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During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among
which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are
generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd
decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are
initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable
investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in
control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC.
Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods
reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal
production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that
eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into
the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause
intellectual disabilities.
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PFC DEFINITION
There is little disagreement that the human cerebral cortex is the
organ that enabled abstract thinking and the creation of civilization,
including architecture, science and all types of art. Using a wide
variety of methodologies, the size and cytoarchitecture of the frontal
lobe, and more specifically the PFC, has been extensively studied
over the years in various species. The PFC in humans and nonhuman
primates can be divided into a collection of structurally and
functionally different subdomains positioned anterior to the motor
cortex; the medial (mPFC), lateral prefrontal cortex (lPFC) and
orbitofrontal cortex (oFC). The lPFC is mostly involved in language
and executive processing, while the oFC and mPFC are known to
contribute to cognitive functioning and emotional control [1–4]. The
mPFC can be further subdivided into the infralimbic (IL), the
prelimbic (PL) and anterior cingulate cortex (ACC). The most ventral
subdomain of the mPFC is the infralimbic cortex (IL) and is involved
in coping with chronic stress eventually leading to structural changes
and prefrontal dysfunction [5–11]. Interestingly, the PFC of rodent
models such as mice is limited in size, containing medial,
orbitofrontal and cingulate areas, but probably lacking the equivalent
of the primate dorsolateral PFC. In humans, the PFC can be
considered to have evolved disproportionally large and it is thought
to be the last region of the brain to gain full maturity [12, 13].

EVOLUTIONARY VIEW ON PFC DEVELOPMENT
During mammalian evolution, the cerebral cortex not only
increased in neuronal numbers and surface area but also acquired

new cell types and cytoarchitectonic areas. Species-specific
adaptations of prefrontal areas, steered by the environmental
demands, can explain the differences in size of frontal areas over
time. Among the most recent additions are several association
areas, particularly the PFC, which has expanded enormously in
primates culminating in humans [14]. In humans, the PFC occupies
as much as about 30% of its surface. Although still debated, the
human frontal lobe seems to have evolved three times larger than
that of our closest living relatives, the great apes. In fact, it has
been argued that the human brain possesses prefrontal regions
that are both qualitatively and functionally exclusive [15]. It is,
nevertheless, remarkable that we use the rodent model for most
of the cellular and molecular neuroscientific studies, despite its
lissencephalic brain which is clearly much simpler in both
cytoarchitecture as well as function. A valid question still remains:
Do rodents have a prefrontal cortex? [16, 17]. And if we were to focus
more on the evolutionary aspects of prefrontal development in terms
of structural organization and function, should we not include
longitudinal neurodevelopmental studies on more species [18, 19]?
Although the basic principles of cortical development may be
similar in all mammals, the modifications of developmental events
during millennia of primate evolution produce not only quanti-
tative but also qualitative changes of its cellular structure and
synaptic circuitry [13, 20]. The origin of species-specific distinc-
tions can be traced either to the new or phylogenetically
conserved genes that act at the time of the neural stem cell’s
exit from the mitotic cycle and generate a different outcome,
depending on the evolutionary context by interacting with a
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postmitotic neuron. Thus, the PFC as well as the Broca and
Wernicke association areas in humans, which are formed in the
frontal and temporal lobes, display a temporarily enriched gene
expression pattern that is distinct from the mice or macaque
cerebrum at the comparable prenatal stages (e.g., [21, 22]). More
on evolution of the prefrontal cortex can be found in this volume,
part I, chapter 1.

THE EARLY STAGES OF PFC DEVELOPMENT
Genetic determination of the PFC
Still inside the womb, the generation of neural tissue (human,
third gestational week) begins with the induction of ectoderm into
neuroectoderm after which the neural tube will form through a
process called neurulation [23]. The detailed analysis of a series of
embryonic and fetal human postmortem brain tissue, as well as
the evidence from experiments on animal models that range from
rodents to nonhuman primates, showed that specific genes and
regulatory elements are involved in evolutionary elaboration of
the cranial part of the neural tube. More specifically, it is well
documented that differential gene expression and the gradients
of signaling molecules across the embryonic brain generate
prospective subdivisions of the neocortex [24–29]. Work of Cholfin
and Rubenstein in mice provide experimental evidence that the
PFC can expand differentially and independently of the growth
rate of the other areas [30, 31] and that its size can be regulated at
early stages by the change of expression of specific growth factors
before they receive the afferent axonal input [32]. Through
regional specification in which the Fgf family plays a significant
role, the (pre)frontal cortical area starts to expand [32]. The
formation of the cytoarchitectonic map during evolution and
individual development can be explained by the Protomap
Hypothesis (PMH) of cortical parcellation [33]. This hypothesis
postulates that intersecting gradients of molecules are expressed
across the embryonic cerebral wall that guide and attract specific
afferent systems to the appropriate position in the cortex where
they can interact with a responsive set of cells [34]. The prefix
“proto” indicates the malleable character of this primordial map,
as opposed to the concept of equipotential cortical plate
consisting of the undifferentiated cells that is eventually shaped
and subdivided entirely by the instructions from those afferents
[35, 36]. The PMH is at present universally accepted even by its
initial opponents (e.g., [29]).

Prefrontal expansion and lamination
The structural development of the various subdomains of the PFC
is a meticulous process starting with a massive expansion of the
most proximal part of the developing neural tube. The first step in
the expansion of the cortical surface during development starts
with an increase in the number of symmetrical divisions of neural
stem cells in the ventricular zone (VZ) before the onset of
neurogenesis and the formation of the subventricular (SVZ),
intermediate (IZ) and subplate (SPZ) zones and cortical plate (CP)
below the marginal zone (MZ) [33, 37–39], for review see [34]. This
initial cortical expansion is also supported by experimental studies
in mice [40–43] and provides an explanation for the mas-
sive increase in cortical surface area during both individual
development and evolution.
By the time the apical radial glial progenitors within the

prefrontal subdomains start dividing asymmetrically, the number
of neurons will increase rapidly and peaks between week 13 and
16 of gestation in human (E10-E15 rodents/E43-E50 primates),
specifically in the dorsal telencephalon [44–47]. The labeling of
dividing cells by the DNA replication markers tritiated thymidine
(TdR) and bromodeoxyuridine (BrdU) showed that in nonhuman
primate rhesus macaque, most cortical neurons, including those
destined for the PFC, originate in the proliferative VZ near the
cavity of the cerebral ventricle, between the 40th embryonic day

(E40) and E100, during the 165-day-long gestational period in this
species [48]. Genesis of neurons destined for the PFC is completed
by E90, before completion of neurogenesis in the primary visual
cortex at E90 (Fig. 1 and [49]). Through close interplay between
cell-autonomous events and local as well as external cues, neurons
generated close to the ventricle start migrating in radial columns
[45, 46, 50, 51]. Gray matter continues to increase well into
adolescence [52]. Astrocytes being the most abundant type of
glial cells within cortical areas, are generated from the radial glial
cells in the VZ and from the intermediate progenitors in the SVZ
after the peak of neurogenesis [53]. The oligodendrocyte
precursor cells, or OPCs, are generated within the medial
ganglionic eminence and the anterior entopeduncular area and
migrate toward the frontal cortical regions [54]. In the final stage
of OPC production, this generation occurs in the cortical regions
themselves. Microglia cells, on the other hand, are of mesodermal
origin and migrate throughout the brain [55].
After the last cell division, postmitotic neurons migrate an

increasingly long distance across the embryonic and fetal cerebral
wall to their final positions in the cortex that develops below the
pial surface [33, 56]. Although similar DNA labeling is not possible
to perform in humans, examination of histological and Golgi silver
impregnation methods of the embryonic and fetal human
cerebrum indicate the existence of similar timing and sequence
of these developmental events [37, 57, 58]. The pyramidal
excitatory neurons born in the VZ and SVZ of the prefrontal
subdomains, similar to other cortical areas, start to migrate radially
toward the proper position in the CP under the influence of Fgfs
[50, 59, 60]. Migrating neurons are guided over an increasingly
long and curvilinear pathway by the elongated radial glial cell
fibers that span the entire developing cerebral wall [61–63]. The
radial glial processes that extend to the pial surface serve as a
scaffold for the migrating neurons, which will settle themselves in
an inside-out manner with the earlier-born neurons in the deeper
layers and later born neurons in the more superficial ones
[56, 64, 65]. Born in the ganglionic eminences, GABAergic
interneurons migrate tangentially to the proper place within the
prefrontal subdomains [66, 67]. Some recent findings in human
and primates, such as the role of outer radial glia cells (oRGCs) and
truncated glial cells, the diversity and complexity of cortical
progenitors, the role of the subplate and the high specificity in
axonal guidance events, again underline the complexity and
evolution of cortical areas [68–75]. We now know from recent
studies that it is the birth and migration of neurons derived from
oRGCs that play a role in the development of the primary sulci
(superior frontal, inferior frontal and precentral) in week 25–26 of
gestation [23, 76]. After the process of migration is completed,
RGCs retract their apical process and generate astrocytes and
oligodendrocytes. In nonhuman primates and human, glial cells
seem to somewhat outnumber neurons in the PFC, albeit with
regional variation which is likely to contribute to the formation of
secondary and tertiary gyri [77–81].
Contrary to some initial concepts and theories [35, 36],

embryonic VZ and CP are not uniform and equipotential. The
enlargement and introduction of the new cytoarchitectonic areas
has been explained by the Radial Unit Hypothesis (RUH).
According to this hypothesis, increasing the size and proliferative
capacity of the neuronal stem cells in the proliferative zone
enables initial enlargement of the cortex as well as formation of
the distinct anatomical and functional cytoarchitecture areas in
the mammalian evolution [33]. According to the RUH, tangential
(horizontal) positions of cortical neurons are determined by the
positions of their precursor cells, now called stem cells in the VZ,
while their radial (vertical) position in the overlying cortex is
determined by the time of their origin (Fig. 2). Therefore, the
addition of the number of the radial columns increases the size of
the cortical surface, whereas the number of cells within the
columns determines its thickness.
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Differentiation and synaptogenesis
After neurons assume their final position, they begin to
differentiate further and form synaptic connections. In humans,
between 17 and 50 weeks of gestation (first to fourth postnatal
week in rodents), the pyramidal and interneurons in the various
cortical layers of the PFC will further mature and differentiate
[82, 83]. The basal and apical dendritic length will increase, the
spines will further develop, specifically in layer III and V, and their
axons will extend to other cortical and subcortical targets [82, 84].
This is also the case for the inhibitory network where the
interneurons mature extensively with a sharp increase in the
dendritic spine formation but also in terms of their intrinsic as well
as their network properties as was shown in mice [85, 86].
Prefrontal synaptogenesis starts prenatally and peaks postnatally
followed by a process called pruning or refinement of synaptic
connections, the removal of unused synaptic contacts [87]. When
neurites to and from the PFC reach their final target position, an
immature synapse is generated under the influence of, among
others, cell adhesion molecules and reelin [88, 89]. Epigenetic
regulatory factors such as microRNAs (miRNAs) play an important
role in this process by modulating dendritic and synaptic
maturation [90, 91]. The tempo and kinetics of synapse formation
in the primate PFC closely resemble those described for other
areas [92]. In young primate embryos, a precortical phase (E47-
E78) is described when synapses are found only above and below,
but not within, the CP. Following that, there is an early cortical
phase, from E78 to E104, during which synapses accumulate
within the cortical plate, initially exclusively on dendritic shafts.
The next rapid phase of synaptogenesis begins at 2 months before
birth and ends approximately at 2 months after birth, culminating
with a mean density of 750 million synapses per cubic micrometer.
This accumulation is largely accounted for by a selective increase
in axospine synapses in the supragranular layers. Therefore, the
early childhood PFC contains a 2–3 fold higher density of dendritic

spines compared to the adult PFC. The period of overproduction
of synapses is followed by a protracted plateau stage that lasts
from 2 months to 3 years of age when synaptic density remains
relatively constant. In humans, the PFC synaptic density spikes
around 3.5 years of age (~4th postnatal week in rodents), which is
relatively late compared to other cortical areas and almost double
the net density of the adult PFC [82, 93, 94]. Examination of the
course of synaptogenesis in the macaque PFC, by detailed
quantitative electron microscopic analysis, showed that the
number of synaptic contacts is initially grossly overproduced
before declining to the normal adult level (Fig. 3 and [49].
Likewise, the axons of the corpus callosum, as well as other large
axonal tracts in the macaque cortex, including PFC, are grossly
overproduced before decreasing to the adult level [95–97]. A
subpopulation of GABAergic neurons in the subplate zone also
form transient synapses that are eventually eliminated [98, 99].
The period of synaptic decline in human PFC, which starts during
childhood, is initially dramatic and continues during adolescence
and extends at a slower, but statistically significant rate into the
3rd decade of life (Fig. 4 and [12]).
The finding that synaptic density in the cerebral cortex is

relatively stable from early adolescence through puberty (the
plateau period) is indicative that in primates the final synaptic
pattern is the result of selection and refinement of their higher
number during the formative years when learning experiences are
most intense. These discoveries led to the proposal that the
Selective Elimination Hypothesis is a mechanism for tuning
synaptic connections by interaction with the environment during
the period of most intense learning [92]. These days, selective
elimination or stabilization is commonly called “pruning”, and this
refinement of the differentiating cortical network via pruning of
dendritic branches, and/or efferent/afferent projections, is an
important process to fine-tune the meticulous intricate prefrontal
network [100, 101]. Within the rodent and primate PFC, this
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Fig. 1 Prefrontal birthdating experiment in nonhuman primate. A Pen drawing of a macaque brain (side view) with the PFC indicated in
pink. B Schematic overview of the time line for which [3H] thymidine ([3H]dT) injections were given at particular embryonic (E) time points
indicated by green arrowheads. sac, sacrifice. C Relationship of time of origin and the final position of neurons destined for the PFC in
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on which an animal received a pulse of [3H]dT and the horizontal markers on the vertical lines represent the positions of heavily labeled
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process of synaptic pruning, which is most dramatic in layer III,
continues well into adolescence leading to a long-lasting decline
in synaptic density across PFC subdomains [82, 102, 103]. It was
furthermore discovered that major neurotransmitter receptors are
also initially overproduced in all eight primate prefrontal regions
examined [104, 105]. Moreover, during childhood the PFC
myelination process starts (white matter volume increase) which
continues into adulthood [106, 107].

Getting connected
The prolonged maturation of the PFC depends largely on the
coordinated action of various external factors. Most neurotrans-
mitter projections arrive in the prefrontal subdomains in two
streams: within the marginal zone (MZ) and within the subplate

zone (SPZ) which is thicker in the PFC compared to other cortical
areas. A major change in development, which likely signals roots
in the evolution of the cortex, is in the specificity in neuro-
transmitter systems alongside a boost in receptor type hetero-
geneity in primates and human [108–112]. In humans the
thickening of the PFC subplate has evolved tremendously,
suggesting playing a role in the extensive prefrontal circuitry
[71, 102]. Vice versa, the multitude of pyramidal neurons in the
various layers and PFC subdomains will connect to other cortical
and subcortical targets by extending their axons, once they have
reached their final position in the PFC (human: birth till end of first
year/rodent first 2 postnatal weeks). The intricate timely integra-
tion of all these neurotransmitter systems is essential for
prefrontal functioning. In this way, a unique and higher-order

Fig. 2 The evolution of corticogenesis. A Three-dimensional reconstruction of postmitotic neurons migrating along radial glial fibers, based
on electron micrographs of semi-serial sections of the monkey fetal cerebral cortex with permission from Rakic [56]. B Representation of the
radial unit hypothesis based on Rakic [33] with permission from Silver et al. [396]. C Illustration of the dynamics of major developmental
events and diversity of progenitors involved in the development of primate cerebral neocortex based on studies of Rakic, with permission
from Silver et al. [396].
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functional network capable of emotional processing and complex
cognitive abilities is established.

Developing PFC connections - from the neurotransmitter perspective
Serotonin: The brain matures from the brainstem to the more
frontal cortical regions, and it is therefore not surprising that
serotonergic projections from both the dorsal as well as the
medial Raphe nuclei (DRN, MRN respectively) are among the first
to emerge and are set towards cortical regions where they arrive
in the PFC around E16/E17 in rodent and week postnatal 10–13 in
humans [113–116]. Most of the work on molecular and cellular
underpinnings of serotonin functioning and guidance during early
development have been investigated in rodents, although it is
clear that the specificity of serotonergic prefrontal connectivity in
primates and human increase tremendously in regional specificity
[109]. In mice, the serotonergic projections toward the forebrain
are predominantly guided by the Epha5/ephrina5 interaction of
guidance cues [117]. Of note, early in the development of
serotonergic signaling, molecules such as receptors and transpor-
ters are already expressed in the forebrain and an exogenous
placental source of 5-HT has been considered to direct cortical
development even before raphe-derived projections have reached
the forebrain [118–121]. Once the serotonergic projections have
arrived within cortical areas, they are able to make contacts with
Cajal Retzius cells within the MZ, thereby raising the possibility of
playing a role in neuronal migration [122–124]. It has become
widely accepted that serotonin exerts a significant trophic and
modulatory function in neurodevelopmental processes such as
proliferation, migration and differentiation in cortical areas,
including the PFC [119, 123, 125–129].

Noradrenalin: The Locus Coeruleus (LC) in the brainstem sends
out its noradrenergic axonal projections to the PFC as early as E16/
17 (rodent) and week 10–13 in human [130–132]. It appears to be
a heterogeneous set of neurons innervating all aspects of the PFC
subdomains [133–135]. Noradrenergic projections arrive in cortical
areas before all cortical neurons have finished migrating and have
adopted their final appearance [136]. During the embryological
development of prefrontal areas specifically, noradrenaline plays a
role in cell division, neuronal migration, differentiation as well as
synaptogenesis [137–141]. Like serotonin, noradrenergic axons
make contact with the Cajal Retzius cells in the marginal zone,
suggesting a role in the laminar formation of cortical regions
[132, 142, 143]. In addition, noradrenalin seems to have an effect
on the development of dopaminergic projections in the PFC by
providing a dopamine reuptake mechanism through the nora-
drenalin transporter [144, 145] as well as on GABAergic signaling
in the PFC [146, 147]. Recent studies of rat and primate

PFC showed that the α2-adrenoceptor and muscarinic M1
receptor modulate working memory via KCNQ potassium channel
[148–151]. Reciprocal direct connections from the mPFC to the LC
mature over time, and this system is involved in a variety of
behaviors such as memory formation, attention, arousal, vigilance
and coping with stress [152–154].

Dopamine: A subset of the medial part of the ventral tegmental
area (VTA) starts to project to prefrontal subdomains around E15/
E16 (rodent) and week 10–13 in human [155–158]. Steering
dopaminergic projections from the VTA via the medial forebrain
bundle toward forebrain regions mostly depend on a coordinated
action of the guidance molecules Dcc and Netrin-1 mediated by
microRNA miR-218 control of Dcc expression in the VTA [159–161],
while Semaphorin3F is orchestrating their fasciculation, rostral
growth and targeting within the various mPFC subdomains [156].
The dopaminergic innervation of the mPFC in rodent surges
during adolescence hallmarked by massive changes in the
organization, shape and density of the dopaminergic fibers
[162–164]. A similar surge in regional-specific dopaminergic
connectivity to the PFC can be observed in primates, including
human modulating local microcircuits [165–169]. Of note here is
that some of these dopaminergic neurons projecting to the
various PFC subdomains are capable of co-releasing glutamate as
well and have an exclusive excitatory effect on the GABAergic
interneurons in the various layers of the PFC [170–173]. Eventually,
the mature mesoprefrontal system is involved in attention,
behavioral flexibility, action planning, sustainability of motiva-
tional and affective states, working memory and memory
consolidation which is mediated in parallel by catecholaminergic
pathways [169, 174–178]. In many neurodevelopmental disorders
(NDDs) the developing dopamine system is affected playing a role
in the diverse symptoms of these disorders [179].

GABA: Most of the GABAergic interneurons are born in the
ganglionic eminences of the ventral telencephalon and migrate
tangentially to the proper cortical areas and layers to form a
network with the radially migrated pyramidal neurons [180–182].
Initially being excitatory through the GABAA receptors expressed
on radial glia cells and migrating interneurons, GABA plays a role
in proliferation, migration and synaptogenesis [183–186]. It has
furthermore been shown that dopamine and GABA interactions
can influence these processes [187, 188]. Around the second
postnatal week in rodents (~first postnatal week in human), the
depolarizing effect slowly transitions into an inhibitory net effect
depending on place and time [189, 190]. A remarkable feature in
GABA signaling from an evolutionary perspective is that in
nonhuman primates and human there seems to be a cell-type
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specific expression of the GABA transporter GAT-1 in early
childhood [191, 192]. Furthermore, it appears that nonhuman
primates and humans have distinct populations of GABAergic
neurons which originate in proliferative zones of the dorsal
telencephalon [193, 194].

Glutamate: There are various sources of glutamatergic input
projections including a subset of (non-)dopaminergic VTA neurons
to GABAergic interneurons in the PFC [170–173]. The most prominent
monosynaptic inputs of the PFC are derived from hippocampus,
mediodorsal (MD) thalamus and amygdala [195–201]. In fact, the
medial pulvinar part of the medial thalamus or PM, which
evolutionary expanded alongside the association cortex in nonhuman
primates and human, is characterized by a distinct prefrontal
glutamatergic connectivity that seems to play a significant role in
NDDs [202]. A multitude of cortical and subcortical targets are
progressively innervated by developing glutamatergic projections

from the PFC itself such as the various thalamic regions. Recently it
was found that retinoic acid (RA) plays a critical role in PFC
development and specifically in this thalamus-prefrontal connectivity
[203]. The PFC furthermore sends out glutamatergic afferents to the
VTA as well as to the nucleus accumbens modulating dopaminergic
signaling [204–206]. In addition, DRN serotonergic neurons are
controlled by glutamatergic projections from the PFC [152, 207–209].

Acetylcholine: Around birth, the numerous cholinergic projections
arising from the basal forebrain nuclei innervate the primary cortical
regions where they influence cortical ultrastructure [210–213].
Acetylcholine modulates primarily the prelimbic subdomain of the
PFC during development targeting GABAergic interneurons [210]. But
even before the cholinergic projections arrive in the cortical areas, the
nicotinic and muscarinic receptors are expressed on neural progeni-
tors playing a role in proliferation/differentiation and axonal guidance
events [214–217]. In the PFC of nonhuman primates, the muscarinic

Fig. 4 Development of dendritic spines on layer IIIC and layer V pyramidal neurons in the human PFC. A Low-magnification photograph of
the rapid Golgi-impregnated layer IIIc and V pyramidal cells in the dorsolateral PFC of a 16-year-old subject. B Neurolucida reconstruction of
layer IIIc pyramidal neuron of a 49-year-old subject showing distal oblique (green), proximal oblique (blue) and basal dendrites (red). C
Representative high-power magnification images of rapid Golgi-impregnated layer IIIc pyramidal neurons in a 1 month old infant, 2.5-year-old
child, and 16-, 28-, and 49-year-old subjects. D Graphs representing number of dendritic spines per 50-μm dendrite segment on basal
dendrites after the first bifurcation (red); apical proximal oblique dendrites originating within 100 μm from the apical main shaft (blue); and
apical distal oblique dendrites originating within the second 100-μm segment from the apical main shaft (green) of layer IIIc (filled symbols)
and layer V (open symbols) pyramidal cells in the human dorsolateral PFC. Squares represent males; circles represent females. The age in
postnatal years is shown on a logarithmic scale. From Petanjek et al. [12].
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M1 receptors modulate working memory via KCNQ potassium
channels [151]. Alongside, a transient expression of the enzyme
acetylcholinesterase seems to play a role in the thalamocortical circuit
formation [218–220]. Within the PFC, the cholinergic innervation
initially terminates in layers III and IV slowly losing laminar preference
over time [221–223]. Key developing PFC circuitry is shaped by
acetylcholine, and PFC pyramidal neurons depend on its proper
signaling in terms of dendritic branching, spine formation and
synaptogenesis [224–226].

Convergence of developing transmitter systems within the PFC.
There is, furthermore, ample evidence now that during embryonic
development there is convergence of the various neurotransmit-
ter signaling pathways and influence each other’s development
and functioning [153, 227–231]. These neurotransmitter systems
can act as neurotrophic factors steering various neurodevelop-
mental events in their target areas. Serotonergic and dopaminer-
gic markers are jointly present in their developmental origins,
guidepost areas, as well as within the subdomains of the PFC,
which is important for their intricate interaction later in life to
establish higher cognitive functions [209, 232–234]. The same
holds true for noradrenergic and dopaminergic projections
towards forebrain regions as well as dopaminergic-glutamatergic
and dopaminergic-cholinergic interactions controlling PFC
maturation and functioning [227, 228, 231]. These neurotransmit-
ter projections initially innervate prefrontal regions via two parallel
paths; one via the subplate and one via the marginal zone where
the Cajal Retzius cells reside [235]. Being in close proximity of the
CR cells, it is likely that volume transmission is used to release the
neurotransmitter. Receptors, transporters as well as synthesizing
enzymes are already expressed (~E10 rodent and week 4–5
human) even when the actual axonal projections have not yet
arrived in the PFC [236–240]. In fact, neurotransmitter receptors
are found to be expressed by progenitor cells throughout
development [231]. External neurotransmitter sources, such as
the placenta, can play a role in this early shaping of cortical areas
[114, 118, 241, 242]. All this is especially important in light of (anti-
depressant) use of pharmacological drugs during pregnancy as
they can interfere with these early signaling pathways and
hamper the structural development of brain areas including
the PFC.

PFC COGNITIVE DEVELOPMENT
The PFC, as the seat of our higher-order cognitive functions,
continues to develop into adulthood [52, 243]. It is among the
latest brain regions to fully mature in humans as well as rodents
[106, 159, 244, 245]. The primary somatosensory cortex, as well as
the primary motor cortex, mature earlier, however the dendritic
trees and the density of spines within the subdomains of the PFC
seem to be more complex [246–249]. Cognitive abilities are
shaped by experience over time and seem to be in synchrony with
PFC structural changes such as synaptogenesis and pruning [250].
Following the ‘use it or lose it’ principle, the developing PFC
dynamically rearranges incoming and outgoing wiring depending
on usage and need [12]. Specific for the PFC, the non-coding
microRNAs mir-128b and mir-30a-5p have shown to be involved in
prefrontal-dependent cognitive maturation by affecting epige-
netic mechanisms [251, 252]. The constantly developing cognitive
and executive capabilities occur parallel to the neurophysiological
changes within the PFC and its connected areas and seem to
reach a plateau in teenagers (around 12 years in human, around
P50 in rodents) [253]. Adolescence is typically characterized by
changes in social interactions and cognitive abilities in order to
gain independence and adult skills and competences [245]. In
nonhuman primates this is characterized by risk-taking, novelty
seeking, and increased vigilance; whereas in rodents by play
behavior, increased exploratory activity and impulsivity are

peaking [245]. Higher order cognitive functions, in which PFC
plays a prominent role, such as language and intelligence,
continue to develop into adulthood [254, 255]. More on the role
of the PFC in cognitive control and executive functioning can be
found in this volume in the reviews by Robbins and Friedman (I.6)
and Menon and D’Esposito (I.7).

PFC DEVELOPMENT AND MENTAL ILLNESS
Although stress-induced structural changes in the PFC are equally
important in their contribution to the pathophysiology of
neuropsychiatric conditions [256–262] (see also part III of this
volume), we focus in this paragraph on particular risk factors
involved in the onset of NDDs) in which PFC functioning is
affected. It has been speculated that, as the PFC takes so long to
fully mature, it also has the largest critical window of all
developing brain areas. The various risk factors, either genetic or
environmental, can hamper the intricate developmental events
and pose a risk in developing NDDs (Fig. 5).

From a genetic point of view
The group of patients having a NDD is enormously heteroge-
neous. The genetic causes underlying NDDs are diverse ranging
from single gene mutations, copy number variations to whole‐
chromosome aberrations [263]. Even with monogenic causes, the
severity and comorbidity of the symptoms can vary tremendously
and neurological/neuropsychiatric symptoms are often accompa-
nied by additional clinical features such as maldevelopment of
organ systems. But there are also some clear examples of
environmental risk factors that specifically hamper PFC develop-
ment resulting in behavioral and cognitive deficits. Below we list
specifically those NDDs where the structural development of the
PFC is clearly affected.

Monogenic causes. Many of the Mendelian monogenic NDDs are
characterized by intellectual disability and behavioral problems

Toxins

Smoking
Drinking

Physical
factors

Genetic
causes

Virus
Nutrients

Drugs

Fig. 5 Risk factors in PFC development. Schematic overview of
genetic and environmental risk factors during pregnancy to be the
possible cause of NDDs (Clockwise: Genetic causes, Smoking,
Drinking, prescription or recreational Drugs, certain combination
of Nutrients, Physical factors such as UV, ultrasound or various
radiations, Toxins, Virus infections). Possible causes for NDDs include
specific genetic or environmental factors as well as a combination
of both.
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due to, in part, an altered prefrontal functionality. Fragile X
syndrome (FX) is a NDD where the causative gene, Fragile X Mental
Retardation Protein (FMRP), is completely absent causing a
plethora of developmental abnormalities [264, 265]. It is clear that
in FX the many behavioral and cognitive deficits can be attributed,
at least in part, to prefrontal dysfunction. Some of these aspects
could be rescued in an animal model where FMRP production was
initiated in the mutant PFC [266]. In Rett syndrome, a severe NDD
with specific cognitive and behavioral features, there is a strong
PFC hypofunction with structural abnormalities [267–269]. Restor-
ing Mecp2 levels within the PFC in mice via state-of-the-art
techniques such as CRISPR-Cas9 or DREADDS can restore some of
the endophenotypes such as social recognition deficits or long-
term retrieval of auditory conditioned fear [267, 270, 271]. Other
monogenic syndromes like Kleefstra, KBG, WitKoS, Angelman,
Coffin-Sirris, Rubinstein-Taybi, Phelan-McDermid, Smith–Magenis
Syndrome and Kabuki syndrome also have a clear prefrontal
component in their behavioral and cognitive phenotype [272–280].
For some of these syndromes it has recently been shown that
deficits in the structural development of the PFC underlie these
problems [281–287].

Chromosomal abnormalities. In all human chromosomal aberra-
tion syndromes, including trisomies, monosomies (e.g., Turner
syndrome, monosomy 1p36), polyploidies, disomies and imprinting
errors or sex chromosome anomalies, structural abnormalities of
(pre)frontal as well as many other areas are common [61, 288–292].
Trisomy of chromosome 21 or Down syndrome can be considered a
NDD with significant developmental deficits. Cognitive abilities are
affected due to a developmental delay including the maturation of
brain areas such as the PFC [293]. Particular neurodevelopmental
events are delayed in forebrain regions such as neurogenesis,
migration and synaptogenesis eventually resulting in altered
prefrontal circuitry [294–296]. Williams (WBS or WS) syndrome is a
rare NDD with a deletion of approximately 25 genes on chromo-
some 7 and characterized by an unusual sociability and cognitive
deficits [297]. The structural organization of prefrontal pyramidals,
specifically their density and dendritic arboring, is severely affected
[298, 299]. Prader-Willi syndrome (PWS) is a disorder in which
imprinted genes on chromosome 15 are affected and is character-
ized by increased volume of prefrontal subdomains important in the
reward circuitry [300, 301]. In the 22q11.2 deletion syndrome (or
DiGeorge/Velo-Cardio-Facial syndrome), individuals are character-
ized by loss of executive function and working memory alongside
other cognitive problems and MRI studies showed a clear loss of
volume of the various PFC subdomains [302–307]

From an environmental point of view
Food/drugs. One of the most studied risks during pregnancy is the
composition of our diet. Many food-derived molecules can reach the
unborn baby in one form or another, and therefore could directly or
indirectly influence brain development when crossing the immature
blood-brain barrier and potentially affect PFC development [308]. It is
therefore important to realize that with the change of our diet
through the ages, having become more processed and high-fat and
high-sugar in contents, this can have a dramatic effect on the
development and functioning of the PFC. Particular consumption of
high-fat and/or high-sugar during pregnancy, childhood and
adolescence can result in structural changes in the PFC and deficits
in executive functioning [308–311]. Maternal metabolic disorders
including diabetes and obesity can pose another threat to the unborn
child as placental dysfunctioning alters the prenatal exposure to
nutrients and toxins [312–314]. In the early ‘70s it was found that
women who abused alcohol during pregnancy may deliver children
with severe developmental delays, smaller brains and cognitive
problems called Fetal Alcohol Syndrome (FAS) [315]. These children
often have various conditions that are collectively known as Fetal
Alcohol Spectrum Disorder (FASD), which includes FAS and a

condition known as Alcohol-related Neurodevelopmental Disorder
(ARND). There is a clear correlation of children with FAS and prefrontal
executive functioning [316]. MRI studies showed reductions in
brainstem as well as cerebellum volume in a primate FAS model
and a sex-dependent change in functional connectivity and
metabolism in prefrontal areas in a rat FAS model [317, 318].
Structurally, the prefrontal cortical thickness is affected after prenatal
alcohol exposure and it matures with a smaller number of excitatory
neurons and more GABAergic ones disrupting the excitatory/
inhibitory balance severely [319–321]. Similar structural and beha-
vioral defects of the PFC can be observed in kids with prenatal
exposure to opioids, cocaine, amphetamines and other drugs-of-
abuse [322–330]. Similarly, we can find lead and other pollutants to
be damaging to the developing brain and PFC [331–334]. Another
field of recent study is the perinatal exposure to pharmaceuticals
given to treat the pregnant mother. Perinatal HIV infections can alter
the course of brain development (see below), on the other hand
perinatal exposure to antiretroviral drugs such as Efavirenz (EFV) to
treat HIV leads to an altered prefrontal cytoarchitecture [335, 336].
Although maternal stress itself can be detrimental to brain
development in general and the developing PFC in particular (for
review see [125]), treatments against maternal depression such as
SSRIs can cause substantial structural damage to prefrontal
subdomains [125, 128].

Viral infections. Traditionally, pregnant women were warned for
TORCH (TOxoplasmosis, Rubella, Cytomegalovirus, and Herpes
simplex viruses type 1 and 2) infections especially during the first
two trimesters of pregnancy as they were shown to cause severe
congenital abnormalities [337]. Later, the O was referring to Other
infections such as syphilis, varicella-zoster, and parvovirus. Zika
viral infection during pregnancy can cause microcephaly including
severe structural damage to the prefrontal areas [338–340]. The
Zika virus is able to infect neuroepithelial stem cells and cortical
radial glial cells and to a lesser extent postmigratory neurons
causing structural disorganization in these cells eventually leading
to cell death [341–343]. Even a postnatal viral infection can lead to
postnatal meningitis and neurodevelopmental problems due to
structural and functional damage of frontal areas [344]. In the
recent SARS-CoV-2 or COVID-19 viral outbreak, similar structural
damage of frontal cortical areas could be observed, most likely
due to an inflammatory response in which parenchymal cells and
the choroid plexus are involved [345–347]. Little is known
however on the short- and long-term effects of a COVID-19
infection during pregnancy and the possible neurodevelopmental
changes it can make during corticogenesis leading to NDDs [348].

Other perinatal causes. Multiple fetuses per pregnancy, intrau-
terine growth restriction (IUGR, due to placental failure other than
by causes described above), X-ray, UV, nuclear or cosmic radiation,
(ultra)sound as well as high temperature, preterm birth or hypoxia
whether or not by traumatic causes can pose serious threats to
proper corticogenesis as well [349–356]. Recently it has become
clear that IUGR is associated with an increase in impulsive
behavior due to an altered dopamine signaling in the PFC
[357, 358]. Perinatal hypoxia can furthermore change the
expression of cytokine and ceramide metabolism genes in the
PFC and hampers cognitive functioning in later life [359, 360]. In
preterm birth, changes in white and gray matter including
reductions in cortical surface area and cortical thickness of the
PFC are described [361–364]. Disruptions in PFC network activity
often further aggravates the already compromised neurocognitive
development in these children [365, 366].

The multifactorial view
It is now generally accepted that the etiology of many NDDs is
considered to be multifactorial. Often, comorbidity of two or more
NDDs is observed. Variable environmental exposure to risk factors
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combined with variable genetic background makes it hard to
pinpoint possible causes. Yet, as the PFC takes the longest to fully
mature, we can argue that it is most vulnerable to any risk factor
when presented early enough. We will here review three of the
‘classical’ NDDs that are considered to be multifactorial in their
onset with affected PFC development. Intellectual disability (ID) is
an umbrella term and is a comorbidity of many of the described
NDDs and will therefore not be discussed separately.
Autism spectrum disorder (ASD) is an example heterogeneous

NDD characterized by impaired communication and social
interaction accompanied with repetitive behavior and stereotyped
interests. It has been described that the PFC of individuals with
ASD show structural and functional changes, specifically in the
ACC, oFC and lPFC [367, 368]. The number of neurons (but also
their size), specifically the chandelier cells, basket cells and other
parvalbumin-expressing interneurons, is decreased in the PFC
[369–371]. There are also indications that serotonergic signaling is
affected during PFC development [372]. In the first couple of years
of life there is a prefrontal hyperconnectivity in children with ASD
followed by a hypoconnectivity resulting in a ‘disconnection’ with
other cortical areas involved in higher-order associative proces-
sing [373–376]. The short- and long-range prefrontal axons,
particularly those from the ACC, are affected in their guidance
to subcortical targets and may underlie the network disruption
characteristic for ASD [377, 378]. A new and interesting finding is
that there appears to be a major change in the levels of various
metabolites in the PFC of autistic individuals [379].
Attention deficit/hyperactivity disorder (ADHD) is a NDD

characterized by signs of inattention, impulsivity, and hyperactiv-
ity [380, 381]. Control processes mediated by the PFC are
hampered. Imaging studies have shown the PFC to be thinner
in ADHD individuals, thereby hampering proper maturation and
prefrontal connectivity leading to attentional dysfunction
[382, 383]. Loss of catecholaminergic innervation underlies the
most important ADHD symptoms [381].
Epilepsy, specifically childhood frontal lobe epilepsy (FLE) has

various clinical outcomes but most often resulting in multi-
cognitive symptoms [384–387]. Elevated prefrontal oscillations
and hippocampal-prefrontal theta coherence could be observed
after FLE [388]. And eventually the FLE seizures can cause
structural and functional damage of the prefrontal areas including
altered short-term plasticity [389, 390]. Important is also that the
anti-epileptic drugs, given at young age or during pregnancy, can
have major neurodevelopmental implications as well. These drugs
act upon the major neurotranmitter and second messenger
systems including ion channels, thereby affecting neurodevelop-
mental events [391–393].

FUTURE RESEARCH DIRECTIONS
The multidisciplinary nature of the field of developmental
neurobiology has made enormous progress in recent years. The
combination of classical (immuno)histological techniques with
physiological, behavioral and high power molecular approaches
such as large-scale genome-wide (single-cell) transcriptome and
epigenome profiling studies have brought us an enormous
amount of insight and resolution into the development and
evolution of developing brain areas, specifically the PFC and their
role in the onset of NDDs [21, 394]. Advances in molecular labeling
and imaging techniques have added to this understanding
[4, 395]. But maybe the most exciting field is the rapid emergence
of stem cell approaches such as the generation of brain organoids
that have led to some tremendous breakthroughs. A dazzling
number of studies in gyrencephalic species have led to scientific
breakthroughs and the description of novel types of cortical
progenitors, including the basal and outer RGCs, both of which
have been linked to cortical expansion and folding. Early features

of corticogenesis can be recapitulated reliably; however the later
stages in development still need to be optimized.
It has become clear that most neurotransmitter systems play

neurotrophic roles during neurodevelopment as well. More
holistic studies into the extrasynaptic neurotrophic functions of
neurotransmitters during prefrontal development might also
provide more understanding of their potential roles in the
etiology of NDDs and eventually will enable us to design critical
developmental windows in which we may be able to intervene. In
the future, more longitudinal as well as interspecies studies will
be needed to corroborate our understanding of prefrontal
development.
Abnormal PFC development may lead to a variety of behavioral

and cognitive problems inherent to psychiatric disorders including
NDDs. In order to create tailored interventions targeted to the
specific genetic syndromes, there is a strong need for research
into the specific developmental and behavioral aspects accom-
panying these syndromes. A better understanding of the under-
lying neurodevelopmental and biological mechanisms will open
doors to investigate the possibility of therapeutic (early/preven-
tive) interventions and subsequent improvement of care.
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