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Widely used genotype imputation methods are based on the Li and Stephens model, which assumes that new haplotypes can be
represented by modifying existing haplotypes in a reference panel through mutations and recombinations. These methods use
genotypes from SNP arrays as inputs to estimate haplotypes that align with the input genotypes by analyzing recombination
patterns within a reference panel, and then infer unobserved variants. While these methods require reference panels in an
identifiable form, their public use is limited due to privacy and consent concerns. One strategy to overcome these limitations is to
use de-identified haplotype information, such as summary statistics or model parameters. Advances in deep learning (DL) offer the
potential to develop imputation methods that use haplotype information in a reference-free manner by handling it as model
parameters, while maintaining comparable imputation accuracy to methods based on the Li and Stephens model. Here, we provide
a brief introduction to DL-based reference-free genotype imputation methods, including RNN-IMP, developed by our research
group. We then evaluate the performance of RNN-IMP against widely-used Li and Stephens model-based imputation methods in
terms of accuracy (R2), using the 1000 Genomes Project Phase 3 dataset and corresponding simulated Omni2.5 SNP genotype data.
Although RNN-IMP is sensitive to missing values in input genotypes, we propose a two-stage imputation strategy: missing
genotypes are first imputed using denoising autoencoders; RNN-IMP then processes these imputed genotypes. This approach
restores the imputation accuracy that is degraded by missing values, enhancing the practical use of RNN-IMP.
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INTRODUCTION
High-throughput sequencing technologies have enabled the
construction of genotype datasets at base-level resolution for
thousands of individuals. These datasets are phased to form
collections of haplotypes, known as haplotype reference panels.
Genotype imputation, one of the key applications of reference
panels, leverages them to estimate the genotypes at unobserved
segregating sites with sequence-level resolution. While SNP (Single
Nucleotide Polymorphism) array technology enables cost-effective
genotyping, the obtained genotypes are restricted to pre-designed
markers. Genotype imputation resolves this limitation by estimating
genotypes at unobserved segregating sites, thereby enhancing the
detection of trait-associated variants in genome-wide association
studies (GWAS), and improving the accuracy of trait heritability and
polygenic risk score calculations [1–3].
The widely used genotype imputation methods, such as IMPUTE

[4–7], Minimac [8], and Beagle [9], are based on the Li and
Stephens model [10]. This model assumes that new haplotypes
can be represented by modifying existing ones in the reference
panel through a series of mutations and recombinations. These
methods use phased genotypes from SNP arrays as inputs and

estimate haplotypes that align with these inputs by analyzing how
haplotypes in the reference panel recombine. Subsequently, the
genotypes of unobserved variants can be inferred from these
estimated haplotypes. While imputation methods based on the Li
and Stephens model require a haplotype reference panel in its
raw, identifiable form, the availability of such detailed haplotype
data is generally limited due to privacy concerns and the need for
donor consent for public use. For instance, the Trans-Omics for
Precision Medicine (TOPMed) program offers an imputation server
service using its large haplotype reference panel [11], based on
the Michigan Imputation Server system [8]. The haplotype
reference panel used in the system is comprised of the genotype
data of 133,597 individuals across various populations, but the
access to the haplotype reference panel itself is not publicly
available. Similarly, the Northeast Asian Reference Database
(NARD) provides a haplotype reference panel comprised of
1,779 Northeast Asian individuals, but its access is also limited
to use through its imputation server system [12]. Consequently, to
use non-public haplotypes for more accurate imputation,
researchers must transmit input genotype data to research
institutes that maintain their own private haplotype databases,
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although the sharing of this input genotype data can be further
complicated by informed consent agreements that often restrict
external use.
One strategy to address these restrictions is to use haplotype

information in a de-identified manner, such as through summary
statistics or model parameters, from which the reconstruction of
genotype data at the individual level is nearly impossible. For
example, combining GWAS summary statistics allows the calcula-
tion of p-values across cohorts without sharing individual-level
genotypes [13]. Methods addressing sample overlap issues in the
combination of GWAS summary statistics have also been
proposed [14–16]. In HLA type imputation, HIBAG employs
attribute-bagging to infer HLA types from SNP array genotypes,
and once the model parameters are trained, HLA types can be
estimated in a reference-free manner [17]. Choudhury et al.
proposed a reference-free imputation method using support
vector machines (SVMs), in which the SVM parameters are trained
with a reference panel, and genotypes at variant sites in the
reference panel are estimated from trained SVMs [18]. Although
this SVM-based method is less demanding in terms of computa-
tion and memory, its accuracy is not as high as that of methods
based on the Li and Stephens model.
Recent advancements in deep learning (DL) have demonstrated

significant enhancements across various fields and offer the
potential to develop reference-free imputation methods that can
process haplotype information in a de-identified manner—
namely, as model parameters—while maintaining imputation
accuracy comparable to that of methods based on the Li and
Stephens model. Chen and Shi proposed a reference-free
imputation method using sparse convolutional denoising auto-
encoders (SCDA) for imputing missing genotypes with a relatively
low missing rate, such as less than 0.2 [19]. Their model
incorporates convolutional layers with L1 regularization to
encourage sparsity in kernel values. The model is trained by
fitting randomly masked input genotypes to the original
genotypes. This method has demonstrated higher accuracy
compared to traditional methods like KNN or singular value
decomposition. The number of target imputation sites signifi-
cantly exceeds the number of input genotype positions in a
scenario commonly addressed by widely-used Li and Stephens
model-based methods. For such a scenario, our research group
proposed a reference-free imputation method named RNN-
IMP [20, 21]. RNN-IMP employs a bidirectional recurrent neural
network (RNN) and has provided enhanced imputation accuracy in
comparison to the SVM-based method by Choudhury et al., and
the accuracy is competitive with the widely-used Li and Stephens
model-based methods. Other DL-based genotype imputation
approaches include the work of Dias et al., who used a sparse
denoising autoencoder (DAE) in a similar scenario to RNN-IMP [22],
while Dias’ method employed fully connected layers, as opposed
to the convolutional approach of Chen and Shi. Dias’ method was
less accurate compared to those of methods based on the Li and
Stephens model in the initial setting, but additional fine-tuning
using simulated offspring data and optimized hyperparameters
resulted in improved imputation accuracy over the Li and
Stephens model-based methods. Song et al. refined the SCDA
training process by employing single batch loss instead of average
loss over multiple batches to update parameters [23]. Naito et al.
developed a CNN-based method named DEEP*HLA for estimating
HLA types from SNP array genotypes [24]. Mowlaei et al.
introduced a transformer-based genotype imputation method
named Split-Transformer Impute (STI), which primarily focuses on
structural variations and has demonstrated greater imputation
accuracy for these variations than existing methods, including
those based on the Li and Stephens model [25].
Although DAE-based methods like SCDA are robust to missing

input values—as these are incorporated into the training process
—methods such as RNN-IMP and other supervised learning-based

approaches that do not account for missing input values during
training can be vulnerable to them. In SNP array data analysis,
specific markers may be removed during quality control, for
instance, due to deviations from Hardy-Weinberg equilibrium or
low call rates. This susceptibility to missing genotypes is a
significant disadvantage for practical applications. Since DAE-
based methods are robust to missing input values and are also
suitable for imputing those values, we propose a two-stage
genotype imputation strategy. Initially, this strategy employs DAE-
based methods like SCDA to impute missing values in either
phased or unphased genotypes from SNP arrays. In the second
step, these imputed genotypes are used as input for genotype
imputation methods such as RNN-IMP, to estimate genotypes at
variant sites in reference panels.
In the sections that follow, we first verify the imputation

accuracy of RNN-IMP by comparing it with widely-used Li and
Stephens model-based methods, using phased genotypes with no
missing values as input. We also compare the computational time
required by these methods. We then assess the impact of missing
values in the input genotypes on imputation accuracy and
evaluate the effectiveness of our two-stage genotype imputation
strategy against the missing values.

RESULTS
Train and test data preparation
We used phased genotype data from chromosome 22 of 2504
individuals in the phase 3 dataset of the 1000 Genomes Project (1KGP)
[26] (https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.gen-
otypes.vcf.gz) to prepare the evaluation dataset. For testing, we
randomly selected 100 individuals and assessed the imputation
performance using the phased genotype data of the remaining 2,404
individuals as the haplotype reference panel. These 100 individuals are
listed in Supplementary Table 1. We employed the Infinium Omni2.5-8
BeadChip (Omni2.5-8 v1.4 kit version), hereafter referred to as
Omni2.5, as the SNP array platform and extracted genotypes at
31,325 sites designed on Omni2.5 as input data for genotype
imputation methods. We evaluated the imputation accuracy for
genotypes at the remaining 1,078,043 sites. Note that we directly used
phasing information from the reference panel for the input genotypes;
therefore, no prephasing process was applied in this experiment.
Since RNN-IMP requires substantial computational resources for
model training, accommodating all 1,078,043 sites would be
computationally intensive, we filtered out rare variants with a minor
allele frequency (MAF) of less than 0.005 as the target sites for RNN-
IMP. After this filtering, the number of target sites was reduced to
217,428.

Evaluation of imputation accuracy in R2 for input genotypes
without missing values
We compared the genotype imputation accuracy of RNN-IMP with
methods based on the Li and Stephens model, as listed in Table 1,
using test input genotypes without missing values.
For the RNN-IMP model configuration, we set the number of

layers and the size of the hidden vectors to 4 and 40, respectively.

Table 1. List of genotype imputation methods based on the Li and
Stephens model evaluated in this study

Genotype imputation method Version

IMPUTE5 v1.2.0

IMPUTE4 v4.1.2_r300.3

Beagle 5.4 version 22Jul22.46e

Minimac4 v4.1.6

Minimac3 v2.0.1
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We divided chromosome 22 into linkage disequilibrium (LD)
blocks using the LD block information in https://github.com/
stephenslab/ldshrink/blob/main/inst/test_gdsf/fourier_ls-all.bed.
Each block was further divided to ensure that each resulting
region contained approximately 200 array markers, resulting in a
total of 225 regions. Variant sites located within each subdivided
region, except array markers, were designated as outputs for the
corresponding RNN model. 50 array markers on both the
upstream and downstream sides of each region were also
included for the model inputs. We employed a similar approach
to that described in [21] for training the model parameters.
Default options were used for the Li and Stephens model-based

methods. Within the evaluation dataset, all variant sites were
biallelic; one allele was denoted as the a0 allele, and the other as
the a1 allele. To assess genotype imputation accuracy, we used
the R2 value, calculated as the square of the Pearson correlation
coefficient between the actual genotype counts of the a1 allele
and the a1 allele dosages in the imputed genotypes. Figure 1a
presents a comparison of R2 values for RNN-IMP and the methods
listed in Table 1 across the MAF spectrum. The R2 values on the
y-axis represent the average R2 values for variants within small
local bins for each MAF value. Figure 1b displays the comparison
of the R2 values with a y-axis range limited to values ≥0.7 to focus
on this range. Although the differences among the Li and
Stephens model-based methods are slight, IMPUTE5 exhibits the
highest R2 values across most of the MAF range, except for very

rare variants (MAF < 0.001), where Minimac3 presents the highest.
From the comparison in R2, RNN-IMP demonstrates competitive
accuracy relative to the Li and Stephens model-based methods for
input genotypes without missing values.

Comparison of computational time
We recorded the computational time required for obtaining
genotype imputation results with RNN-IMP and the Li and Stephens
model-based methods, as summarized in Table 2. Since model
training was required for RNN-IMP, the running time on this process
was also recorded. IMPUTE5, Minimac3, and Minimac4 require a
preprocessing phase to reformat the reference panel data for efficient
computation, and the duration of this step was also recorded.
Minimac4 requires the reference panel data to be in msav format.

While this format can be directly obtained from vcf format reference
panel data, it can also be derived from m3vcf format, which is used
by the previous version, Minimac3. Although the direct conversion
from vcf to msav takes significantly less time than the conversion
from vcf to msav via m3vcf, we observed that the imputation
accuracy using msav format data obtained through the direct
process was lower than that achieved with data converted via
m3vcf. Based on our observations, we here opted to use msav data
converted from m3vcf for our evaluation dataset, although this
difference in accuracy is expected to diminish for large biobank-
scale reference panels. We included the conversion time of m3vcf
using Minimac3 in the preprocessing time for Minimac4.

Fig. 1 a A plot comparing R2 values of genotype imputation methods. b A plot with a y-axis range limited to R2 ≥ 0.7

Table 2. Summary of the computational time required for genotype imputation including preprocessing and model training time where applicable
for each method

Method Genotype imputation time Preprocessing or training time

IMPUTE5 70.35s 11.57s

IMPUTE4 162.13s −

Beagle5.4 24.97s −

Minimac4 54.64s 20110.55s (5h 35m 10.55s, 12.46s for converting m3vcf to msav)

Minimac3 1534.54s 20098.09s (5h 34m 58.09s)

RNN-IMP 584.30s 30440256.56s (352d 7h 37m 36.56s)
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Similar preprocessing, such as the data conversion with the
Positional Burrows Wheeler Transform, is required for IMPUTE4
and Beagle 5.4; however, since these steps are integrated within
the main genotype imputation process, their computational times
were not recorded separately. The trained models or preprocessed
data can be reused, and hence in Table 2, we distinguished this
initial computational time from the subsequent running time for
genotype imputation. The training time for RNN-IMP was assessed
on an AMD Epyc 7713 CPU (base clock 2.0 GHz; boost clock up to
3.675 GHz) in a single thread, while other processes were
measured on an AMD Ryzen 9 7950X CPU (base clock 4.5 GHz;
boost clock up to 5.7 GHz) in a single thread. Python 3.7 and
TensorFlow 1.15.0 were used for training the deep learning

models for RNN-IMP. The trained models were then converted to
the ONNX Runtime format (https://onnxruntime.ai/) to accelerate
computations during model inference for genotype imputation.
For inference, we used Python 3.11 with the ONNX Runtime.
Although RNN-IMP demands a substantial amount of computa-
tional time for training, this process can be parallelized, and the
entire training was completed within two days using a super-
computing system. RNN-IMP also generally consumed more
computational time than methods based on the Li and Stephens
model. One reason is that genotype data reading and result
writing operations are implemented in Python for RNN-IMP,
whereas they are implemented in C, C++, or Java in the Li and
Stephens model-based methods. The inference phase by ONNX

Fig. 2 Comparison of R2 values for input genotypes without missing values and for those with missing values at rates of 0.01, 0.05, 0.1, and
0.2, across each imputation method: a IMPUTE5, b Minimac3, and c RNN-IMP
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Runtime took 296.62 seconds for RNN-IMP, suggesting that
computational efficiency could be improved by implementing
I/O processes in C or C++ rather than Python. In this experiment,
only 100 samples were processed for genotype imputation, but it
is anticipated that the computational time per sample will
decrease significantly for larger datasets, due to reduced overhead
in all methods.

Evaluation of imputation accuracy in R2 for input genotypes
with missing values
In SNP array genotype analysis, certain markers are removed
during quality control, for instance, due to deviations from the
Hardy-Weinberg equilibrium or low call rates. Since methods
based on the Li and Stephens model use hidden Markov models

or state space models, missing values in the input genotypes are
simply skipped, and there is no need to fill in alternative values for
the removed markers. On the other hand, RNN-IMP treats input
genotypes as model inputs and does not account for missing
values in input genotypes during the training process. Thus, some
value must be supplied for the removed markers. The input value
of RNN-IMP for each marker is represented by a one-hot vectors
indicating the presence of a0 and a1 alleles, and the vector
[1− fa1, fa1], where fa1 denotes the frequency of the a1 allele, is
used for missing values. To assess the impact of missing values in
input genotypes on each method, we simulated the removal of
genotype data for some markers in the test input data. Since the
rate of removal due to quality control is typically at most 0.2, we
considered the following removal rates: 0.01, 0.05, 0.1, and 0.2.

Table 3. The model architectures of a DAE used in [19] and b RCDA

Layer Position Layer Type Output Channel Size

a

1st layer 1-D convolution 32

2nd layer ReLU 32

3rd layer Max pooling (pool size: 2) 32

4th layer Dropout 32

5th layer 1-D convolution 64

6th layer ReLU 64

7th layer Max pooling (pool size: 2) 64

8th layer Dropout 64

9th layer 1-D convolution 128

10th layer ReLU 128

11th layer 1-D convolution 64

12th layer ReLU 64

13th layer Upsampling (size: 2) 64

14th layer Dropout 64

15th layer 1-D convolution 32

16th layer ReLU 32

17th layer Upsampling (size: 2) 32

18th layer Dropout 32

19th layer 1-D convolution 3

20th layer Softmax 3

b

1st layer Residual 1D-convolution block 32

2nd layer ReLU 32

3rd layer Max pooling (pool size: 2) 32

4th layer Residual 1D-convolution block 64

5th layer ReLU 64

6th layer Max pooling (pool size: 2) 64

7th layer Residual 1D-convolution block 128

8th layer ReLU 128

9th layer Residual 1D-convolution block 64

10th layer ReLU 64

11th layer Upsampling (size: 2) 64

12th layer Residual 1D-convolution block 32

13th layer ReLU 32

14th layer Upsampling (size: 2) 32

15th layer 1-D convolution 2

16th layer Softmax 2
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Figure 2a, b, and c illustrate the impact of missing inputs on the
performance of IMPUTE5, Minimac3, and RNN-IMP, respectively. In
this comparison, we selected IMPUTE5 and Minimac3 as
representative methods of those based on the Li and Stephens
model and omitted other methods from this evaluation. As
expected, the impact of missing input genotypes was negligible
for the Li and Stephens model-based methods, while a clear
reduction in R2 values was observed for RNN-IMP as missing rates
increased.

Two-stage strategy for robust genotype imputation to
missing values
In order to impute missing values in the input genotypes, we
considered a modified version of the DAE model used in [19].
Table 3a shows the original DAE model architecture, which uses a
kernel size of 5 in its 1-D convolution layers and incorporates L1
regularization to encourage sparsity in the kernel parameters. In
our modification, we replaced the 1D-convolution layers with
residual 1D-convolution blocks as illustrated in Fig. 3. Residual
connections, also known as skip connections, are the key feature
of residual blocks and are effective for the efficient training of
deep learning models by preventing the vanishing and exploding
gradients during the backpropagation process [27]. We antici-
pated that the use of residual blocks would enhance the
performance in the DAE-based methods. Since batch normal-
ization within residual blocks helps prevent overfitting, we also
omitted the dropout layers and L1 regularization previously
applied to the 1D-convolution kernels. The output vector for each
variant site in the original model was a one-hot vector
representing three states: missing, a0 allele, and a1 allele. Since

the missing state in output is not required for our purpose, we
modified the output vector to only represent the a0 and a1 alleles.
We have named this residual convolution denoising autoencoder-
based method as RCDA. Table 3b shows the model architecture of
RCDA. Similar to the approach used for RNN-IMP, chromosome 22
was divided into LD blocks. Each region was then further
segmented to contain approximately 500 array markers. In total,
75 regions were obtained. For training RCDA, we employed the
Adam optimizer [28] configured for 1,000 epochs, a learning rate
of 0.001, and a batch size of 32. We selected the parameters that
produced the best loss for a randomly selected set of 100
validation samples as the trained parameters for the model for
each region. Table 4 summarizes the computational times for
genotype imputation and model training using RCDA. Training
time as well as genotype imputation time were evaluated on an
AMD Ryzen 9 7950X CPU in a single thread. We also evaluated the
training time using GPU computation with a GeForce RTX 4090
along with an AMD Ryzen 9 7950X CPU in a single thread. Training
with the GPU was approximately three times faster than using
only the CPU in a single thread. However, since models for
different regions can be trained independently, parallel training
across multiple CPU cores is a promising option for accelerating
computation. Due to the overhead associated with GPU computa-
tion, using the GPU for this dataset resulted in greater overall
computational time compared to using only the CPU in the
inference for genotype imputation. Genotype imputation time
also can be reduced by using multiple CPU cores to independently
process models for different regions.
Figure 4 shows a comparison of R2 values for genotype

imputations among original input genotypes without missing
values, those with missing values, and those with missing values
imputed by RCDA across missing rates of 0.01, 0.05, 0.1, and 0.5.
The R2 values demonstrate substantial recovery following the
imputation of missing genotypes by RCDA, while this recovery is
less pronounced for variants with lower MAF, which may be
attributed to the reduced imputation accuracy of RCDA for such
markers in SNP arrays.

CONCLUSION
We confirmed the competitive imputation accuracy (R2) of RNN-IMP
compared to widely-used imputation methods based on the Li and
Stephens model, using the 1KGP Phase 3 phased genotype dataset
and simulated Omni2.5 SNP array genotype data derived from
the dataset. In terms of running time, RNN-IMP generally required
more time than the Li and Stephens model-based methods.
However, the running time for RNN-IMP is not dependent on the
size of the reference panel, suggesting that the time difference
could diminish with larger reference panels. Although the total
time for training RNN models was substantial, the models can be
trained concurrently, thus allowing the training process to be
completed within a reasonable number of days using massively
parallel computing resources. Unlike the methods based on the Li
and Stephens model, the presence of missing values in the input
genotypes significantly reduced imputation accuracy for RNN-IMP.
To address this issue, we introduced a two-stage genotype
imputation strategy where missing genotypes are first imputed
using DAE, and the resulting imputed genotypes are then used asFig. 3 The structure of residual 1D-convolution block in RCDA

Table 4. Computational time for genotype imputation and model training in RCDA

Missing rate Genotype imputation time Training time using GPU Training time using CPU only

0.01 27.06s 104445.06s (1d 5h, 45.06s) 292144.95s (3d 9h, 9m, 4.95s)

0.05 27.14s

0.1 27.19s

0.2 27.16s

K. Kojima et al.

516

Journal of Human Genetics (2024) 69:511 – 518



inputs for RNN-IMP. This strategy substantially restored imputation
accuracy in terms of R2, enhancing the practical application of RNN-
IMP. While the efficacy of the two-stage strategy was demonstrated
only for RNN-IMP, this framework is broadly applicable. In future
work, we plan to assess the utility of the two-stage strategy for other
supervised learning-based genotype imputation methods that do
not account for missing values in the training process, such as
HIBAG and DEEP*HLA.

USE OF LARGE LANGUAGE MODELS
We used ChatGPT (https://chat.openai.com) only for improving the
readability of texts.

DATA AVAILABILITY
The code for RNN-IMP and RCDA, along with the model parameters obtained from the
training data used in this study, is publicly available on the following GitHub pages: • RNN-
IMP: https://github.com/kanamekojima/rnnimp • RCDA: https://github.com/kanamekojima/
RCDA Instructions for generating the evaluation datasets used in this study are also
provided in the README files on these GitHub pages.
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