathway through its receptor Epo-R to
promote the development of new blood vessels after ischemia
in vitro and in vivo [206–208]. Exogenous supplementation of NO
also mediates angiogenesis in the ischemic brain through the
cGMP and VEGF pathways [209]. Similarly, H2S activates the PI3K/
Akt signaling pathway, which stimulates the expression and
release of VEGF and Ang1 in astrocytes and promotes the
proliferation and migration of ECs and lumen formation after
cerebral ischemia [210].
Recent studies showed that the metabolic level in the brain

changed in a cascade manner after cerebral ischemia. In the
infarcted penumbra, ischemia and hypoxia rapidly increased
succinate levels, stimulated G protein-coupled receptor (GPR91)
localized in neurons or astrocytes, and increased the expression of
pro-angiogenic factors, such as VEGF, Ang1, IL-6, and IL-1β,
through PGE2 and its receptor EP4 [211]. In addition, the
administration of recombinant pyruvate kinase isoform M2
improves angiogenesis after cerebral ischemia by upregulating
STAT3 and FAK expression [212]. Therefore, the changes in
metabolic levels affected by cerebral ischemia may explain the
progress of angiogenesis from the perspective of metabolism.
The following other molecules also regulate angiogenesis after

cerebral ischemia: estrogen [213], kallikrein [214–216], endostatin
[217], leptin [218], leucine‑rich‑α2‑glycoprotein 1 [219], develop-
mental endothelial locus-1 [220], TSP-1 and TSP-2 [221], src and
src-suppressed C kinase substrate [222], adiponectin [223],
endothelin B receptor [224], sonic hedgehog [225–227], vasoac-
tive intestinal peptide [228], TRPM4 [229], transient receptor
potential cation channel subfamily V member 4 [230], pentraxin 3
[231], prostaglandin E1 [232], repulsive guidance molecule a [233],
guanosine [234], prostaglandin‐endoperoxide synthase [235],
glucagon-like peptide 1 [236], ephrinB2 [237], SorCS2 [238], mast
cell‐expressed membrane protein 1 [239], CELSR1 [240], c-type
lectin family 14 member A [241], apelin-13 [242], thrombomodulin
[243], RTN4/S1PR2 [244], lactate and GPR81 [245], GPR124 [246],
and histamine H 3 receptor [247].

ncRNAs
Recently, ncRNAs were identified [248], and studies showed
alteration of ncRNA levels during or after stroke, which also
affected angiogenesis [249]. ncRNA, including microRNAs (miR-
NAs), long non-coding RNAs (lncRNAs), and circular RNAs
(circRNAs), are functional RNA molecules that regulate the
expression and function of different genes through different
mechanisms [250, 251]. Of these, miRNAs and lncRNAs have been
studied the most and were recently found to regulate angiogen-
esis after cerebral ischemia by affecting the levels of angiogenesis
factors (Table 2).

PERSPECTIVE
The brain is one of the most heavily perfused organs in the body.
Almost every neuron has its own independent supply of
blood vessels [252], suggesting a subtle relationship between
neurons and blood vessels, known as the neurovascular network
[253]. Blood vessels carry oxygen, energy, and nutrients to nourish
neurons for proper function. Subsequently, blood vessels carry
the waste neurons release, a series of physiological processes
contributing to healthy brain function. Thus, previous therapies
aimed solely at neuroprotection for stroke have become
inadvisable.

Because of the importance of blood vessels in neurovascular
units, angiogenesis in the treatment of cerebral ischemia has been
considered and recognized. Nerve cells including NSCs and
microglia, promote angiogenesis through multiple mechanisms,
and angiogenesis also improves the interaction between neurons
and glial cells during and after stroke. Thus, it promotes
neurogenesis and improves nerve function. By contrast, providing
nutritional support to the nerves is beneficial for glial cells [254].
Although this review summarized several roles and mechanisms

in regulating angiogenesis after cerebral ischemia, most of them
have not been fully explained, and several therapeutic approaches
for inducing angiogenesis have limitations. The use of anti-VEGF/
VEGFR drugs is popular in cancer treatment, with multiple FDA-
approved drugs, such as bevacizumab, sorafenib, sunitinib,
pazopanib, ramucirumab, lenvatini, fruquintini, anlotinib hydro-
chloride, etc [255, 256]. Although single molecular target drugs
have shown significant efficacy in experimental animal models,
they are not ideal for cerebral ischemia treatment because stroke
is a complex disease. Therefore, molecular targets combined with
cell therapy have been proposed and studied, such as CXCL12
gene overexpression in EPCs [51], and Ang-1, PIGF, TSP4, CCL2 or
CXCR4 gene overexpression in MSCs [72–76]. Studies are still
ongoing for the clinical application of novel microRNAs and
lncRNAs.
Cell therapy is relatively superior compared with molecular

targets. After reaching the peri-infarct area, the administered
stem/progenitor cells could rescue or replace some of the injured
cells to perform some functions, such as promoting angiogenesis,
protecting neurons, and maintaining BBB homeostasis [33].
Otherwise, the injected stem/progenitor cells release secretome
and extracellular vesicles to apply their pro-angiogenic effects.
MSC-derived extracellular vesicles can induce the repair of
ischemic stroke by upregulating the expression of various pro-
angiogenic factors, such as VEGF, EGF, PDGF, Ang1, microRNA, etc
[81, 88]. Although stem cell therapy is being investigated in clinical
trials worldwide, several issues remain. Cell therapy requires
several criteria, including the selection of which stem or
progenitor cells (EPCs, MSCs, NPCs/NSCs, etc.) are better for
treating stroke; the determination of the therapeutic window and
the degree or stage of cerebral ischemia that is suitable for cell
therapy; and the determination of the dosage, methods, and time
of administration of cell therapy in clinical practice. In animal
experiments, MSC transplantation therapy has different delivery
methods, including intraventricular stereoscopic injection [257],
intravenous injection [258], intra-arterial injection [259], and
intranasal injection [260]. Furthermore, whether animal and
clinical trials can be better matched remains to be resolved. Thus,
some issues for cell therapy should be identified and resolved.
More importantly, the survival of cell transplantation is a key

issue that needs attention and consideration of its therapeutic
potential. With the development of materials science, biomaterials
combined with cell therapy enhance the survival and differentia-
tion of transplanted stem cells and improve neurological function
in experimental stroke [261]. For example, hydrogel materials
could serve as matrix mimics, such that temporary ECM is
provided when placed in the peri-infarct area to enhance
endogenous repair mechanisms [262]. Moreover, NPC transplanta-
tion with hydrogel/heparin/hyaluronan promotes the survival of
NPCs and reduces inflammatory infiltration after transplantation
[263]. Furthermore, the emergence of organoid technology has
also promoted cell transplantation to a new level. Organoids
consist of organ-specific stem/progenitor cells and mature cells
that exhibit similar organ functionality as the tissue of origin [264].
Compared with transplants of dissociated NPCs, transplanted
cerebral organoid exhibits enhanced cell survival and robust
vascularization after ischemic stroke [110–112]. However, these
are still experimental, and further clinical applications are worth
looking forward to.
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Table 2. Effects and mechanisms of non-coding RNAs (ncRNAs) in angiogenesis after cerebral ischemia.

Years ncRNAs Effects Mechanisms

2012 miR-210 + induced ECs to migrate and form capillary-like structures through activating notch signaling pathway [265]

2014 miR-376b-5p – inhibited HIF-1α-mediated VEGFA/Notch1 signaling pathway [266]

2015 miR-107 + directly down-regulated Dicer-1, thereby increased expression of endothelial cell-derived VEGF (VEGF165/
VEGF164) [267]

2015 miR-487b + directly targeted and regulated the 3ʹ untranslated regions of thrombospondin 1 (THBS1) mRNA [268]

2015 miR-296 + upregulated VEGF expression and downregulated Notch1 [269]

2015 miR-155 + decreased the expression of AT1R and VEGFR2 [270]

2016;
2017

LncRNA Meg3 – activated notch signaling pathway; [271]
increased NOX4 expression by interacting with p53, further inhibited the expression of HIF-1ɑ and VEGF
[272]

2016 miR-140-5p – directly targeted the 3ʹ untranslated region of VEGFA and inhibited its expression [273]

2016 miR-150 – negatively regulated the expression of VEGF [274]

2016 miR-493 – increased the expression of macrophage migration inhibitory factor (MIF) [275]

2017 lncRNA HIF1A-AS2 + facilitated the activation of HIF-1α/VEGFA/Notch1 cascades by sponging to miR-153-3p [276]

2017 miR-195 – negatively regulated the expression of VEGFA [277]

2017 miR-146a/b + down-regulated the TRAF6 and IRAK1 expressions and promoted proliferation, migration and angiogenesis
ability of EPCs [278]

2018 LncRNA SNHG12 + suppressed endothelial cell injury induced by OGD/R by targeting miR-199a; [279]
regulated miR-150/VEGF pathway [280]

2018;
2019

miR-126;
miR-126-3p, miR-126-5p

+ improved the migration of EPCs via the SDF-1/CXCR7 signaling pathway; [281]
directly inhibited its target PTPN9 and activated AKT and ERK signaling pathways [282]

2018 miR-132 + suppressed the NF-κB pathway and promoted the VEGF pathway [283]

2018 miR-210 + decreased SOCS1 and increased STAT3 and VEGF-C expression in EPCs [284]

2018 miR-377 – directly inhibited the expression of VEGF and EGR2 [285]

2018 miR-940 – down-regulated the expression level of VEGF [286]

2018 miR-26a + up-regulated the expression of HIF-1α via activating the AKT and ERK1/2 pathway, thus mediated the
transcriptional activity of VEGF [287]

2018 miR-27b – inhibited the activation of AMPK [288]

2018 LncRNA SNHG1 + regulated the expression of HIF-1α and VEGF through miR-199a [289]

2018 miR-103 – directly targeted VEGF and lead to the down-expression of VEGF [290]

2019 LncRNA MALAT1 + regulated VEGF expression through the 15‐LOX1/STAT3 signaling pathway [291]

2019 LncRNA MIAT – promoted HMGB1 expression by competitively binding to miR‐204‐5p in cerebral microvascular endothelial
cell (CMECs) [292]

2019 lncRNA NEAT1 + promoted the expression of VEGFA, SIRT1 and BCL-XL by targeting miR377 in BMECs [293]

2019 miR-384-5p + negatively regulated the expression of DLL4, which further downregulated the Notch signaling pathway in
endothelial progenitor cells (EPCs) [294]

2019 miR-153 + activated the SHH signaling pathway through lipid-coated Patch (PTC) [295]

2019 miR-191 – inhibited its direct target vascular endothelial zinc finger 1 (VEZF1) at the post-translational level [296]

2019;
2020

miR-103a – regulated microvascular endothelial cell injury through targeting and negatively regulating AXIN2; [297]
suppressed angiogenesis through targeting and negatively regulating X-linked inhibitor of apoptosis
protein (XIAP) [298]

2020 LncRNA Meg8 + increased the expression of VEGFA via negatively regulating miR-130a-5p of BMECs [299]

2020 miR-221 + interacted directly with PTEN to regulate the PI3K/AKT pathway and promoted HUVECs function [300]

2020 miR-15a/16-1 – suppressed VEGFA/VEGFR2 and FGF2/FGFR1 at the translational level, respectively, by directly binding to
untranslated sequences (3ʹ-UTRs) of those mRNAs in endothelium [301]

2020 miR-874-3p + inhibited CXCL12 expression by activating the Wnt/β-catenin pathway [302]

2021 miR-203 – suppressed endothelial cell fuction through targeting to the 3ʹ-UTR of SLUG, a zinc finger transcriptional
repressor [303]

2021 miR-202-3p + increased the expression of vWF and VEGF through interacting with TLR4 [304]

2021 miR-191-5p – directly targeted and inhibited BDNF [305]

2022 LncRNA DHFRL1-4 – regulated the expression levels of bFGF, VEGF, Wnt3a and GSK-3β [306]

2022 LncRNA ZFAS1 – sponged miR-144-5p to modulate FGF7 [307]

miR microRNA, LncRNA long non-coding RNA,+: promoted angiogenesis, –: inhibited angiogenesis
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CONCLUSIONS
We reviewed several physiological and pharmacological pathways
and potential mechanisms of the regulation of angiogenesis after
cerebral ischemia. However, we lack a detailed understanding of
potential treatment strategies for ischemic brain injury and their
limitations. In the future, the underlying mechanisms of angiogen-
esis, as well as neurovascular units after stroke, should be
explored.
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