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Abstract
Ising machines based on analog systems have the potential to accelerate the solution of ubiquitous combinatorial
optimization problems. Although some artificial spins to support large-scale Ising machines have been reported, e.g.,
superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin stability is
fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short
microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement a large-scale Ising
machine with high stability. The proposed machine supports 25,600 spins and can operate continuously and stably for
hours. Moreover, the proposed Ising machine is highly compatible with high-speed electronic devices for
programmability, paving a low-cost, accurate, and easy-to-implement way toward solving real-world optimization
problems.

Introduction
Combinatorial optimization problems can be found

everywhere in modern society, such as drug discovery1,2,
finance3, traffic flow optimization4, and machine learn-
ing5. Many combinatorial optimization problems are
classified as the non-deterministic polynomial-time (NP)-
hard or NP-complete complexity classes; these are diffi-
cult to be solved on standard digital computers because
the number of combinations grows exponentially or fac-
torially as the problem size N increases. Although some
software algorithms, such as simulated annealing and
other approximate algorithms6–9, have been developed to
accelerate the computation, using a Von Neumann
architecture to solve these problems remains time-
consuming due to the step-by-step computation mode
and limited operating frequency10. Interestingly, the
solution to these problems can be effectively accelerated

by mapping them onto an analog Ising machine. The
Hamiltonian of an N-spin Ising machine without an

external field is given by H ¼ �P1�i<j�N Ji;jσ iσ j, where Ji,j

is the spin interaction between the i-th and j-th spins, and
σi and σj respectively denote the z projection of the spins
with eigenvalues of either 1 or −1. Finding the optimal
answer is equivalent to searching the ground state of an
Ising machine11, and computational acceleration is
achieved by utilizing the intrinsic convergence property of
the system, as convergence to the ground state often
occurs at high speed.
Large-scale, stable, and programable Ising machines are

highly desired to solve real-world optimization problems1–5.
Many Ising machines, e.g., those based on trapped ions12,13,
superconducting circuits14–17, molecules18,19, optical20–33,
optoelectronic34, and electrical systems35–38, have been
reported. The optimization principle of most types of these
Ising machines is based on the idea of minimum power
dissipation39. Among them, coherent Ising machines
(CIMs) using degenerate optical parametric oscillators
(DOPOs) have drawn a substantial amount of attention due
to their attractive advantages, such as large scale22,23 and
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flexible connectivity24,30,33. It has also been reported that
DOPO-based Ising machines are superior to quantum
annealers32 and digital computers24,33 in some specific
optimization problems. However, as the artificial spins are
represented by the phases of the short optical pulses and
stored in a long fiber cavity, the stability is weak because the
optical phase is very sensitive to the cavity delay variation24.
According to Δφ ¼ 2πfoΔt, where Δφ is the phase change
of the optical pulse, fo is the optical frequency (around
200 THz), and Δt is the time jitter, a few femtoseconds of
jitter would reverse the spin sign, causing the Hamiltonian
to evolve away from the expectation.
Here, we propose a large-scale, stable Ising machine

based on an optoelectronic parametric oscillator
(OEPO)40. In the proposed CIM, the artificial Ising spins
are represented by the phases of the short microwave
pulses generated in an optoelectronic cavity. The number
of generated spins is as large as 25,600, and the machine
stably operates over 12 h. One-dimensional (1D) and two-
dimensional (2D) Ising model simulations were con-
ducted on the proposed CIM, and the experimental
results suggest the machine has promising potential in
finding the low-energy state. In addition, the machine was
used to solve max-cut problems, which are well-known
NP-hard problems, and a high success rate of finding the
maximum cut was achieved.

Results
Principle and experimental setup
Figure 1 presents the experimental setup and operation

principle of the OEPO-based Ising machine. The OEPO was
used to generate continuous wideband or single-frequency
microwave signals with uncertain frequency and phase40. In
the proposed machine, the oscillations in the OEPO cavity
are discrete pulses with half the frequency of a local oscil-
lation and locked with a relative 0 or π phase via an electric
mixer (see section 1 in Supplementary Materials). The
function of the electric mixer is similar to that of the non-
linear crystal in the DOPO. The binary-phase oscillation can
then be used to simulate an artificial Ising spin, e.g., the 0-
phase/π-phase state represents up/down spin.
With the help of time-division multiplexing, large-scale,

discrete microwave pulse oscillations can be obtained in a
single long fiber cavity. In such an oscillation network, the
spin-spin interaction can be implemented by delay lines21,22

or a measurement-feedback circuit24,30,33. The delay-line
scheme, implemented by a wavelength-division multi-
plexing (WDM) system and tunable optical delay lines
(ODLs), is adopted in our demonstration. The oscillating
microwave signal is distributed to different optical channels
using the WDM as a beam splitter. Each channel propa-
gates through a specific delay line (with an n-bit delay).
These channels are combined using another WDM as a
beam adder and launched into the photodetector (PD);

thus, the i-th spin and the (i+ n)-th spin interact. In this
scheme, the coupling strength is controlled by the corre-
sponding channel’s laser power, and the coupling sign can
be reversed by tuning the optical delay line.
A specific spin-spin interaction, defined by matrix J, would

change the global loss of the OEPO network and result in
the corresponding phase configuration (see section 1 in
Supplementary Materials). Phase configuration with mini-
mum loss has the maximum possibility to be selected and
oscillate stably20. The OEPO network can operate around
the minimum-loss state and outputs the corresponding
microwave signal whose phase configuration corresponds to
the optimal solution of the given Ising problem.

Generation of large-scale, stable artificial spins
The large scale and high stability of the proposed system

were verified in a non-interaction (J is a unit matrix)
artificial spin network. The results are exhibited in Fig. 2.
The oscillation frequency of the microwave pulse centers
at 10 GHz, and the wavelength is about 2 cm in the optical
fiber with a refractive index of 1.47. The microwave pulse
repetition period/rate is 4 ns/250MHz; thus, 25,600 spins
are obtained in a 20-km fiber. Because the ratio between
the cavity length and the oscillation wavelength is dra-
matically decreased from 109 to 106, the artificial spins in
the OEPO are much less sensitive to temperature fluc-
tuation and ambient vibration, yielding much higher sta-
bility compared to the DOPO counterpart.
The oscillating amplitude as a function of the cavity

small-signal gain is presented in Fig. 2a. When the cavity
small-signal gain is below the OEPO threshold, the
oscillator is in the noise state; when the gain is near the
threshold, the curve exhibits a sharp shape. As the gain
continuously increases, the amplitude increases slowly.
Another external microwave source (LO2), which is syn-
chronized to LO1 and has the same frequency as the
oscillating signal, is used to demodulate the short
microwave pulses to extract the microwave spin phase
(see section 2 in Supplementary Materials).
Two oscillating microwave pulses with relative 0 and π

phases, along with their demodulated baseband pulses, are
shown in Fig. 2b. The histogram of the peak values pre-
sented in Fig. 2c indicates clear 0/π-phase oscillation.
Because oscillation begins from shot noise and thermal
noise, each microwave pulse is independent, and the
global phase configuration would be random if no inter-
action is implemented. One hundred tests were per-
formed, and the ratios between the positive and negative
peaks ranged from 0.97 to 1.03, suggesting the equal
probability of 0-phase and π-phase oscillations.
Millions of demodulated pulse peaks were recorded, and

the autocorrelation was calculated. The periodic peaks were
repeated at a delay of 25,600 pulses, suggesting that
25,600 spins were generated in the optoelectronic cavity. The
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stable delta sequence suggests that the microwave pulses
maintained their amplitude and phase after each roundtrip.

Simulations of the Ising model
To implement a 1D Ising simulation, a second channel

with an additional 1-bit delay was used to interact with
the neighboring spins. The formed 1D Ising model was a
closed loop, and the coupling was unidirectional (Ji-1,i ≠ 0,
Ji,i-1= 0) from the (i-1)-th to the i-th spin for i ≤ 25,600
and from the 25,600-th to the first spin.

Figure 3a, b present the evolutions of the spin and Ising
energy as a function of the number of roundtrips in the
positive-coupling 1D chain. In the beginning, the oscillation
network was in the noise state, and the spins had a small
amplitude and uncertain phase, which led to a random
global phase configuration. As the number of roundtrips
increased, the domains began to emerge, and the domain
walls became clear. Simultaneously, some short domains
were born and soon swallowed up by the long domains. As
the evolution progressed, even some relatively long domains
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Fig. 1 The schematic diagram and operation principle of the proposed OEPO-based Ising machine. a The schematic diagram. Spins are represented
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shrank and disappeared, while others grew correspondingly.
The longer domains usually had a longer lifetime, and it was
difficult for some of them to be destroyed. Ultimately,
relatively stable domains were formed. Because the coupling
was unidirectional, the domains moved. The speed is line-
arly dependent on the coupling coefficient (see Section 5 in
Supplementary Materials). From the zoomed-in view of
Fig. 3b, it can be seen that the mean amplitude of the spins
increased very quickly, accompanied by sharp decreases in
the Ising energy. The spins took hundreds of roundtrips to
reach a relatively stable level, and the machine took the
same amount of time to reach low energy, lower than 97%
of the ground state.
The ability to reach lower energy is strongly related to

the cavity gain22. The cavity small-signal gain is changed
by tuning the pump current of the Erbium-doped fiber
amplifier so that the machine can work at different states.
Histograms of the domain length at different small-signal
gains Gs= {1.005, 1.01, 1.02, 1.03} are shown in Fig. 3c,
from which longer domains can be obtained at smaller
values of Gs. The defect density, calculated by nd=Nd/N,
where Nd is the number of domain walls, and N= 25,600

is the number of spins, is used to evaluate the perfor-
mance of reaching lower energy. When the machine
operates slightly above the threshold, the defect density
can be less than 0.0025. Moreover, the correlation length
x0, which is evaluated by fitting the autocorrelation of the

measurement data with RðxÞ ¼ 1� 4
π tan

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh x2

4x20

� �r
, is

used to further evaluate the machine performance41. The
relationship between the defect density/correlation
length and the small-signal gain is presented in Fig. 3d.
This behavior is similar to that in the DOPO-based Ising
machine22, but the curve is much sharper, which indi-
cates that the proposed machine is much more sensitive
to the cavity gain.
By adding a 160-bit delay to implement vertical cou-

pling in combination with the 1-bit horizontal coupling, a
160 × 160 2D Ising square lattice was simulated (see sec-
tion 3 in Supplementary Materials). Due to the additional
constraints imposed by the vertical coupling, the machine
took much less time to evolve from the noise state to the
low-energy state compared to the 1D Ising simulation, as
shown in Fig. 4a. A much steeper curve is observed in
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Fig. 4b. The machine took less than 4000 roundtrips to
reach the ground state.
As with the 1D simulation, the possibility and the time

taken to reach lower energy were highly related to the cavity
gain. To reveal the evolution process, some snapshots at
specific roundtrips at different small-signal gains Gs= {1.01,
1.05, 1.1} are shown in Fig. 4c. At small cavity gains, the
machine took longer to reach relatively low energy or a
stable spin format but had a higher possibility of finding the
ground state. In contrast, large cavity gains induced domain
structures consisting of many small domains with sharp
domain walls. Figure 4d presents the success rates of
reaching 92% to 100% of the ground state at different
oscillating amplitudes. At large cavity gains, the machine
required several hundred roundtrips to ensure that 96% of
the ground state was found, while thousands of roundtrips
were required at small cavity gains.
Despite the theoretical prediction that the ground state

can always be reached for regular lattices if the calculation
time is long enough, it was observed that the domain would

freeze out in the DOPO-based Ising machine42. A similar
freeze-out effect was also observed for the proposed Ising
machine, which prevented the machine from reaching the
ground state (see video S1 and section 7 in Supplementary
Materials). At small cavity gains, the machine was less likely
to fall into the freeze-out state and achieved an approxi-
mately 76% success rate of finding the ground state within
50,000 roundtrips, whereas the success rate was less than
50% at large cavity gains. For large cavity gains, the Ising
energy quickly decreased until the point of freeze-out was
reached. In contrast, for low cavity gains, the energy
decreased gradually and ultimately reached closer to the
ground state before freeze-out occurred. A larger cavity gain
corresponded to a higher probability of freeze-out.
One can find that the dynamics in our machine is very

similar to that in a DOPO-based machine42. Note that
evolution continued at small gains; thus, a higher success
rate can be expected over a longer period. The contours
that separate the spin-up and spin-down domains at every
ten roundtrips are superimposed in Fig. 4e to reveal the
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evolution of the domain. The contours decreased in
number along with a gradual decrease in size and finally
vanished. Note that the coupling was unidirectional,
therefore, the domains moved, which is similar to the
situation of the 1D simulation. In the superimposed
contours, the movement speed was set to zero via data
processing to obtain a better view.

Solving max-cut problems
Max-cut problems are NP-hard problems that can be

mapped onto the Ising formulation11. The cut of size can
be directly mapped by the Ising energy, as follows:

C σ if gð Þ ¼ � 1
2

P
1�i<j�N Jij� 1

2H σ if gð Þ. For a given J, the

lowest Ising energy corresponds to the maximum cut.
Here, we programmed unweighted, unidirectional max-

cut problems onto the proposed machine. In this
demonstration, the 20-km fiber was replaced with a short
fiber, in which 56 spins can be supported. First, the
maximum cut of a Möbius ladder graph with 56 vertexes
was calculated by setting 1-bit and 28-bit delays for the
other two channels. The mean amplitudes of the 56 spins
as a function of the number of roundtrips are shown in
Fig. 5b. In the beginning, the spins were found to have a
small amplitude and random phase, which corresponded
to a relatively high Ising energy and a small cut of size. As
the number of roundtrips increased, the spins evolved
toward certain values, either the 0- or π-phase with a
relatively high amplitude. Meanwhile, the Ising energy
decreased while the cut of size increased. At approxi-
mately 20 roundtrips, the machine reached the lowest-
energy phase configuration, and the given max-cut
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problem was solved. The computational time is given by
Tcomp=NrtTrt= 4.5 μs, where Trt= 224 ns is the round-
trip time and Nrt= 20 is the number of roundtrips. One
hundred tests were performed, and it was found that the
machine was able to find the best answer for each test. It
should be noted that the coupling was unidirectional, and
the amplitude of the spin changed periodically, as pre-
sented in Fig. 5c.
Another channel with a 7-bit delay was added to obtain

more complex graphics. Different graphics were obtained
by programming the output waveform of the arbitrary
waveform generator (see video S2 and section 3 in Sup-
plementary Materials). The success probabilities are shown
in Fig. 5d–g, from which it is evident that the machine has a
relatively high probability of finding the best answer.

Discussion
The idea of optimization in the proposed Ising machine is

similar to that in the DOPO-based Ising machine, i.e., the
principle of minimum power dissipation. However, despite
the larger number of spins, the proposed machine achieved
a lower defect density (0.0025 vs. 0.02)22 in 1D Ising model
simulation and a higher success rate of finding specific low
energy states in 2D Ising model simulation42. We believe

this performance difference is due to the spin stability. Spin
stability, especially in phase, is crucial in those Ising
machines that use the relative phase to represent the
direction of artificial Ising spins. The phase fluctuation
induced by ambient variation or the frequency drift of the
local oscillation would change the relative phase and flip the
spin, leading to an error computation. The cavity ambient
variation and the frequency drift of the local oscillation can
be considered cavity noise. Presumably, small noise has a
limited effect on the calculation results. However, strong
noise will induce random phase flips of the oscillations,
similar to temperature-induced spin flips in the Ising
model42. On the one hand, the noise-induced random spin
flips could help the machine escape from local energy
minima. On the other hand, it may prevent the machine
from reaching a lower energy state, similar to the Ising
model with a relatively high temperature. The noise level
determines the lower boundary of the effective temperature,
which corresponds to the lower energy that can be
obtained. Compared to DOPO spins, microwave photonic
spins have a longer wavelength, therefore, are less affected
by ambient variation. In addition, the local microwave
oscillation is usually locked to an atomic clock, which helps
to get rid of frequency drift, while the frequency of a laser
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pump always drifts and is hard to be stabilized. Accordingly,
the proposed machine can reach a lower effective tem-
perature than that based on DOPO, and a better perfor-
mance can be expected.
Another possible reason is that weaker spin-amplitude

nonuniformity may be obtained in the OEPO-based
machine, leading to a lower Ising energy since it damages
the machine performance43. Fortunately, the error detection
and the feedback control technique used in the DOPO-
based Ising machine can also be established in our scheme
to improve the machine performance44,45. Depending on
the comparison between the current energy and the pre-
viously visited, one can increase or decrease the cavity gain
or the mutual injection strength to help the machine escape
from the local energy minima and find a better one. The
small signal gain is determined by the power of the pump
laser in the OEPO, which can be precisely and indepen-
dently tuned by an additional intensity modulator.
It should also be noted that the lower Ising energy is

obtained at the expense of a slower repetition rate and a
longer feedback loop as compared with those of DOPO-
based CIMs, which means that a longer time is required to
implement a single roundtrip. Fortunately, fewer roundtrips
are required to achieve the same low Ising energy in the
proposed Ising machine. Moreover, it is worthwhile to obtain
lower Ising energy at the expense of a predictable time when
solving certain combinatorial optimization problems.
Some platforms have also been proposed to implement

Ising machines that can avoid the stability issue of the
fiber-based feedback loop of DOPO-based CIMs, e.g., via
recurrent feedback using free-space spatial light mod-
ulators (SLMs)27, the spatial multiplexing of the spins on
integrated chips25,26, and analog electronic systems35–38.
Detailed comparisons between different Ising machines
are available in section 9 in Supplementary Materials.
Currently, the proposed machine still suffers from con-

nectivity issues. Fortunately, flexible programmability can
be easily realized using measurement-feedback schemes, as
the microwave spin can be easily measured and controlled
with high-speed electrical devices24. Taking advantage of its
arbitrary programmability, the multi-body interaction and
the nonlinear interaction can also be realized. Moreover,
recent booming development in photonics matrix multi-
plication may provide a new way for arbitrary spin inter-
action46. Overall, the microwave photonic Ising machine is
expected to be a large-scale, highly-stable, and programable
optimizer, thus paving the way for solving real-world
combinatorial optimization problems.

Materials and methods
Principle of the OEPO
The mixer is the key device required to lock the phase of

the oscillating signal with 0 or π phase. When the oscil-
lation is degenerate, the transmission function of the

mixer can be described as:

smixer ¼ γsRF þ βs�RF ð1Þ

where β is the frequency conversion coefficient from the
input port, and γ is the leakage coefficient of the radio
frequency (RF) signal (see section 1 in Supplementary
Materials). Assuming the slow-varying envelope applied
to the second MZM in Fig. 1a is sðtÞ ¼ jsðtÞjeiϕðtÞ, the
signal after passing through the cavity with delay τ can be
given as follows47:

sðt þ τÞ ¼
ffiffiffiffiffiffiffiffi
GEA

p
RPDIPDZPDJ1

π sðtÞj j
Vπ

� �
γeiϕðtÞ þ βe�iϕðtÞ
� �

ð2Þ

where t is the slow time scale of the order of the cavity delay
(~100 μs), GEA is the power gain of the electrical amplifier
(EA), RPD is the responsivity of the PD, IPD is the power
launched into the PD, ZPD is the PD impedance, J1[·] is the
first-order Bessel function of the first kind, and Vπ is the
half-wave voltage. Near the steady state, s(t) varies on a slow
time scale. The following approximation can be used:
ds
dt¼ sðtþτÞ�sðtÞ

τ . The dynamic equation is rewritten as:

ds
dt

¼ 1
τ

G0J1
π sðtÞj j
Vπ

� �
γeiϕðtÞ þ βe�iϕðtÞ
� �

� s tð Þ
� �

ð3Þ

where G0 ¼
ffiffiffiffiffiffiffiffi
GEA

p
RPDIPDZPD. Equation (3) can be simpli-

fied by extracting the amplitude and phase components:

djsj
dt ¼ f1ð sj j;ϕÞ ¼ 1

τ G0J1
π sj j
Vπ

� �
ðγ þ β cos 2ϕÞ � jsj

h i
dϕ
dt ¼ f2ð sj j;ϕÞ ¼ � G0β

τjsj J1
π sj j
Vπ

� �
sin 2ϕ

8><
>:

ð4Þ

When the system is in the steady state, the equilibrium
points (|s0 | , ϕ0) of Eq. (4) are the solution of f1,2(|s | , ϕ)
= 0:

G0
js0j J1

π s0j j
Vπ

� �
¼ 1

γþβ cos 2ϕ0

ϕ0 ¼ kπ=2; k 2 Z

(
ð5Þ

Although many solutions |s0 | satisfy Eq. (5) because the
first-order Bessel function is approximately a damped
sinusoidal function48, only the first/smallest |s0 | is avail-
able in the proposed system. The phase solutions, ϕ0 ¼
kπ; k 2 Z, represents stable points, and ϕ0 ¼
π=2þkπ; k 2 Z, represents unstable points (see section 1
in Supplementary Materials).
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In an OEPO network with N oscillations, the interactions
between spins can be realized by the injection of the signals
of the other OEPOs. Consider Ji,j as the injection coefficient
from the i-th spin to the j-th spin, where 1 � i; j � N . By
adding the coupling terms into Eq. (3), the dynamic equa-
tion of the N-spin OEPO network can be written as:

dsi
dt

¼ 1
τ

G0J1
π sij j
Vπ

� �
1
sij j γsi þ βs�i þ

X
i<j�N

Ji;jsj

 !
� si tð Þ

" #

ð6Þ

Because the phases of spins are locked at 0 or π, all the
imaginary parts of si are zero, which means si ¼ Re sið Þ,
and Eq. (6) can be rewritten as a real equation. Without
loss of generality, let’s set τ ¼ 1, we can get:

dsi
dt

¼ G0J1
πs
Vπ

� �
1
si

γ þ βð Þsi þ
X
i<j�N

Ji;jsj

" #
� si ð7Þ

Since the first-order Bessel function of the first kind J1½��
is odd, J1

π sij j
Vπ

� �
1
sij j ¼ J1

πsi
Vπ

� �
1
si
is obtained. At the equili-

brium, si satisfies:

G0J1
πsi
Vπ

� �
1
si

γ þ βð Þsi þ
X
i<j�N

Ji;jsj

" #
� si ¼ 0 ð8Þ

When the cavity gain is greater than the threshold, the
overall signal decay rate Γ can be given as20:

Γ ¼
XN
i¼1

G0 γ þ βð ÞJ1 πsi
Vπ

� �
1
si

ð9Þ

According to Eq. (8), we can obtain:

G0 γ þ βð ÞJ1 πsi
Vπ

� �
1
si
¼ 1� G0 γ þ βð ÞJ1 πsi

Vπ

� �
1
si

X
i<j�N

Ji;j
sj
si

ð10Þ

If maximum spin–spin interaction max
i<j�N

Ji;j
		 		 in the

OEPO network is weak enough, the amplitude perturba-
tions of si induced by the interactions are small20.
Ignoring the amplitude perturbations, we assume that all

the spin amplitudes are the same. G0 γ þ βð ÞJ1 πsi
Vπ

� �
1
si
is

regarded as a constant at the steady state, denoted by ξ.
Consider σ i ¼ sign sið Þ, we have sj=si � σ iσ j. Based on Eqs.
(5) and (10), the overall signal decay rate is then rewritten

as:

Γ ¼ N � ξ �
X

1�i<j�N

Ji;jσ iσ j ð11Þ

As one can find that the second term in Eq. (11) has the
same form with the Ising model without an external mag-
netic field. As N and ξ are both constants, the signal decay
rate Γ can be equivalent to the Ising Hamiltonian. Equation
(11) conforms to the physical intuition about an oscillator.
Assuming each spin has a normalized loss of one in an
N-spin oscillation network, the global signal decay rate is N
if there is no interaction between those spins. If the i-th spin
is injected by the j-th spin with the coupling coefficient of Ji,j,
the signal decay rate of the i-th spin would rise (if Ji,jσiσj < 0)
or fall (if Ji,jσiσj > 0) by |Ji,j | . Since all the couplings from

other spins have an integrated contribution

�P1�j�N Ji;jσ iσ j, the loss of the i-th spin is given by Γi ¼
1� ξ �P1�j�N Ji;jσ iσ j. Accordingly, the global loss of the

oscillation network can be expressed as Eq. (11). To solve
the Ising problem with the given matrix J, the interactions
between the spins are firstly programmed into the oscillation
network, either in the analog or in the digital domain. And
then, the cavity gain is increased gradually to search for the
minimum-loss state. Meanwhile, the amplitudes of spins
increase, and their phases are adjusted towards the lowest
configuration. When the oscillation network runs stably, one
can measure the corresponding phase configuration, from
which the best answer to the given problems can be solved.

However, the assumption that all the spins have the
same amplitude is not always satisfied. When solving
complex problems, the spins experience different inter-
actions along the optoelectronic cavity, which would
change the spin gain and ultimately results in amplitude
non-uniformity. This non-uniformity may cause incon-
sistency between the minimal-loss configuration and the
optimal solution to the corresponding problem. The
negative impact of nonuniformity also can be found in
the DOPO-based Ising machine49. Fortunately, limiting
the amplitude of spins at the feedback and optimizing the
nonlinear function could reduce the amplitude inhomo-
geneity to improve the success probability43,44. Details
about how the nonuniformity impedes the machine from
finding the best answer and how to relieve such negative
impact are under investigation.
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