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Abstract
Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors are
collectively associated with the etiology of BD, the underlying molecular mechanisms, particularly how environmental
factors affect the brain, remain largely unknown. We performed promoter-wide DNA methylation analysis of neuronal and
nonneuronal nuclei in the prefrontal cortex of patients with BD (N= 34) and controls (N= 35). We found decreased DNA
methylation at promoters in both cell types in the BD patients. Gene Ontology (GO) analysis of differentially methylated
region (DMR)-associated genes revealed enrichment of molecular motor-related genes in neurons, chemokines in both cell
types, and ion channel- and transporter-related genes in nonneurons. Detailed GO analysis further revealed that growth cone-
and dendrite-related genes, including NTRK2 and GRIN1, were hypermethylated in neurons of BD patients. To assess the
effect of medication, neuroblastoma cells were cultured under therapeutic concentrations of three mood stabilizers. We
observed that up to 37.9% of DMRs detected in BD overlapped with mood stabilizer-induced DMRs. Interestingly, mood
stabilizer-induced DMRs showed the opposite direction of changes in DMRs, suggesting the therapeutic effects of mood
stabilizers. Among the DMRs, 12 overlapped with loci identified in a genome-wide association study (GWAS) of BD. We
also found significant enrichment of neuronal DMRs in the loci reported in another GWAS of BD. Finally, we performed
qPCR of DNA methylation-related genes and found that DNMT3B was overexpressed in BD. The cell-type-specific DMRs
identified in this study will be useful for understanding the pathophysiology of BD.

Introduction

Bipolar disorder (BD), also known as manic depressive
illness, is a severe and common mental disorder char-
acterized by repeated mood swings of depressive and
manic episodes, with elevated rates of mortality [1, 2].
Early epidemiological and linkage studies suggested that
BD is a highly heritable disorder caused by a complex
interaction of genetic and environmental risk factors [3].
Genome-wide association studies (GWAS) revealed that
BD is a polygenic disorder caused by multiple genetic risks
with small effect sizes, similar to schizophrenia (SZ), and
shared genetic risks with other psychiatric disorders, such
as SZ and autism [4–6]. Although genetic landscape of BD
is gradually becoming understood, heritability estimated
from epidemiological studies is modestly accounted for by
the genetic studies.

Epigenetics, including DNA methylation, reflects gene-
environment interactions during development and affects
long-lasting gene expression status [7]. Therefore,
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unraveling the epigenetic landscape of psychiatric disorders
will contribute to the understanding of the heritability and
pathophysiology of psychiatric disorders [8–11]. In BD,
several candidate-gene-based approaches have been per-
formed, such as BDNF, COMT, and SLC6A4 genes in
postmortem brains [9]. In addition, comprehensive DNA
methylation studies have revealed expression-linked DNA
methylation changes in the cerebellum [12], accelerated
aging in the hippocampus [13], loss of brain laterality
associated with TGFB2 methylation [14], and methylation
imbalance of synaptic function-related genes between the
frontal and temporal cortices [15]. However, there have
been no established findings that were replicated in multiple
studies.

DNA methylation status in brain cells shows great
variation among cell types [16–18]. Therefore, cell-type-
specific epigenetic analysis will also be important. Recent
studies have highlighted that cell-type-specific epigenetic
differences are linked to SZ and neuropsychiatric traits
[19–22]. In BD, hypomethylation of the IGF2 enhancer,
which is associated with increased tyrosine hydroxylase
protein levels, has been reported in isolated neuronal
nuclei [23].

In this study, we performed promoter-wide DNA
methylation analysis of neuronal and nonneuronal nuclei in
the prefrontal cortex (PFC) of patients with BD. In addition
to identifying cell-type-specific differentially methylated
regions (DMRs), we found hypomethylation at promoters in
both cell types in BD patients. The affected genes included
hypomethylation of molecular motor-related genes in neu-
rons, chemokine-related genes in both cell types, and ion
channel- and transporter-related genes in nonneurons. We
also found neuron-specific hypermethylation of growth
cone- and dendrite-related genes. We then assessed the
effect of medication by using neuroblastoma cells and
found that up to 37.9% of DMRs in BD patients overlapped
with mood stabilizer-induced DMRs. Interestingly, mood
stabilizer-induced DMRs showed the opposite direction of
changes in DMRs in BD, suggesting the therapeutic effects
of mood stabilizers on DNA methylation. Among the
DMRs, 12 overlapped with loci identified by a GWAS of
BD [6]. We found significant enrichment of neuronal
DMRs in the loci reported in another GWAS of BD [24].
We also found overexpression of DNMT3B in BD and SZ,
suggesting possible molecular mechanisms of neuronal
hypermethylation.

Materials and methods

Details of methods including cell culture, data analysis,
reduced representation bisulfite sequencing (RRBS), and
qPCR were described in Supplementary Methods.

Postmortem brains

PFC (Brodmann area 46) samples of patients with BD (N=
34) and controls (N= 35) were obtained from the Stanley
Medical Research Institute (Table S1). This study was
approved by the ethics committees of the participating
institutes (the Research Ethics Committee of Kumamoto
University, the Research Ethics Committee of the Faculty of
Medicine of The University of Tokyo, the Ethical Review
Board of Juntendo University, and the Wako 1st Research
Ethics Committee of RIKEN).

Nuclei preparation

Neuronal and nonneuronal nuclei fractions were separated
by NeuN-based cell sorting [16]. In brief, after homo-
genization of fresh-frozen brain samples, the nuclear frac-
tion was retrieved by Percoll discontinuous density gradient
centrifugation. An anti-NeuN antibody (#MAB377, Milli-
pore, Burlington, MA, USA) conjugated with Alexa Fluor
488 was used for staining. NeuN+ and NeuN− nuclei were
sorted using the FACS Aria system (BD Biosciences,
Franklin Lakes, NJ, USA) as previously described [16].

Enrichment of methylated DNA and tiling arrays

Enrichment of methylated DNA was performed using
MethylCollector (Active Motif, Carlsbad, CA, USA)
according to the manufacturer’s protocol. A total of 100 ng
of DNA was used. Methylated DNA was retrieved in 100
µL of elution buffer. In qPCR, aliquots of eluted methylated
DNA were used for quantification. Probe preparation and
labeling for Affymetrix human promoter 1.0R tiling arrays
were performed according to the Affymetrix chromatin
immunoprecipitation assay protocol (Affymetrix, Santa
Clara, CA, USA). The array covers 25,500 human pro-
moters by 4.6 million 25-mer oligo-probes. Each promoter
covers ~7.5 kb upstream through 2.5 kb downstream of the
transcription start site by 35 bp probe spacing. In the post-
mortem brain experiment, all experiments were performed
in duplicate using independently prepared probes (experi-
ments 1 and 2). The total numbers of array data points were
therefore 136 and 140 for BD patients and controls,
respectively. References were prepared by applying human
genomic DNA amplified by a GenomiPhi V2 DNA
amplification kit (GE Healthcare, Chicago, IL, USA) to
MethylCollector. The number of methylated regions (MRs)
of each sample was counted by MAT [25] using two
replicate sample datasets (experiments 1 and 2) as one target
group and a reference dataset (whole-genome amplified
samples) as a reference group. DMRs were independently
identified in experiments 1 and 2 by comparing the patient
and control datasets. The DMRs detected in experiments 1
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and 2 were then intersected by bedtools and used for further
analysis.

Analysis of hmC

To identify hydroxymethylated regions (HMRs), genomic
DNA extracted from neuronal and nonneuronal nuclei iso-
lated from two control subjects was used for immunopre-
cipitation using rat 5-hydroxymethylcytosine (5-hmC)
monoclonal antibody included in the hMeDIP kit (#AF-
104-0016) according to the manufacturer’s protocol
(Diagenode, Denville, NJ, USA). The reference was pre-
pared by performing immunoprecipitation using rat IgG
antibody. Probe preparation and tiling array analysis were
performed as described above.

Results

Promoter hypomethylation of the PFC in patients
with BD

We performed promoter-wide DNA methylation analysis on
NeuN-sorted neuronal (NeuN+) and nonneuronal (NeuN-)
nuclear fractions derived from the PFC of patients with BD
(N= 34) and controls (N= 35) (Table S1). DNA fragments
containing densely methylated CpGs were enriched using
the MBD2B/3L and analyzed with a promoter tiling array.
PCA of the DNA methylation signature revealed a clear
separation between neurons and nonneurons (Fig. 1a). We
then assessed the effect of confounding factors on MRs and
found that they did not significantly affect the total number
of neuronal or nonneuronal MRs (Fig. 1a, c and Fig. S1).
We then compared the total number of MRs per sample
(Fig. 1b). Consistent with our previous report [16], the total
number of MRs was significantly lower in neurons than in
nonneurons within controls (P= 0.0006, in the
Mann–Whitney test) and within patients (P= 4.75E−05).
A significant decrease in the total number of MRs was also
identified in both neurons and nonneurons of patients
compared to controls (P= 0.0031 and P= 0.0318, respec-
tively) (Fig. 1b). Less MRs in the patients was not depen-
dent on the genomic context, such as repeat structure or
segmental duplications (Fig. S2).

Characterization of DMRs

We then identified DMRs between BD patients and controls
(Tables S2 and S3). The DMRs were uniformly distributed
throughout the genome (Fig. 1d). Consistent with less MRs
in BD, most DMRs showed hypomethylation (Fig. 1e). The
overlaps between neurons and nonneurons at the gene level
ranged from 23.4% to 44.1%. The rest showed cell-type-

specific DNA methylation changes (Fig. 1f). We found that
hypermethylated DMRs contained more CpG islands and
shores than hypomethylated DMRs (Fig. 2a). We also found
that neuronal hypermethylated DMRs contained more pro-
moters and 5′-UTRs compared to neuronal hypomethylated
and nonneuronal hypermethylated DMRs (Fig. 2a). We
performed GO analysis using all the DMR-associated genes
(Fig. 2b and Table S4). Each significantly enriched GO term
was composed of neuronal and nonneuronal DMR-
associated genes at different ratios. We found that kinesin
complex-, microtubule-, and motor molecule-related genes
dominantly included neuronal DMR-associated genes,
whereas chemokine activity-related and inflammation-
related genes were evenly enriched among both neuronal
and nonneuronal DMR-associated genes. In contrast, ion
channels and transporter-related terms mainly included
nonneuronal DMR-associated genes. To further extract the
cell-type-specific signature, we performed stratified GO
analysis considering the cell type and direction of methy-
lation change (Fig. 2c and Table S5). Strikingly, hyper-
methylated genes in neurons included genes related to the
growth cone and dendrites (Fig. 2c), such as the NMDA
NR1 subunit gene GRIN1 and BDNF receptor gene NTRK2
(Fig. 2d). Both genes have been the long-studied genes in
psychiatric disorders, and their downregulation in the
postmortem brains of BD patients has been established. On
the other hand, kinesin complex- and microtubule motor
activity-related genes were included in the hypomethylated
genes of neurons (Fig. 2c and Table S5).

Technical considerations of MRs and DMRs

We performed RRBS analysis in neurons and nonneurons
of the selected subjects (Tables S1 and S6). Approximately
95% of the MRs detected in the array showed greater than
70% of the DNA methylation levels in RRBS, ensuring
high sensitivity to the detection of methylated DNA (Fig.
S3). A total of 999 DMRs contained at least one CpG site
whose DNA methylation level could be determined by
RRBS. Among them, 190 DMRs contained CpG(s) show-
ing significant DNA methylation differences by RRBS. The
average validation rates by RRBS were 16.4% for hypo-
methylation and 52.7% for hypermethylation (Table S7).
The low rates of validation of DMRs largely came from the
small number of samples used in RRBS compared to arrays.
Hypermethylation changes were more supported by RRBS
than hypomethylation changes. Because all arbitrarily cho-
sen hypomethylated DMRs were successfully confirmed by
independent qPCR (Fig. S4), we postulated the involvement
of other epigenetic regulations such as hmC [26]. To
explore the effect of hmC, we analyzed HMRs in neurons
and nonneurons of two control samples using an anti-hmC
antibody with the same array platform. We found that

Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal. . . 3409



Fig. 1 MRs and DMRs in BD. a PCA of the MRs of each sample and
the effect of age and PMI. Spearman’s rank correlation coefficient and
P value are given. Pink and blue colors indicate neurons and non-
neurons, respectively. b Decreased number of MRs in BD. An asterisk
(*) shows significant changes by the Mann–Whitney test. c Effect of
age onset, duration of illness, and lifetime antipsychotics on MRs in
BD. Lifetime antipsychotics are given in fluphenazine equivalents.

One patient with excess lifetime antipsychotics was removed from the
plot. The presence or absence of this subject did not affect statistical
values. d Chromosomal locations of DMRs. DMRs on autosomes are
presented [65]. e Total number of DMRs and DMR-associated genes. f
Venn diagrams of DMR-associated genes. MR methylated region,
DMR differentially methylated region, PCA principal component
analysis, PMI postmortem interval, CT control, BD bipolar disorder.

3410 M. Bundo et al.



12.1% of neuronal and 10.3% of nonneuronal MRs over-
lapped with neuronal and nonneuronal HMRs, respectively.
We also found that overlaps with HMRs were significantly
increased in DMRs; 17.8% of neuronal (Fisher’s exact test,
P < 0.0001) and 13.7% of nonneuronal (P= 0.0045) DMRs
in BD (Fig. S5, Tables S2 and S3). Based on the DMRs
confirmed by RRBS, typical DNA methylation differences
were estimated to range from 12.4 to 17.8% (Table S7).

Assessment of the effect of mood stabilizers

We then assessed the effect of mood stabilizers on DNA
methylation changes using a human neuroblastoma cell line.
Cells cultured under the minimum and maximum ther-
apeutic concentrations of three mood stabilizers for 8 days
were retrieved, and their DNA methylation patterns were
profiled with the same array platform (Fig. 3a). We exam-
ined the relationship between the DMRs in BD and those
detected in cell culture. We found that 31.3% and 37.9% of
the neuronal and nonneuronal DMRs, respectively, over-
lapped with DMRs detected in at least one cell culture
condition (Fig. 3b, Tables S2 and S3). Regarding the
direction of methylation changes in the DMRs, both
directions showed a similar extent of overlap (Fig. 3b).
Further analysis revealed that hypomethylated DMRs in BD
showed a greater overlap with hypermethylated DMRs in
cell culture and vice versa among both neuronal DMRs
(Fig. 3c) and nonneuronal DMRs (Fig. 3d).

Overlap analysis with GWAS in psychiatric disorders

We compared chromosomal loci identified by a GWAS in
BD with the DMRs. Among the 30 loci identified by a
GWAS in BD [6], 8 loci included a total of 12 DMRs
(Fig. 4a). At the gene level, we also identified additional
overlapped genes between GWAS and this study, including
CACNA1C, SHANK2, and GRIN2A (Fig. 4b). We then
compared the loci identified by other GWAS with the
DMRs. We considered 102 loci in major depression (MD)
[27], 108 loci in SZ [28], and 63 loci in BD [24]. We found
that a total of 28, 14, and 63 DMRs overlapped with the loci
reported in MD, SZ, and BD, respectively (Tables S2 and
S3). To test if DMRs are significantly enriched in the
GWAS loci, we performed the promoter-based Fisher’s
exact test. Significant deviations were detected in the BD
GWAS [24] and the SZ GWAS [28] loci, though directions
of deviation seemed to be opposite (Table S8). To further
test the enrichment, we also estimated P values from the
probability distribution by 10,000 random sampling of
DMR sets (Fig. 4c). Significant enrichment was detected in
neuronal and all DMRs in the BD GWAS loci [24]. We also
observed the depletion of DMRs in the SZ GWAS loci.

qPCR of DNA methylation-related genes

To examine the genes involved in the DNA methylation
changes in BD, we measured the gene expression levels of
4 DNA methyltransferases and 5 methyl-CpG binding
domain-containing proteins by qPCR using bulk PFC
samples (Fig. 5a). Among the measured genes, the
expression of DNMT3B showed a significant increase in
BD compared with controls (Fig. 5b). Specific and
increased expression of DNMT3B was also found in the
PFC of SZ patients (Fig. 5b), suggesting that DNMT3B is
involved in altered DNA methylation in psychosis.
Increased expression of DNMT3B in BD was also sup-
ported by the analysis of a previous DNA microarray
dataset [29, 30] (Fig. S6).

Discussion

We performed brain cell-type-specific DNA methylation
analysis on the PFC of BD patients. Our analysis revealed
a tendency toward decreased promoter methylation of both
neurons and nonneurons and neuronal hypermethylation in
some key genes important for neuronal function in BD.

We employed the enrichment of methylated DNA by
MBD2B/3L followed by promoter tiling array analysis.
Compared to the bisulfite sequencing (BS)-based method,
this approach has limitations in the coverage of the gen-
ome and accuracy of the quantitative determination.
However, taking advantage of the binding specificity of
MBD2B, which does not bind hmC [26], we were able to
enrich and analyze the MRs consisting of methylcytosine
(mC) [31, 32]. Excluding hmC would be particularly
important because hmC is enriched in neurons and cannot
be discriminated from mC by the BS [17]. Therefore, the
DMRs defined based on only the mC will be valuable for
interpretation of epigenetic signatures in the brain. By
performing promoter-wide analysis, we focused on the
genomic regions directly important for gene expression
regulation. Genome-wide analysis, such as MBD-Seq,
would be useful for future studies to understand the entire
role of epigenetic regulation in BD. Another limitation
would be that due to the enrichment-based method, it
cannot estimate the methylation level by calculating the
ratio of methylated to unmethylated signals. However, the
accuracy of quantification has also been proven in MBD-
Seq by using appropriate reference set [31]. Although we
could not adopt such correction in this study, we deter-
mined DMRs by independent duplicate assays, and we
estimated that the DMRs showed substantial DNA
methylation changes by RRBS analysis of the selected
samples.

Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal. . . 3411
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DNA hypomethylation in BD

In control brains, we replicated the less neuronal MRs
compared to nonneuronal MRs [16]. On the other hand,
previous BS analyses by others reported higher methylated
levels in neurons than in nonneurons [17, 21]. Discordance
may come from differences in the data interpretation
involving higher hmC levels in neurons and in the genomic
region analyzed in this study, i.e., promoters in this study
and the entire genomic region in other studies. The global
tendency toward hypomethylation and gene-specific neu-
ronal hypermethylation in BD was seemingly contradictory.
Although the molecular mechanism and the relationship
between these changes are unclear, such changes have also
been observed in cancer cells [33]. Relevance to global
DNA hypomethylation was also discussed in the Supple-
mentary Discussion.

DMR-associated genes

By GO analysis, we found that motor activity-related terms
were enriched in DMR-associated genes. Most of them
showed hypomethylated changes in neurons. Genes inclu-
ded the kinesin complex genes (KIFs and KLC3), myosin
components (MYHs and MYOs), lipid transfer protein
(STARD9), and dynein complexes (DNAH17 and
DNAH10), suggesting that motor molecules in neurons are
widely dysregulated. Because neurons must transport

synaptic vesicle precursors, neurotransmitter receptors, and
mRNAs over long distances [34], dysregulation of motor
activity affects diverse neuronal functions and the patho-
physiology of psychiatric disorders. Interestingly, altered
microtubule functions in neural stem and mature neural
cells in BD have been recently reported [35].

We found hypermethylation of growth cone- and
dendrite-related genes. Among them, NTRK2 and GRIN1
have been the long-studied genes in psychiatric disorders,
and their downregulation in the postmortem brains of BD
patients has been established. NTRK2, also known as
TrkB, encodes a BDNF receptor and has been one of the
prime targets in mood disorders. Decreased expression of
NTRK2 was repeatedly reported in postmortem brains of
patients with psychiatric disorders [36–39] and animal
models of depression [40–42]. The BDNF-NTRK2 sig-
naling pathway is critical for the antidepressant effect of
lamotorigine [43] and ketamine [44, 45] as well as the
antimanic effect of lithium [46] in animal models.
Genetic studies have revealed that NTRK2 is associated
with the treatment response to mood stabilizers in BD
[47, 48] and suicidal behavior in mood disorders [49].
Interestingly, hypermethylation of the CpG island of the
NTRK2 promoter has been reported in suicide completers
[50]. Because the identified region in this study was close
to the CpG island, these methylation changes may be
linked and contribute to the pathophysiology of psy-
chiatric disorders.

a

DNMT1 DNMT2 DNMT3A DNMT3B MBD1 MBD2 MBD2L MBD3 MBD4 MECP2
G C G C G C G C G C G C G C G C G C G C

Control (N=32)
Bipolar Disorder (N=31)

G, GAPDH; C, CFL1

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l

1

2

3

4

CT BD SZ

0.
00

0
0.

00
1

0.
00

2

DNMT3B
(all)

0.
00

0
0.

00
5

CT BD SZ CT BD SZ CT BD SZ

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l 
(G

AP
D

H
)

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l 
(C

FL
1)

DNMT3B 
(pH-adjusted)

DNMT3B
(all)

DNMT3B 
(pH-adjusted)

b
P = 0.0011

P = 0.0012

P = 0.0042

P = 0.0236

P = 0.0344

P = 0.0212

P = 0.0165
P = 0.0438

Fig. 5 qPCR of DNA
methylation-related genes. a
Expression levels of DNA
methylation-related genes.
Expression levels were plotted
relative to the average value of
the control. Note that for some
subjects, total RNA samples
were not available. b The
expression level of DNMT3B.
The expression levels of two
genes, GAPDH: G and CFL1: C,
were used as internal controls. In
the pH-adjusted analysis,
samples for which the brain
sample pH was below 6.4 were
removed based on a previous
study [30]. An asterisk (*)
indicates a significant change in
the Mann–Whitney test (P <
0.05).

Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal. . . 3415



NMDA receptors (NMDARs) mediate basic neuronal
functions, and their dysfunction is closely linked to the
pathophysiology of psychiatric disorders [51]. GRIN1
(NR1) encodes an essential subunit of NMDAR, and its
downregulation was reported in the postmortem brains of
patients with psychiatric disorders [52]. GRIN1 knockdown
mice showed various behavioral alterations related to psy-
chiatric disorders [53]. The involvement of altered DNA
methylation of NMDAR genes, including NR1, which is
associated with changes in expression and subunit compo-
sition, has been reported [54–56].

The discussion on other DMR-associated genes was
described in the Supplementary Discussion.

Effect of mood stabilizers

We observed that up to 37.9% of DMRs in BD overlapped
with mood stabilizer-induced DMRs in cultured cells. Despite
the simple cell culture model, these overlapping DMRs and
opposite directions of changes between the postmortem brain
and cell culture imply the pathophysiological importance of
these DMRs. A similar opposite direction of DNA methyla-
tion changes related to mood stabilizers has been reported not
only in a gene-specific manner [57] but also in systematic
alterations in accelerated aging in BD [58]. Although the
precise molecular mechanism remains unclear, mood stabi-
lizers might normalize the epigenetic regulation in brain cells
[9], leading to the amelioration of multiple DMRs between
BD patients and controls.

Comparison with GWAS results

At the chromosomal location level, among the DMRs
overlapping between a BD GWAS [6] and this study, we
regarded KMT2E and SPTBN2 as particularly important.
KMT2E encodes histone lysine methyltransferase 2E. The
loss of function of histone lysine methyltransferases is
involved in BD, SZ, and autism [59–61], and cell-type-
specific alteration of histone lysine modification in post-
mortem brains and animal models of psychiatric disorders
has been reported [62]. SPTBN2, also known as SCA5,
regulates glutamate signaling by stabilizing EAAT4, and
mutations in SPTBN2 cause spinocerebellar ataxia type 5
[63]. At the gene level, several genes overlapped with
GWAS, including the well-studied genes in BD [6] such as
CACNA1C, SHANK2, and GRIN2A. They seemed to appear
as candidates due to their long gene length.

Enrichment and depletion of DMRs in the GWAS loci
of psychiatric disorders

We developed the promoter-based Fisher’s exact test,
where the number of DMR-overlapped promoter and that

of DMR-nonoverlapped promoter were compared to the
number of GWAS-overlapped promoter and that of
GWAS-nonoverlapped promoter. P values were further
evaluated based on the probability distribution estimated
by the 10,000 random sampling of DMR sets. Strikingly,
we found that neuronal DMRs were strongly enriched in
the latest BD GWAS loci [24], but they were not enriched
in the previous BD GWAS [6] or the MD GWAS [27]
loci. This suggests that a larger scale of GWAS would be
needed to detect a significant relationship. In contrast,
DMRs were significantly depleted in the SZ GWAS loci
[28]. Although careful considerations should be needed,
this might be partly explained by the role of the SZ
GWAS loci; they may play more roles in early neuronal
development than in adulthood. The latest BD GWAS
[24] showed the enrichment of GWAS signals such as
calcium signaling genes and genes expressed in neurons.
Enrichment of neuronal epigenetic alterations in the BD
GWAS loci provides important insights into the molecular
pathophysiology of BD.

Overexpression of DNMT3B in BD and SZ

We found an increase in DNMT3B expression in both BD
and SZ, implicating its possible role in psychosis. Whether
patients with SZ show epigenetic changes similar to those
of patients with BD needs to be studied. Increased expres-
sion of DNMT3B was recently reported in learned help-
lessness rats, supporting its role as a stress-inducible
neuronal DNA methyltransferase [64].

Conclusion

We observed cell-type-specific, pathophysiology-related
DNA methylation changes in the PFC of patients with
BD and identified increased expression of DNMT3B as a
potential molecular mechanism. The present findings help
understand the molecular pathophysiology of BD.
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The array data are available under accession GSE137921.
The RRBS data are available under accession DRA008934.
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