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Abstract
Alzheimer’s disease is a devastating neurodegenerative disorder with no cure. Countless promising therapeutics have shown
efficacy in rodent Alzheimer’s disease models yet failed to benefit human patients. While hope remains that earlier
intervention with existing therapeutics will improve outcomes, it is becoming increasingly clear that new approaches to
understand and combat the pathophysiology of Alzheimer’s disease are needed. Human induced pluripotent stem cell (iPSC)
technologies have changed the face of preclinical research and iPSC-derived cell types are being utilized to study an array of
human conditions, including neurodegenerative disease. All major brain cell types can now be differentiated from iPSCs,
while increasingly complex co-culture systems are being developed to facilitate neuroscience research. Many cellular
functions perturbed in Alzheimer’s disease can be recapitulated using iPSC-derived cells in vitro, and co-culture platforms
are beginning to yield insights into the complex interactions that occur between brain cell types during neurodegeneration.
Further, iPSC-based systems and genome editing tools will be critical in understanding the roles of the numerous new genes
and mutations found to modify Alzheimer’s disease risk in the past decade. While still in their relative infancy, these
developing iPSC-based technologies hold considerable promise to push forward efforts to combat Alzheimer’s disease and
other neurodegenerative disorders.

Introduction

Alzheimer’s disease (AD) is a devastating and ultimately
fatal form of neurodegeneration characterized by pro-
gressive loss of cognition and disruption of basic functions,
such as swallowing, walking, attention, and memory [1]. As
the sixth leading cause of death in the USA, the disease
places a tremendous emotional and financial burden on
families, caregivers, and the health care system [2]. Pro-
jections show that this burden will grow as domestic and
world populations continue to age [3]. AD has been the
subject of intense research efforts over the past 40 years,
with human genetic studies identifying numerous mutations
that either cause, or alter risk for the disease. In parallel,
cellular and rodent models have been workhorses in dee-
pening our understanding of numerous pathophysiological
mechanisms associated with disease progression. Despite

these efforts, there remains no cure for AD. The only cur-
rent FDA approved treatments for AD target cholinergic
and/or glutamatergic neuronal function, providing modest
and transient cognitive benefit, but do not alter disease
course or underlying neurodegeneration [4, 5]. The con-
tinued failure of promising therapeutics to provide benefit in
human patients points to the need for improved model
systems that better mimic the pathophysiology of AD
patients. The advent in the past decade of techniques to
generate human induced pluripotent stem cells (iPSCs) and
to differentiate them into the various cell types of the body,
including brain cells, has ushered in a new era of neuro-
degenerative disease research that offers renewed hope in
tackling an old problem. Here we provide an overview of
iPSC-based models of AD that have been developed, or are
being developed, as well as highlighting important research
directions going forward.

Alzheimer’s disease

First described by Alois Alzheimer in 1907, AD is character-
ized by progressive cognitive decline, initially and particularly,
affecting short-term memory, but later also language, mood,
movement, and physiological functions [1]. Early onset familial
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AD (FAD) strikes in the fourth or fifth decade of life, while
sporadic late onset AD (SAD) typically develops after the age
of 70. The pathological hallmarks of AD—shared by FAD and
SAD—are senile plaques and neurofibrillary tangles (NFTs),
accompanied by progressive neurodegeneration [6]. Plaques
are extracellular aggregates composed largely of amyloid-β
(Aβ) peptides, while NFTs are intracellular inclusions rich in
hyperphosphorylated tau protein. Various forms of Aβ induce
cellular dysfunction and toxicity in vitro and in vivo. Likewise,
mutated or hyperphosphorylated tau species are prone to
aggregation and can cause neuronal dysfunction and cell death.
Intriguingly, while both Aβ and tau can exhibit toxicity inde-
pendently, their pathologies are linked; numerous studies show
that Aβ buildup can induce tau hyperphosphorylation [7].
Other common pathological signs of AD include gliosis,
inflammation, blood–brain barrier (BBB) disruptions, meta-
bolic disturbances, altered endocytic and cellular degradation
pathways, and elevated DNA damage [8]. The relative
importance and interconnections between these phenomena
remain subjects of intense research.

Following many years of focus on neuron-based mechan-
isms of neurodegeneration in AD, recent genetic studies have
shifted attention to a more holistic view incorporating the
functions of multiple different cell types of the brain [8, 9]
(Fig. 1). Neuron dysfunction and degeneration undoubtedly
underlies a large part of the characteristic cognitive decline
during AD, but the brain also consists of many other non-
neuronal cell types [8, 10, 11]. These cells are increasingly
being recognized for helping to maintain proper brain function
as well as ensuring the long-term health and survival of neu-
rons. Oligodendrocytes insulate neuronal axons and promote
fast synaptic transmission [12]. Astrocytes and microglia clo-
sely associate with synapses, the sites of communication
between neurons, to form what is known as the “tripartite
synapse” [13, 14]. Astrocytes, in addition to playing critical
roles in neurotransmitter recycling, also perform important
metabolic functions in the brain [15]. Microglia, the resident
innate immune cells of the brain, are involved in the pruning of
synapses, in particular during development but also in the
context of adult synaptic plasticity [16]. Throughout life,
microglia also act as sentinels that detect and remove exo-
genous and endogenous invaders and debris, including patho-
gens, dying brain cells, cancerous cells and protein aggregates
such as Aβ plaques [17, 18]. All of the mentioned glial cell
types can also contribute trophic support for other brain cells,
secrete pro- or anti-inflammatory factors, and participate in
clearance of toxic substances from the brain milieu [8]. Aside
from glia, the cells of the BBB form a physical impediment to
the passage of most cells and molecules between the central
nervous system and peripheral blood circulation. These spe-
cialized blood vessels are composed of vascular endothelial
cells (VECs), pericytes, and astrocytes that can break down
during AD and exacerbate its progression [19]. The functions

and contribution of each of these non-neuronal brain cell types
to AD-associated neurodegeneration remains incompletely
understood.

FAD exhibits an early onset of symptoms and is dom-
inantly inherited, which facilitated the identification in the
early 1990’s of disease-causing mutations in three different
genes, encoding the amyloid precursor protein (APP), pre-
senilin 1 (PSEN1), and presenilin 2 (PSEN2) [20–22]. It
was already known that the Aβ peptide is a major con-
stituent of amyloid plaques, and is derived from sequential
proteolytic cleavage of APP [23]. Subsequent studies
revealed that PSEN1 and PSEN2 are components of the
gamma secretase complex, which carries out amyloidogenic
cleavage of APP to produce Aβ peptides ranging from 36 to
43 amino acids in length. Aβ40 and Aβ42 are the most
common isoforms, with longer forms such as Aβ42 and Aβ43
being more aggregation prone [24]. AD-linked mutations in
APP, PSEN1, and PSEN2, as well as APP duplications,
all increase either the total amount of Aβ42, or the ratio of
Aβ42/Aβ40 produced by neurons [25, 26].

Together with the observation that amyloid buildup is a
prominent event in disease pathology, these genetic findings
laid the foundation for the “amyloid cascade hypothesis” of
AD, placing neuron-derived Aβ at the top of a cascade
ultimately leading to neurodegeneration and cognitive
decline [27]. The identification of specific mutations that
can cause AD also allowed for the development of cellular
and animal models to study the pathophysiological altera-
tions that link these mutations to neurodegeneration.

Despite a less aggressive progression, SAD shares the
major characteristics of FAD, including Aβ plaque deposi-
tion and NFT pathology, and accounts for the vast majority
(>95%) of all AD cases [28]. While no SAD-causative
mutations have been found, a considerable number of
genetic loci that increase or decrease the risk for developing
SAD have now been reported [29–34]. The first identified
was the APOE locus, encoding apolipoprotein E (APOE)
[35]. The APOE2, APOE3 and APOE4 alleles correspond to
APOE with cysteine at amino acid positions 112 and 158,
cysteine at 112 and arginine and 158, or arginine at 112 and
158, respectively. Compared to the major APOE3 allele,
APOE2 has been reported to be protective, while APOE4
increases late-onset AD risk by ~three-fold for heterozygous
carriers and 15-fold for homozygous carriers [36]. Despite
its partial penetrance, the relatively high frequency of
APOE4 in the general population (~13%) makes it the
single largest cause of AD [37]. APOE is most studied as a
lipid carrier secreted from astrocytes that facilitates Aβ
clearance from the brain, however, recent studies have
revealed potentially detrimental roles of APOE4 also in
neurons and microglial cells [38, 39]. Genome-wide asso-
ciation studies (GWAS) in the last decade have identified
numerous additional SAD risk genes, many of which
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are expressed primarily in non-neuronal cells of the brain
[29–34] (Table 1). Combined with the persistent failure of
AD clinical trials, largely aimed at reducing Aβ production

by neurons, these recent genetic findings have begun to shift
the focus of AD research toward better understanding the
roles and functions of non-neuronal cells during

Fig. 1 Brain cell types in Alzheimer’s disease. A summary of the major human brain cell types and the alterations they exhibit in AD
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neurodegeneration in AD. In addition, while FAD appears
to be caused primarily by overproduction of Aβ, it has
become clear that other mechanisms, including defective
clearance or aberrant degradation of Aβ, are likely to be
important drivers of many SAD cases.

Alzheimer’s disease models

As the most common neurodegenerative disorder, AD has
been studied intensively. Valuable contributions to our

understanding of this disease have been made in numerous
different systems, including post-mortem patient brain
samples, human and animal cell lines, as well as inverte-
brate, zebrafish and rodent models of disease. Post-mortem
brain samples are vital for identifying the cellular and
molecular changes associated with neurodegeneration, but
provide no ability to alter or intervene in the course of
disease. Cultured human and rodent cells have been useful
for examining the effects of Aβ and other disease-related
molecules on cellular function and health, however as
dividing cells they do a poor job of modeling

Table 1 Alzheimer’s disease risk genes

Human Brain FPKM

Gene Mutation type Molecular function % identity Neurons Astrocytes Microglia Oligodendrocytes Endothelial

APP Coding Integral membrane protein 97.3 160.9 16.6 6.9 109.5 41.0

PSEN1 Coding Protease, γ-secretase complex 92.7 5 7.4 5.7 16.5 2.7

PSEN2 Coding Protease, γ-secretase complex 96 1.1 1 0.3 0.3 1.3

ABCA7 Both ATP-binding cassette transporter 76.4 0.1 0.1 0.1 0.1 0.1

ACE Non-coding Metalloprotease 82.8 0.1 0.1 0.1 0.1 0.4

ADAM10 Non-coding Metalloprotease 95.9 9.1 7.4 22.6 15.6 6.3

ADAMTS1 Non-coding Metalloprotease 80.8 3.5 0.9 0.1 9.7 3.1

APOE Coding Lipoprotein 71.7 0.5 3.3 0.5 0.2 0.1

BIN1 Non-coding Endocytic adaptor 95.6 1.2 0.9 6.9 6.7 1.7

CASS4 Non-coding Tyrosine kinase docking 63.1 0.3 0.2 8.5 0.3 1.5

CD2AP Non-coding Scaffolding, actin cytoskeleton 86.5 1.4 1.7 7.9 1.4 4

CD33 Non-coding Surface receptor 39.0a 0.1 0.2 9.5 1 0.1

CELF1 Non-coding RNA-binding protein 99.6 7.9 6.3 9.5 4.9 3.1

CLU Non-coding Extracellular chaperone 76.6 19.3 384.2 0.5 9.6 15.6

CR1 Non-coding Surface receptor 48.9 0.1 0.1 0.2 0.1 0.1

EPHA1 Non-coding Receptor tyrosine kinase 87.2 0.1 0.1 0.1 0.1 0.1

FERMT2 Non-coding Extracellular matrix scaffolding 98.2 3.3 43.2 2.9 6.9 6.8

HLA-DRB1 Non-coding Antigen presentation 58.9a 0.6 1.1 27.1 3 0.7

INPP5D Non-coding Phosphatidylinositol phosphatase 87.5 0.1 0.5 18.9 1.4 2.3

IQCK Non-coding Calmodulin-binding domain 71.8 4.7 20.8 0.2 6.4 0.6

MEF2C Non-coding Transcription factor 93.5 51.9 3.8 44 3.9 4.1

MS4A6A Non-coding Transmembrane protein 53.7a 0.1 0.7 24 5.2 0.1

PICALM Non-coding Endocytosis, clathrin assembly 96.5 12.3 14.6 65.6 37.3 20.5

PTK2B Non-coding Tyrosine kinase 95.3 2 0.9 1.3 0.4 0.8

SLC24A4 Non-coding Na+/K+/Ca2+ exchanger 94.4 1.9 0.2 0.5 0.2 0.1

SORL1 Non-coding Endocytic receptor/sorting 93.2 9.9 17.9 78.9 6.7 0.8

SPI1 Non-coding Transcription factor 87.9 0.1 0.1 0.3 0.1 0.1

TREM2 Coding Surface receptor 50.6 0.1 0.4 27.1 1.4 0.4

TXNDC3 Non-coding Thioredoxin domain 63.5 0.1 0.1 0.2 0.2 0.1

WWOX Non-coding Oxidoreductase 93.7 4.6 5.1 1.1 1.8 0.8

ZCWPW1 Non-coding Zinc finger domain 60 0.2 0.5 0.5 0.7 0.1

FAD causative genes are shown in bold, SAD risk genes in normal font [20–22, 29–32, 34, 35]. Percent amino acid identity of mouse to human
orthologue is indicated (ensembl.org [46])
aIndicates multiple orthologues. Fragments Per Kilobase of transcript per Million mapped reads (FPKM) of AD-linked genes from purified human
brain cell types are also indicated (brainrnaseq.org [226])
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neurodegeneration and many other age-related aspects of
AD. Further, while primary brain cells can be cultured from
rodents, studies using human cells have utilized mostly non-
neuronal cell lines. Non-mammalian models overexpressing
disease-related proteins can also serve as in vivo screening
systems to identify conserved mechanisms of toxicity or
protection, however, the considerable evolutionary distance
between these models and humans limits their utility.

Mice have formed the backbone of AD research for a
quarter century due to the powerful genetic toolkit available
and comparatively close evolutionary relationship with
humans [40]. Mice possess most of the same major brain
regions and neurotransmitter systems as humans, and are
uniquely amenable to rapid assessment of neuronal and
circuit function, as well as cognitive performance.

Mouse models that successfully mimic age-dependent
neurodegeneration rely mostly on neuronal overexpression
of human proteins carrying FAD-causing mutations
[41, 42]. For instance, 5xFAD mice use the mouse Thy1
promoter to overexpress human APP harboring three
disease-associated mutations (the Florida (I716V), London
(V717I), and Swedish (K670N/M671L) mutations) together
with PSEN1 harboring two FAD-linked mutations (the
L286V and M146L mutations) [43]. However, this need to
express mutated human proteins, typically at considerably
higher levels than their endogenous counterparts, in order to
achieve a neurodegenerative phenotype hints at some of the
limitations of mice as an AD model. In fact, across neuro-
degenerative diseases, mouse mutations corresponding to
human disease-linked mutations rarely result in neurode-
generative phenotypes. This may be due in part to the fact
that age is the single greatest risk factor for neurodegen-
eration and mice have much shorter lifespans than humans.
There may also be intrinsic differences in the resilience of
mouse and human neurons in the face of oxidative stress,
pathologic protein aggregates or other perturbations, though
the mechanisms are not fully understood.

In addition to the well-established FAD models, mouse
models of numerous SAD genes have also been developed.
At many disease-associated loci, the exact mutation(s)
linked to AD risk have not been identified, necessitating
examination of SAD risk gene knockout mutations [31]. As
these mutations alone generally do not cause neurodegen-
eration, examining their effects on pathology has typically
been done in the context of established FAD-mutation
mouse models. This approach has identified numerous
mechanisms by which SAD risk genes impact AD pathol-
ogy and has broadened our appreciation of the contributions
of non-neuronal cell types to brain health and neurode-
generation. Despite this progress, our understanding of the
effects of SAD risk mutations, and of the exact roles that
each cell type plays during neurodegeneration, remains far
from complete.

In the face of the immense impact that mouse models have
made to our understanding of AD mechanisms and patho-
physiology, it is also important to acknowledge the potential
caveats of mouse studies. While mice are much closer evo-
lutionarily to humans than most other genetic model systems,
there remain considerable differences in the functions of
proteins, signaling pathways, cellular processes and the
interactions between different cell types when comparing the
two species [44, 45]. At the protein level, this is highlighted
by examining the amino acid sequence identity of different
proteins that either cause, or alter the risk for, AD (Table 1).
The largely neuronally expressed FAD proteins are nearly
identical between human and mouse, exhibiting greater than
90% amino acid identity. In stark contrast, the proteins
encoded by a number of SAD risk genes, including
the microglial cell surface proteins TREM2, CD33, CR1
and MS4A6A, are only about 50% identical between human
and mouse, comparable to the difference between human and
insect presenilin proteins [46]. These cross-species differences
may also extend more broadly to cell types, such that mice are
generally a better model for understanding neuronal phe-
nomena than they are for processes occurring in innate
immune cells such as microglia.

While the exact reasons remain uncertain, the sobering
reality is that hundreds of clinical trials over more than 30
years have failed to provide an effective treatment that alters
the course of neurodegeneration in AD [47]. Hope remains
that earlier detection of at-risk individuals, enabling earlier
intervention with existing therapeutics, will eventually yield
benefit in AD [9]. However, the field has already begun to
embrace new ideas—in particular a more balanced view of
brain function and dysfunction, acknowledging the impor-
tance of multiple brain cell types and their complex, inter-
connected functions [8]. Another avenue of potentially
critical importance is the emerging ability to model human
disease using human cells that is becoming increasingly
feasible with developing iPSC technologies.

Induced pluripotent stem cells

Since the first publication describing how to generate iPSCs
from human somatic cells in 2007, there has followed an
explosion of methods to direct differentiation into the varied
cell types of the body, including brain cells [48–52].
Methods of inducing neural progenitor cells (NPCs),
numerous neuron subtypes, as well as astrocytes, microglia,
oligodendrocytes, endothelial cells, and pericytes have all
been established (Fig. 2). Further, co-culture models
incorporating multiple brain cell types have been developed
as first steps towards better modeling the complex interac-
tions that occur between these cells in vivo. In all cases, the
research community is continuing to refine these methods.
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Differentiation protocols continue to increase the yield,
purity, and maturity of brain cell types. Three dimensional
(3D) and co-culture models are still developing, but even
now can be utilized to generate AD hallmark pathologies
that do not arise in 2D monocultures. Further improving
these models to facilitate more meaningful neurodegenera-
tive disease research will be a major goal.

As age is the primary risk factor for AD and other
neurodegenerative disorders, it may seem counter-
intuitive to study AD using stem cells. It is worth noting
though that even in the early stages following differ-
entiation, neurons derived from AD patient iPSCs, and
from iPSCs carrying FAD mutations, generally exhibit
AD-related phenotypes such as elevated Aβ production
[53–55]. These early alterations presumably parallel the
understudied early stages of disease progression that
occur in vivo. 3D cultures derived from the same sources
allow for the age-dependent accumulation of Aβ and tau

aggregates on a timescale of months [56, 57]. While still
far short of the timeline for development of pathology in
the human brain, such cultures can be maintained for
years in vitro if desired, in line with the lifespans of
laboratory mouse strains [58, 59]. Importantly, unlike
most other AD model systems, such cultures do not
require exogenous overexpression of mutant proteins for
the development of disease-relevant pathologies. Thus,
while iPSC models are far from perfect, they provide a
number of advantages over other systems that are likely
to facilitate novel insights into AD pathomechanisms.

Initially, iPSC lines derived from healthy individuals and
from patients exhibiting a given disease were isolated, dif-
ferentiated into the cell type(s) of interest, and compared. A
plethora of iPSC lines have been generated from early and
late-onset AD patients—as well as healthy age- and sex-
matched individual—and numerous repositories have been
established around the world to make such lines available to
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Vascular endothelial cells

3D in vitro human brain model
with functional blood-brain barrier

iPSCs

TCW et al., 2017
Zhao et al., 2017
Shaltouki et al., 2013

Abud et al., 2017
Muffat et al., 2016
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Zhang et al., 2013
Begum et al., 2015
Bardy et al., 2015

Ehrlich et al., 2017
Wang et al., 2017
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Fig. 2 Human iPSC differentiation to brain cell types. Somatic cells
from patients or healthy individuals can be reprogrammed to iPSCs
and subsequently differentiated into all major brain cell types for
in vitro studies. Such studies can examine cellular functions as well as
how they are impacted by AD hallmark pathologies or AD-linked
mutations. Genome editing techniques can be used to introduce or
correct AD-linked mutations to examine phenotypes in isogenic

backgrounds. 3D and co-culture models allow for examination of
interactions occurring between cell types and sub-types to better model
processes occurring in vivo. These and developing techniques hold
promise for better understanding the relevant pathomechanisms
underlying AD, and will hopefully facilitate development of effective
therapeutics to combat dementia
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researchers. Comparing cells derived from healthy vs. dis-
eased individuals can identify cellular phenotypes asso-
ciated with a disease state that may transcend individual
genetic differences. Indeed, as GWAS have shown, many
different genetic alterations can contribute to the develop-
ment of AD, so in some cases shared cellular phenotypes
can unify disparate genetic changes [8]. Generating iPSC-
derived brain cells from a specific individual also has
potential applications for personalized medicine and could
eventually allow for identification and treatment of patient-
specific alterations underlying disease [60, 61].

Genetic diversity, however, can also be a major hin-
derance to experimental analysis. When trying to
understand the function of a specific gene or mutation for
instance, additional genetic differences may mask or
exacerbate a phenotype. Thus, tools for manipulating
gene expression and generating mutations in iPSCs and
their derivatives have been critical developments in the
field, allowing for introduction or correction of specific
mutations without altering the remaining genetic back-
ground. The CRISPR/Cas9 system has been revolu-
tionary in this regard, allowing for targeted mutagenesis
and base pair resolution editing of eukaryotic genomes
[62–64]. While care needs to be taken to rule out off
target mutations generated by CRIPSR/Cas9 mutagen-
esis, this technique allows for examination of the effects
of targeted mutations in an otherwise identical (isogenic)
genetic background. Genome editing can be used to
introduce disease-associated mutations into iPSC lines
from healthy individuals, or to correct mutations in cell
lines from diseased patients. The nuclease-dead Cas9
(dCas9) system further allows for targeted repression or
activation of gene expression in a temporally controlled
and reversible manner without the need of gene editing
[65, 66]. Complementing examinations of patient-
derived iPSC lines, these techniques have begun to
yield novel findings about the pathological mechanisms
underlying AD, and promise to push forward research in
the field of neurodegeneration and beyond.

Human neural progenitor cell and neuron
models

As non-dividing cells, neurons face considerable challenges
in maintaining their health and proper function over a
lifetime that can span many decades. Indeed, the numerous
neurodegenerative diseases that afflict humanity attest to
these challenges and speak to the importance of better
understanding both the changes that occur during aging, as
well as the mechanisms that normally help to ensure neuron
health and survival. iPSCs can be differentiated into NPCs,
which can subsequently be patterned to different neuronal

lineages [67–69]. Both passive and directed differentiation
protocols having been developed for numerous different
neuron subtypes, including glutamatergic, GABAergic,
cholinergic and dopaminergic neurons, though existing
protocols are biased strongly towards excitatory neurons
[53, 68–75]. Early studies served primarily to validate the
iPSC-derived models themselves and to test whether these
models recapitulated findings from the large body of AD
literature based on human post-mortem brain samples,
rodent and other studies (Table 2 highlights select studies of
AD using iPSC-derived cells). Consistently, human neuro-
nal function and survival are compromised by treatment
with exogenous Aβ [76–82]. Similarly, NPCs and neurons
derived from SAD and FAD patients exhibit elevated Aβ42
production and/or Aβ42/Aβ40 ratio as well as increased tau
phosphorylation [38, 53–55, 83–93]. Studies using iPSC-
derived neurons also suggest neuron sub-type differences in
Aβ secretion and susceptibility to Aβ-induced toxicity that
vary between glutamatergic and GABAergic neurons, as
well as between glutamatergic neurons expressing markers
of different brain regions [79, 83, 94].

Numerous studies have focused on characterizing addi-
tional effects of FAD-linked mutations on induced neurons.
Glutamatergic neurons expressing mutated APPV717I were
used to demonstrate that this amino acid substitution alters
APP subcellular distribution and cleavage by both β- and γ-
secretases, underlying the perturbed Aβ production and
elevated tau phosphorylation observed in these cells [92]. In
contrast, β-secretase-mediated cleavage of APP, and Aβ
production, were reduced by the protective APPA673T

mutation [95]. Neurons carrying APP duplications exhibited
more and larger early endosomes, while those harboring the
APPV717I or APPK670N/M671L mutations exhibited reduced
mitophagy and defects in low density lipoprotein endocy-
tosis, indicative of functional impairment in cellular uptake,
trafficking and degradation pathways [89, 90, 96]. APPE693Δ

neurons further exhibit endoplasmic reticulum and oxida-
tive stress [78]. iPSC lines from Down’s syndrome (DS)
patients have also been studied as a model of AD. DS
patients develop early onset AD, thought to result from
triplication of the APP gene as part of trisomy 21 [97]. DS
iPSC-derived neurons show elevations in Aβ secretion and
phosphorylated tau similar to that caused by FAD-linked
mutations [98–101]. Intriguingly, deletion of the super-
numerary copy of APP from DS cells was able to restore Aβ
production to control levels and correct many of the gene
expression alterations caused by trisomy 21, but was
not able to restore altered tau phosphorylation, indicating
Aβ-dependent and independent phenotypes in DS [101].

AD-linked mutations in PSEN1 and PSEN2 have also
been modeled in iPSC-derived glutamatergic neurons,
revealing a wide range of phenotypes. Isogenic PSEN1ΔE9

and PSEN1null iPSC-derived neurons were used to test
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whether this AD-linked PSEN1 mutation acts via loss- or
gain-of-function, demonstrating in fact, a gain of γ-secretase
function without loss of other functions [90]. iPSC-derived
neurons carrying PSEN1A246E, PSEN1V89L, and PSEN1L150P

mutations, like neurons derived from SAD-patient cells,
were also more sensitive to Aβ-induced toxicity and oxi-
dative stress than cells from healthy individuals [54, 102].
Furthermore, multiple defects in cellular trafficking and
degradation pathways have been documented in AD
patients and animal models [103–105]. Consistently,
fibroblasts and iPSC-derived neurons from multiple
PSEN1-mutation carriers show defects in autophagic, ubi-
quitin proteasome and endo-lysosomal degradation path-
ways, as well as in mitophagy [55, 87, 106, 107].
Potentially arising from defective mitophagy, mitochondrial
dysfunction, elevated oxidative stress and oxidative damage
have also been described in PSEN1P117L- and PSEN1A246E-
carrying human cells [107, 108]. Elevated apoptotic cell
death and DNA damage response pathway activation was
additionally observed in neurons carrying AD-linked
PSEN1 mutations [55, 84]. Furthermore, NPCs carrying
PSEN1S169del and PSEN1A246E mutations exhibited accel-
erated differentiation into glutamatergic neurons, though it
remains unknown whether this affects the functional prop-
erties of mature neurons [84]. Interestingly, iPSC-derived
cholinergic neurons carrying the PSEN2N141I mutation
exhibited reduced excitability and impaired insulin-induced
Ca2+ influx compared to isogenic controls, suggesting a
functional defect consistent with that found in AD patients
[53, 85, 109].

Patient-derived SAD cells often exhibit many of the same
phenotypes as cells bearing FAD mutations when differentiated
into neurons. In addition to elevated Aβ levels and tau phos-
phorylation, iPSC-derived neurons from SAD patients can
exhibit enlarged endosomes, mitochondrial dysfunction, acti-
vation of ER, and oxidative stress pathways, elevated DNA
damage as well as increased sensitivity to Aβ toxicity and
oxidative stress [54, 78, 89, 110, 111]. Altered gene expression,
early neuronal differentiation and maturation, as well as per-
turbed activity of the transcription factor REST have also been
observed [112]. Importantly, these phenotypes are not observed
in cells derived from all SAD patients, reinforcing the genetic
heterogeneity of SAD [78, 89, 102, 110, 111, 113].

In some cases, the effects of SAD risk genes have also
been modeled. The first identified SAD risk factor, APOE4
has been the most studied risk mutation in iPSC-derived
cells, as it has been in rodent and other models. iPSC-
derived neurons carrying APOE4 produce more Aβ and
have higher levels of tau phosphorylation compared to
APOE3 cells [35, 38, 39, 110, 114]. Surprisingly, elevated
p-tau levels were not dependent on Aβ in APOE4 cells,
indicating perturbation of additional pathways regulating
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abnormalities, defects in autophagy and mitophagy, and
widespread gene expression alterations in neurons
[38, 96, 106, 112]. Interestingly, synaptic structure and
function were also altered by the presence of APOE4, with
glutamatergic neurons exhibiting more synaptic sites and
increased frequency of spontaneous miniature synaptic
transmission compared to isogenic APOE3 controls [38].
APOE4 GABAergic interneurons experienced degeneration
in culture (though glutamatergic and dopaminergic neurons
did not), while cholinergic neurons exhibited elevated
sensitivity and altered Ca2+ signaling in response to gluta-
mate toxicity [39, 110]. Intriguingly, iPSC-derived excita-
tory neurons lacking the SAD risk factor CLU were less
sensitive to Aβ-induced toxicity, consistent with CLU single
nucleotide polymorphisms being associated with reduced
AD risk [31, 115]. Sullivan and colleagues took a broader
approach, performing a shRNA knockdown screen of more
than 50 AD candidate genes in iPSC-derived neurons,
examining effects on Aβ secretion and tau phosphorylation
[116]. Identifying the SAD risk factor FERMT2 as a
modifier of both cellular phenotypes, the authors targeted
FERMT2 with CRISPR/Cas9 mutagenesis, confirming that
reducing its levels in neurons can decrease Aβ secretion and
tau phosphorylation [116]. Future studies using iPSC-
derived neurons will examine phenotypes associated with
additional AD-risk genes, and promise to identify
mechanisms underlying their roles in AD risk.

Astrocytes

The most abundant cell type in the human brain, astrocytes,
provide physical, energetic, metabolic, and trophic support to
neurons and other brain cells [117, 118]. They play important
roles in vasomodulation, inflammation and wound healing.
Astrocytes also interact closely with neurons and their synap-
ses; astrocytic calcium signalling is regulated by various neu-
rotransmitters and calcium waves can propagate over
considerable distances via gap junctions. Astrocytes can reg-
ulate neuronal excitability and synaptic transmission via mod-
ulation of ion concentrations and by regulating the uptake and
recycling of neurotransmitters such as glutamate and GABA
[119, 120]. In a neurodegenerative milieu, astrocytes can pro-
liferate and enter a reactive state that is potentially toxic to
neurons [121]. Further, astrocytes are a major source of cho-
lesterol and other lipids that are critical for many cellular
functions, as well as lipoproteins such as APOE, which are
thought to be important regulators of brain Aβ clearance and
degradation [122].

Multiple different protocols for differentiation of iPSCs
into astrocytes have been developed [123–127]. Astrocytes
generated from patients carrying both FAD-linked
PSEN1M146L and SAD-linked APOE4 mutations exhibited

reduced morphological complexity and altered localization
of marker proteins, indicating similar effects of FAD and
SAD mutations [126]. PSEN1ΔE9 astrocytes showed ele-
vated release and reduced uptake of Aβ42, altered Ca2+

homeostasis, increased reactive oxygen species production,
altered cytokine release and impaired fatty acid oxidation
[128, 129]. iPSC-derived astrocytes have also been shown
to promote the survival, maturation and function of co-
cultured human neurons, effects that can be impaired by
PSEN1ΔE9 and APOE4 mutations [128, 130, 131]. Further,
compared to isogenic APOE3 astrocytes, APOE4 cells
showed extensive gene expression alterations, cholesterol
accumulation, and reduced ability to internalize Aβ42 [38].
APOE4 astrocytes were also found to express and secrete
lower levels of APOE protein, which additionally exhibited
reduced lipidation, confirming earlier findings from mouse
studies [38, 131]. While additional FAD and SAD-linked
mutations remain to be examined, these findings indicate
considerable overlap in the effects of PSEN1 and APOE
mutations on human astrocyte function.

Microglia

Microglia are the resident innate immune cells of the brain.
They play numerous support roles in the developing, adult
and aging brain, ranging from synaptic pruning, to clear-
ance of dying cells and other debris, to the regulation of
neuroinflammation [132]. Their involvement in neurode-
generative processes has long been appreciated, but until
recently microglia were generally thought to respond to
disease-associated pathologies rather than to play a causa-
tive role [133]. Improved sequencing technologies in the
past 10 years have allowed GWAS to identify a surprising
number of microglial genes as risk factors for late onset AD,
including TREM2, CD33, HLA-DRB1, INPP5D, MS4A6A,
CASS4, and SPI1 [29–32]. These findings clearly implicate
microglial dysfunction as a driver of neurodegeneration
under certain circumstances.

Protocols for the differentiation of iPSCs into microglia
have only recently become available, and will undoubtedly be
utilized more heavily to examine the effects of AD-linked
mutations in the coming years [134–140]. Induced microglia
derived from healthy patients are capable of synaptic pruning,
phagocytosis and Aβ uptake, they secrete diverse cytokines and
exhibit altered gene expression in response to treatment with
exogenous Aβ [134, 135]. Microglia induced from SAD-
patient iPSCs were found to have altered phagocytosis and
elevated release of certain cytokines following treatment with
lipopolysaccharide [139]. Lin et al. compared APOE4 micro-
glia to isogenic APOE3 controls, finding extensive gene
expression alterations suggestive of a pro-inflammatory phe-
notype, reduced morphological complexity, as well as an
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impaired ability to internalize Aβ from culture media and to
clear Aβ aggregates from 3D cerebral organoids [38]. Recent
studies have also examined microglia derived from patients
carrying non-AD-linked TREM2W50C and TREM2T66M muta-
tions, finding reduced viability under stress conditions and
impaired phagocytosis of certain substrates [138, 141]. AD-
linked TREM2 mutations, as well as those of other FAD and
SAD-linked genes, await examination in iPSC-derived micro-
glia. The findings of such studies could be of particular interest
given the significant differences in sequence similarity, and
potentially protein function, between the human and mouse
orthologues of many microglial disease genes.

Oligodendrocytes

The primary role of oligodendrocytes is generation of the
myelin sheath that wraps the axons of many nerve cells,
together forming the white matter of the central nervous
system [12, 142]. The myelin sheath, composed pri-
marily of lipids, electrically insulates axons to prevent
ion leak and promote rapid propagation of electrical
signals over distance. This insulator property contributes
to fast excitatory and inhibitory synaptic transmission
that underlies cognitive function and coordinated
movement. Additionally, oligodendrocytes provide
trophic support to neurons, can mediate inflammation
and contribute to the regulation of metabolic waste in the
brain [12, 142]. AD patients and mouse models exhibit
loss of white matter and oligodendrocyte dysfunction
early in disease progression, likely contributing to neu-
ronal dysfunction and degeneration [143, 144]. Con-
sistently, multiple AD risk genes play important
functions in oligodendrocyte biology. Protocols for dif-
ferentiation and induction of oligodendrocytes from
iPSCs exist, and induction of oligodendrocytes and
myelination in 3D organoid models has also recently
been reported [136, 145–150]. However, these human
systems have not yet been utilized to examine the effects
of AD-related pathologies on myelination and oligo-
dendrocyte function.

The blood–brain barrier

The human brain is a highly vascularized and energetically
demanding organ, containing more than 600 km of blood
vessels that supply oxygen, glucose, and nutrients to sup-
port brain functions, while facilitating removal of carbon
dioxide and other metabolic wastes [151]. At the same time,
the cerebrospinal fluid (CSF) that bathes the brain has a
distinct chemical composition essential for proper neuronal
function, and molecules, cells and pathogens carried by the

blood can cause brain inflammation and toxicity [19]. Thus,
systemic blood is separated from the brain and CSF by the
BBB, a specialized structure formed of VECs, pericytes and
astrocyte end-feet; this barrier restricts transit of many
molecules between the two compartments [19]. BBB dys-
function and breakdown are observed in AD and multiple
other neurodegenerative diseases, exacerbating not only
brain inflammatory responses, but also impairing blood
flow, the delivery of oxygen, glucose and nutrients, as well
as the clearance of Aβ and other neurotoxic substances from
the brain [152]. Further, the BBB can act as an impediment
to the transit of many therapeutics into the brain, so the
development of models to test the passage of potential
treatments preclinically is of interest [152].

While BBB dysfunction is involved in AD pathophy-
siology, the exact mechanisms by which it occurs, as well as
the potential roles of AD-linked mutations, remain largely
unknown. In vitro BBB models have been established using
rodent and human primary cells, and in recent years have
begun to incorporate human iPSC-derived cells [153, 154].
iPSC-derived brain endothelial cells have been used either
alone, in combination with iPSC-derived neural cells and
astrocytes, or together with rodent primary pericytes and
astrocytes for such models [155–159]. However, while
pericyte differentiation protocols exist, no BBB model
incorporating all of iPSC-derived endothelial cells, peri-
cytes and astrocytes has yet been reported [160, 161]. The
development of a functional BBB model will be of interest
not only for screening potential therapeutics to better predict
their entry into to the brain, but also to understand whether
mutations linked to neurodegenerative disease predispose to
BBB dysfunction.

Co-culture, 3D culture, and in vivo systems

It has become increasingly clear in recent years that mul-
tiple different brain cell types can contribute to AD pro-
gression [8]. Thus, examining their interactions and impacts
on each other is of critical importance; indeed, the ability to
do this may be the single greatest strength of AD animal
models, and the greatest weakness of in vitro systems. As
such, considerable efforts have been made to build models
incorporating multiple iPSC-derived brain cell types. In
addition, 3D neuronal models, either alone or together with
other brain cell types, have allowed for a more faithful
recapitulation of Aβ plaques and NFTs, AD hallmark
pathologies that are rarely observed in 2D cultures
[56, 57, 162]. Together, these advances are allowing the
field to more and more accurately model AD using human
cells in vitro.

3D tissue culture has a long history, but a landmark for
studies of the nervous system was the first description of

Modeling Alzheimer’s disease with iPSC-derived brain cells 157



“cerebral organoids” derived from human iPSCs in 2013
[163, 164]. This approach utilizes the self-organizing
properties of iPSCs and their progenitors after embedding
in Matrigel, a complex mixture of extracellular matrix and
other secreted proteins. The resulting organoids can exhibit
regionalization and organized expression of layer- and brain
region-specific markers [163]. Organoids grown from
iPSCs derived from SAD, FAD or DS patients exhibit
elevated Aβ production, the formation of Aβ aggregates,
increased tau phosphorylation and altered early endosome
markers [57, 165]. Similar 3D culture models—made from
NPCs overexpressing FAD proteins with AD-linked muta-
tions—demonstrate bonafide Aβ plaques and NFTs, and
demonstrate in human cells that Aβ pathology can drive tau
phosphorylation and aggregation [56]. Neurospheroids,
made either from NPCs overexpressing mutant FAD pro-
teins, or iPSCs derived from SAD patients, can also reca-
pitulate AD phenotypes and exhibit similar proteomic
changes to AD patients [166, 167].

Such neuron-based 3D culture models often also develop
astrocytes during the course of development, though they
exhibit a paucity of other brain cell types [38, 58, 168, 169].
To study both neuron and astrocyte function, organoids
derived from isogenic APOE3 and APOE4 iPSCs were
compared; age- and APOE4-dependent elevations of Aβ
and phosphorylated tau were found to corresponded tem-
porally to the appearance of astrocytes, thus indicating the
critical importance of APOE to astrocytic function [38]. The
same study further incorporated iPSC-derived APOE3 and
APOE4 microglia into organoids derived from FAD patient
cells to monitor microglial effects on amyloid pathology,
finding that after 30 days of co-culture organoids with
APOE3 microglia exhibited fewer Aβ puncta than those
containing APOE4 microglia [38].

A human triculture model incorporating NPC-derived
neurons and astrocytes, together with immortalized human
microglia, has also been developed to study how interac-
tions between these three cell types affect hallmark AD
pathologies and neuroinflammation [170]. Similarly, a
recent study reported an organoid model that exhibits
spontaneous development of microglial cells [171]. Addi-
tional recent studies demonstrate methods to induce oligo-
dendrocytes and myelination in organoid systems
[148, 149]. Another intriguing development involves the
fusion of organoids initially directed toward excitatory or
inhibitory neuronal fates to model the developmental
migration of inhibitory neurons and functional integration
of these two key neuronal sub-types [172–174]. 3D co-
culture models such as these provide an opportunity to
examine the effects of AD-linked mutations present in one
cell type or sub-type on phenotypes of other brain cells, as
well as potential interactions that may occur between dif-
ferent AD-linked mutations. Ultimately such models could

incorporate multiple different neuronal sub-types, together
with oligodendrocytes, astrocytes and microglia, as well
BBB components and vasculature to create a simplified
“brain in a dish”.

An additional strategy to examine iPSC-derived brain
cell phenotypes and cell-cell interactions is their incor-
poration into the nervous systems of living rodents. In order
to avoid immunogenic rejection of the graft, host strains
must lack an adaptive immune system, as in the case of the
SCID and Rag2−/− mouse strains [175, 176]. Xenografting
of iPSCs—transplanting human iPSCs into mice—has been
performed for iPSC-derived neurons and microglia
[135, 177, 178], as well as for whole 3D organoids that
exhibited functional integration with in vivo neural circuits
and vasculature [179]. Such iPSC “xenocultures” open a
new window to study in vivo cell type specific interactions
using human cells during aging and neurodegeneration.

Challenges and future directions

The development of iPSC technologies provides the
attractive possibility of using differentiated human cells as
platforms for drug and mutagenesis screening, reviewed by
Elitt and colleagues [180]. Multiple small-scale compound
screens using differentiated neuronal subtypes have already
targeted disease-related pathways in AD [39, 181–184],
Parkinson’s Disease [185], Huntington’s Disease [186], and
frontotemporal dementia [187]. A recent effort screened
over 1600 compounds for reductions of tau phosphorylation
in FAD neurons, identifying numerous hits and ultimately
moving forward our understanding of the biology under-
lying p-tau accumulation [188]. shRNA screening has also
been used to test the effects of knocking down more than 50
different AD candidate genes on Aβ and p-tau levels in
iPSC-derived neurons [116]. Thus far such screens have
targeted primarily neuronal cells, however, human glial
cells will also be utilized as screening platforms going
forward. Refining high-yield 3D culture techniques to
facilitate screening of multiple co-cultured brain cell types
holds strong potential to become the gold-standard for
future central nervous system drug development. Proof-of-
principle has already been demonstrated in a landmark
paper that recapitulated the pathology of Zika virus infec-
tion in 3D organoids, including a small-scale screen to
alleviate its symptoms [189].

Human stem cell technologies also raise intriguing pos-
sibilities for regenerative and personalized medicines, topics
that have been reviewed elsewhere [60, 61, 190, 191]. A
serious safety concern for regenerative medicine, however,
is genomic instability exhibited by iPSCs, which can also be
an issue for experimental studies using these cells [192–
197]. Uncertainty remains about whether iPSCs are actually
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intrinsically more unstable than other cultured cells, but
regardless, care should be taken to limit passage numbers
and regularly check iPSC lines used for research for the
presence of genomic alterations [198]. While genomic
alterations in iPSCs have been reduced by replacing retro-
viral expression of somatic cell-to-iPSC reprogramming
factors with integration-free delivery systems, additional
avenues to reduce genomic instability remain a topic of
active research [192, 193, 199].

Continuing to improve iPSC differentiation protocols,
expanding the repertoire of brain cell sub-types that can be
generated, as well as developing more complex 3D co-
culture systems to model brain development and disease
remain major goals of iPSC researchers. These efforts strive
to improve the ease and speed of differentiation protocols,
but importantly also the quality, purity and maturity of
differentiated cells. Most iPSC differentiation protocols
generate heterogeneous populations of the target cell type
and various precursors, either necessitating analysis of
impure cultures or use of additional methods to purify cell
samples such as fluorescence activated cell sorting. This can
be particularly problematic for neuron sub-types as even
partially mature neurons are extremely sensitive to dis-
sociation and sorting methods. Transcription factor-induced
differentiation protocols hold promise to improve both the
speed and conversion rate of iPSC-derived cells and have
emerged for a number of brain cell types
[71, 74, 75, 145, 200].

As a new and still developing field, improving the con-
sistency and reproducibility of iPSC-derived cell types also
remain major challenges. A wide range of protocols for
differentiation to brain cell types are in use by different
laboratories around the world, and even within a given
laboratory. Indeed, even using the same differentiation
protocol, considerable variability in cellular morphology
and gene expression signature can occur between sites
[201], with clear potential to affect experimental findings.
Furthermore, variability between different clones derived
from the same parental iPSC line have also been reported
[202]. As such, better standardization of differentiation
techniques and growth conditions, more thorough reporting
of methodologies and adoption of stringent statistical ana-
lyses should help to minimize such variability. To this end,
minimal standards for quality control have been suggested,
in particular for large repositories of iPSC lines, in order to
reduce experimental variability [203, 204]. Such measures
include regular testing for donor identity and genetic
integrity, testing for microbial contaminations and a stan-
dardized nomenclature for genetic modification of
iPSC lines.

The ability to generate mature iPSC-derived brain cells
that properly mimic their in vivo counterparts is another
significant challenge. The various cell types of the brain

grow and mature together, often relying on signals from
other cell types to help shape their identity. Indeed, sig-
nificant differences in the transcriptomes of human and
mouse glial cells arise following purification from the brain
and culture in vitro [205–208]. Consistently, iPSC-derived
brain cells and 3D cultures often exhibit similarity to
immature cells from the human nervous system [58, 209]. A
better understanding of the identity and timing of key sig-
nals will enable researchers to better recapitulate the brain
milieu in monocultures in vitro. Further, co-cultures incor-
porating multiple brain cell types, as well as utilization of
extended culture times, will help to facilitate the maturation
of each cell type so they more closely resemble their
counterparts in the adult human brain [58].

3D co-culture systems will be increasingly important
iPSC-derived models for neurodegeneration research. In
addition to aiding the maturation of brain cell types, these
systems promote development of AD hallmark pathologies
that are generally not found in 2D cultures [56]. They fur-
ther provide a platform to better understand the complex
interactions and interrelated functions of brain cell types
that have been both difficult to model in vitro and difficult
to disentangle in vivo. The ability to introduce a specific
brain cell type, carrying a mutation of interest, into an
otherwise functioning co-culture system provides a power-
ful tool to isolate cell type- and mutation-specific effects
that could be masked otherwise. Indeed, even an analysis of
cell-type specific transcriptomic alterations in the presence
of an AD-linked mutation in one cell type could be highly
informative. Importantly, such a system would also allow
for examination of potentially synergistic interactions
between different AD risk mutations, an area that remains
very poorly studied, but that is likely an important factor in
the development of SAD in human patients.

Despite their obvious utility, iPSC-derived 3D co-culture
systems remain very much works in progress. An ideal
system would include multiple neuronal sub-types, each
type of glial cell as well as BBB components, however, in
practice reduced systems modelling only some aspects of
brain function are likely to be more tractable in many cases.
Regardless, continued improvement of brain cell-type
differentiation protocols, definition of optimal media
and conditions for co-culture experiments as well as iden-
tification of better substrates and scaffolding matrices for
3D brain cultures all hold promise for improving these
models. The introduction of vasculature, either by self-
organizing properties of BBB cells, or by other means, is
also of great interest. Organoids often exhibit some degree
of cell death and dysfunction in their deeper layers; a
functional vasculature to facilitate nutrient, oxygen and
waste exchange would likely improve the health of cells in
3D culture. The use of miniature spinning “bioreactors” to
provide constant movement of culture media can also
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circumvent some of these issues and improve the homo-
geneity of organoid cultures [210, 211].

The ability of iPSC-based models to mimic diseases of
aging such as AD has also been questioned, in part due to the
loss of age- and environment-dependent cellular and epigenetic
signatures that occurs during iPSC reprogramming [212–215].
Such epigenetic de-differentiation is undesirable when
attempting to recapitulate disease-related phenotypes in vitro
and also limits the application of iPSCs to personalized med-
icine. One way to overcome this loss of aging signatures is to
bypass the iPSC stage with direct reprogramming, whereby
fibroblasts and certain other somatic cells can be differentiated
directly into neurons or other cell types to study neurodegen-
erative disease [216–222]. Directly reprogrammed cells retain
many age-related cellular and transcriptomic alterations, and in
at least some cases are better able to model age-related disease
than iPSC-derived neurons [223]. Thus far methods for direct
differentiation of neurons, neural precursor cells, astrocytes and
oligodendrocytes have been described [217, 218, 221, 222].
Direct reprogramming also has limitations, in particular a
relatively poor reprogramming efficiency and low yield of
reprogrammed cells [224], however, continued refinement of
direct induction methods should allow access to additional
brain cell types and better facilitate the study of brain cells with
intact aging signatures.

A final frontier of in vitro brain modeling is the gen-
eration of coordinated neuronal activity. While iPSC-
derived neurons and 3D models exhibit synaptic activity,
and connectivity between inhibitory and excitatory neurons
has been reported, they do not possess coordinated circuit
functions [172–174]. AD patients and rodent models
demonstrate widespread defects in circuit properties invol-
ving multiple neuronal subtypes [9]. Indeed, recent work
demonstrates the potential for therapeutic benefit that can be
derived by modulating higher order brain rhythms, con-
trolled by GABAergic interneurons, in AD mouse models
[225]. Examination of such circuit-based mechanisms in
human iPSC-derived systems would be of great interest, but
will require continued efforts to optimise differentiation
protocols to generate neuronal sub-types, improve available
tools to modulate and monitor neuronal cells in culture, as
well as to devise strategies to integrate different neuronal
sub-types together to form functional circuits.

Conclusions

In little more than a decade since the advent of human iPSC
technologies we have developed the ability to generate all of
the main brain cell types from pluripotent cells. Increasingly
complex 3D co-culture systems are also emerging that allow
us to reconstitute many of the key interactions between brain
cells. These technologies have already contributed greatly to

our understanding of human development and human disease,
including neurodegenerative disorders such as AD. As these
techniques continue to be refined to better mimic in vivo
conditions, our ability to model AD using human cells will
improve. The functions of SAD risk genes in iPSC-derived
brain cell types remains almost completely unexplored, and
even the effects of FAD-linked mutations outside of neurons
are mostly uncertain. Further, our understanding of how such
mutations, either alone or in in combination, affect the
interactions between the different cell types of the brain is in
its infancy. iPSC-derived brain cell types hold considerable
promise for allowing us to answer these questions, and ulti-
mately to identify and implement effective treatments for AD.
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