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The Role of Oxygen in Health and Disease - A Series of Reviews

This is the fourth article in the series of reviews focusing on the role that oxygen plays in health and disease. In this review Drs.
Auten and Davis discuss reactive oxygen species (ROS) and signaling molecules for biological processes that contribute to
adaptive or maladaptive molecular responses. The review also focuses on developmental molecular targets and therapeutic
interventions such as antioxidant defenses and therapies.
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ABSTRACT: Reactive oxygen species (ROS) serve as cell signaling
molecules for normal biologic processes. However, the generation of
ROS can also provoke damage to multiple cellular organelles and
processes, which can ultimately disrupt normal physiology. An im-
balance between the production of ROS and the antioxidant defenses
that protect cells has been implicated in the pathogenesis of a variety
of diseases, such as cancer, asthma, pulmonary hypertension, and
retinopathy. The nature of the injury will ultimately depend on
specific molecular interactions, cellular locations, and timing of the
insult. This review will outline the origins of endogenous and exog-
enously generated ROS. The molecular, cellular, pathologic, and
physiologic targets will then be discussed with a particular emphasis
on aspects relevant to child development. Finally, antioxidant de-
fenses that scavenge ROS and mitigate associated toxicities will be
presented, with a discussion of potential therapeutic approaches for
the prevention and/or treatment of human diseases using enzymatic
and nonenzymatic antioxidants. (Pediatr Res 66: 121–127, 2009)

Increasing evidence links early exposure to oxidative stress
with potentially lifelong consequences (1). However, the

role of reactive oxygen species (ROS) in biologic systems is
entirely dependent on context: location, neighbors, and timing
(2). ROS are oxygen ions [singlet oxygen, superoxide (O2

·�)]
or oxygen-containing radicals [hydroxyl, OH·�]. ROS and
their reaction products [e.g. hydrogen peroxide (H2O2)] are
increasingly recognized as signaling intermediates in their
own right that can contribute to adaptive or maladaptive

molecular responses (3). This review will focus on—1) origins
of ROS: environment, cells, and cellular components; 2)
molecular targets: classic and novel macromolecular targets
and associated toxicity in infants and children; 3) antioxidant
defenses: developmental regulation and vulnerabilities; and 4)
antioxidant therapies: enzymatic and nonenzymatic ap-
proaches.

Origins of ROS

Oxygen has a unique molecular structure and is abundant
within cells. It readily accepts free electrons generated by
normal oxidative metabolism within the cell, producing ROS,
such as O2

·� and hydroxyl radical (HO·), as well as the
oxidant H2O2. Processes causing uncoupling of electron trans-
port can enhance the production of ROS, with mitochondria
being a major source (4). However, other cellular components,
such as endoplasmic reticulum-bound enzymes, cytoplasmic
enzyme systems, and the surface of the plasma membrane,
also contribute (5,6). Activity of multiple enzyme systems,
such as the cytochrome P450 monoxygenase system, xanthine
oxidoreductase, nitric oxide synthases, and several others
involved in the inflammatory process (cyclooxygenase and
lipoxygenase), can also increase the generation of ROS. Cel-
lular production of O2

·� and H2O2 can facilitate the formation
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of the more toxic and reactive HO· in the presence of reduced
transition metals such as iron. Importantly, O2

·� reacts rapidly
with nitric oxide to form peroxynitrite (ONOO�), a strong
nitrating and oxidizing compound (7). Such highly reactive
species, such as HO· or ONOO�, can react with membrane
lipids to cause more complex radicals by initiating lipid
peroxidation.
In addition to ROS generated as a “byproduct” of cellular

respiration, endogenous production of O2
·� also arises from

NADPH oxidases (NOX 1–3; typically at low levels in smooth
muscle and vascular endothelium), dual oxidases 1 and 2, and
NOX 4 (epithelial cells) (8). ROS are also important in the
regulation of nitric oxide bioavailability, dramatically influ-
encing airway and vascular reactivity (2). The burden of ROS
can be further amplified by the presence of “free” metals, such
as iron, copper, and manganese, which can be released from
metalloprotein complexes. Although free iron (unbound to
ferritin or heme, for example) has been documented in the
circulating plasma of preterm newborns, the detrimental ef-
fects of free iron or other metals have not been definitively
established in newborns (9,10). In contrast, indirect evidence
has linked the presence of free iron with increased protein
carbonyl formation in patients treated with high concentra-
tions of supplemental oxygen. Failure to adequately sequester
or store iron could be a developmental liability in premature
infants with relative deficiencies in iron carriers, such as
transferrin (11).

Molecular Targets: How ROS Damage Cells and Organs

A delicate balance exists between ROS production and the
antioxidant defenses that protect cells in vivo. This balance
may become disturbed under conditions of hyperoxia, inflam-
mation, or ischemia-reperfusion (excessive generation of
ROS) or in the presence of limited or impaired antioxidant
defenses. Multiple pathways involved in ROS-induced cell
death have been proposed. ROS can cause direct injury to
proteins, lipids, and nucleic acids, leading to cell death. Some
of these pathways are illustrated in Fig. 1. For example,
protein oxidation and nitrosylation (carbonyl, nitration, and
nitrotyrosine formation) can impair a wide variety of enzy-
matic processes and growth factors that can result in marked
cellular dysfunction (12). Lipid peroxidation has been linked
to cell death through effects on cellular phospholipids (major
cell membrane components) through activation of sphingomy-
elinase and release of ceramide, which activates apoptosis
(13). Nucleic acid oxidation has been linked with physiologic
and premature aging as well as DNA strand breaks, leading to
necrosis and/or maladaptive apoptosis (14). The magnitude of
these changes and the cell’s ability to repair this damage
determines whether the effects are adaptive or maladaptive.
ROS at the proper locations and concentrations can also

function as “2nd messengers” and activate multiple signal
transduction pathways within the cell, facilitating the actions
of growth factors, cytokines, and calcium signaling. ROS can
activate c-Jun N-terminal kinase (possibly through production
of lipid peroxide intermediates), a crucial mitogen-activated
protein kinase, which then phosphorylates and releases two

Bcl-2–related proteins that are normally sequestered within
the cell (15,16). The release of these key proteins can directly
activate Bax by causing dissociation from its cytoplasmic
anchor. Bax is then free to translocate to the mitochondria,
where it undergoes oligomerization and initiates the release of
cytochrome c and other pro-death mediators into the cytosol.
Relatively high levels of O2

·� are generated by NOX in
phagocytes, such as neutrophils and macrophages (�1000-
fold higher than nonphagocytic cells), an essential process in
bacterial killing. Blocking neutrophil influx in hyperoxia-
exposed newborn rats mitigates oxidative DNA damage, HO·

formation, and O2
·� accumulation, while enhancing alveolar

development (14,17–19). In experimental lung injury models,
genetic ablation of NOX routinely reduces pulmonary ROS
accumulation, but is not necessarily protective, because ac-
companying inflammation is worse in the NOX null mice
(20,21). Loss of nonphagocytic NOX function may also im-
pair physiologic signaling (22). The relevance of ROS gener-
ated by NOX depends on the organ system, with inhibition
preventing radiation-induced oxidative stress in rat brain mi-
crovascular endothelium (23). In general, adult models of
oxidative stress to the CNS show decreased injury with inhi-
bition or genetic ablation of NOX activity (24). In contrast,
newborn mice exposed to hypoxia-ischemia sustain worse
injury with inhibition of NOX (e.g. NOX2 null mice), imply-
ing that endogenous O2

·� signaling may have critical adaptive
roles in different organ systems (25).
The brain and the lung have been most intensively studied

as target organ systems prone to damage by ROS. In prema-
ture and full-term newborns, the control of cerebral perfusion
is less tightly regulated, increasing vulnerability to reperfu-

Figure 1. ROS generation and detoxification in alveolar epithelium. Molec-
ular oxygen first contacts the alveolus through the layer of surfactant phos-
pholipids contained in the epithelial lining fluid, which is rich in glutathione
and can, scavenge ROS. Under oxidative stress, ROS may be generated at the
epithelial layer by DUOX and NOX4 that generate H2O2. SOD3 is poised to
detoxify extracellular O2

·�, although extracellular expression may be rela-
tively deficient in newborns. Intracellularly, SOD2 in mitochondria detoxify
O2

·� generated during normal cellular respiration. The intracellular H2O2

burden is detoxified by peroxisome-bound catalase. Alveolar epithelium and
other tissues may enhance generation of ROS in endothelial cells via NOX2,4,
which can terminate NO-mediated reactions.
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sion-type injury and oxidative stress. For example, microglial
activation is believed to cause accumulation of markers of
oxidation (e.g. nitrotyrosine and protein carbonyls) in oligo-
dendrocytes, leading to the development of periventricular
leukomalacia (26). Activation may also have secondary effects
through neuronal excitotoxicity via effects on calcium flux.
Most experimental studies have focused on ischemia-
reperfusion models, with pretreatment with antioxidants or
free radical scavengers typically reducing apoptosis (e.g. less
DNA fragmentation and caspase expression) and ameliorating
histologic evidence of brain injury (27,28). Recently, studies
of hyperoxia in newborn rats have also implicated ROS in
causing neuronal cell death. In vitro exposure to high-oxygen
atmospheres induces apoptosis in oligodendroglial cells in a
developmentally dependent pattern, which is prevented by
inhibition of lipoxygenase, with decreased expression of my-
elin basic protein in vivo in hyperoxia-exposed rat pups (29).
The developing retina is particularly prone to ROS-

mediated damage that contributes to retinopathy of prematu-
rity in preterm infants (30). Vascular growth into the devel-
oping posterior retina is normally driven by redox-sensitive
pathways that up-regulate VEGF. After birth, the marked
increase in systemic oxygen tensions in the preterm newborn
suppresses VEGF production. This occurs in conjunction with
impairment in autoregulation of retinal blood flow as well as
a relative deficiency of antioxidants in the immature retina
(31). In the absence of VEGF (and other factors), angiogenic
budding stops, and apoptosis of developing vessels occurs
secondary to the formation of reactive oxygen and nitrogen
species (32–34). Endogenous generation of ROS through
NOX may be critical to this pathway, because its pharmaco-
logic inhibition prevents retinopathy of prematurity in a new-
born rat model (35). The second phase of retinopathy of
prematurity occurs after birth, when the avascular retina con-
tinues to grow, overreaching its blood supply. This results in
local tissue hypoxia, increased VEGF release, and an abnor-
mal neovascular response. Once again, this process involves the
formation of ROS and may be amenable to reductions in expo-
sure to oxygen as well as treatment with antioxidants (36,37).
Similar mechanisms may be at play in ROS-induced dam-

age to the immature postnatal, developing pulmonary system,
where both epithelial and endothelial cells may be damaged.
Pulmonary epithelial DNA oxidation (14), accumulation of
HO· (19), lipid peroxidation (38), and protein oxidation (39) in
whole lung have all been demonstrated in experimental mod-
els of bronchopulmonary dysplasia (BPD). In human BPD,
studies do strongly support a role for ROS-mediated damage.
Plasma 3-nitrotyrosine, a footprint of ONOO� formation, and
protein carbonyls, a marker of protein oxidation, are elevated
in premature newborns at highest risk of developing BPD
(40). ROS may inactivate antioxidant enzymes, with oxidized
or nitrated proteins critical to lung function having been
identified (41). The weight of the evidence implicates ROS in
the development of impaired lung development in BPD (9,42).
Because exposure to more moderate oxygen concentrations

are associated with modern-day BPD, the disruption to mes-
enchymal-epithelial-endothelial signaling, rather than acute
cell necrosis or apoptosis induced by ROS, may be more

critical. The “new” BPD is characterized by milder exposure
to oxidative stress and mechanical injury, but at an earlier
stage of pulmonary development, which ultimately causes
alveolar hypoplasia (43). The inactivation of NO signaling,
which is required for normal alveolar development, is one
likely candidate pathway, either through direct inactivation
(ONOO� formation) or through indirect effects on endoge-
nous NO production (44,45). In some (46,47), but not all,
(48,49) experimental animal models of BPD, treatment with
inhaled NO significantly protects alveolar development. Clin-
ical trials of inhaled NO to prevent BPD have also had mixed
results (50–53), possibly due to differences in patient selection
and treatment strategies as well as inactivation of NO by ROS.
Because cGMP is a major target of NO action, type V
phosphodiesterase inhibition would be expected to also en-
hance alveolar development, which indeed has been shown in
a newborn rat model of BPD (54). Further support for this
concept is suggested by strategies aimed at interfering with
O2

�–mediated inactivation of NO using exogenous recombi-
nant human CuZnSOD (rhSOD). In newborn lambs with
pulmonary hypertension, treatment with inhaled NO in con-
junction with rhSOD results in enhanced NO signaling, sig-
nificant improvements in oxygenation, and marked reductions
in oxidation in the lung (55). Clinical trials of inhaled NO in
conjunction with rhSOD administration for the treatment of
pulmonary hypertension in newborn infants are currently be-
ing planned.

Antioxidant Defenses: Developmental Regulation
and Vulnerabilities

The vulnerability of target molecules, cellular compart-
ments, and organ systems to ROS-mediated pathways depends
on the local redox milieu, which, in turn, depends on devel-
opmental regulation of antioxidants. Several foci of ROS
generation are spatially adjacent to opposing antioxidant en-
zymatic systems within subcellular compartments, as illus-
trated in Fig. 2. Tight temporo-spatial control of antioxidant
expression has been linked to normal control of apoptosis in
physiologic development. For example, opposition to oxida-

Figure 2. ROS, macromolecular damage, altered signaling. ROS damage
DNA through strand breaks and base oxidation that, if unrepaired, induces
apoptosis or oncosis. Protein oxidation and nitration damage antioxidant
enzymes, surfactant proteins, and anti-inflammatory pathways that can further
propagate maladaptive inflammation. Lipid peroxidation products generate
pro-inflammatory prostanoids, and can generate further radical formation
through lipid chain reactions, possibly releasing damaging enzymes packaged
in cellular organelles. Direct effects of ROS on signaling pathways include
redox-sensitive transcription factors—e.g. HIF, Nrf-2, and NF-�B—as well as
indirect effects through inactivation of NO-based signaling.
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tive signaling by use of antioxidant mimetics has been shown
to prevent the physiologic apoptosis required for normal ver-
tebrate limb development (56).
Gestational dependence of enzymatic antioxidants has been

recognized for decades, as has the developmental regulation of
oxygen-dependent signaling (previously reviewed in this se-
ries by Maltepe and Saugstad) (57,58). The cellular, subcel-
lular, and tissue-specific expression of antioxidant enzymes,
such as superoxide dismutases (SOD), catalase, glutathione
peroxidases, and peroxiredoxin largely determine the relative
vulnerabilities of tissues and cells to ROS-mediated injury
(59,60). However, oxidative stress may actually regulate an-
tioxidant capacity, with newborn rats demonstrating up-
regulation of glutathione peroxidase catalase, and CuZn (cytoso-
lic) SOD expression and activity in response to hyperoxia (61).
Because enzymatic antioxidants are gestationally regulated,

premature newborns would be expected to have decreased
expression relative to full-term newborns, and this has been
demonstrated in most animal models (58,59,62,63). Suscepti-
bility of the premature infant to ROS-mediated damage also
depends on the expression and activity of many of these
antioxidant enzymes, with heme oxygenase-1 and thioredoxin
mRNA expression levels increased immediately after birth in
both preterm and term newborns (64,65). Hypoxia may gen-
erate ROS that directly or indirectly stimulate hypoxia-
inducible factors important in lung or brain development
(66,67). The contribution of these induced responses may vary
depending on the nature and magnitude of the oxidative stress.
Whether this gestation-dependent expression/induction of an-
tioxidants is adequate and actually involved in human diseases
is not completely clear. Some antioxidant levels—glutathione,
ascorbate, and urate—have been analyzed in tracheal aspirates
and found to be poorly predictive of the risk of developing
BPD (68). However, other antioxidants (e.g. SOD) may be
more important in view of what has been found in animal
model systems as well as clinical specimens obtained from
newborn infants (69).
Although nonenzymatic antioxidants are also depleted in

conditions characterized by ROS-mediated stress, the inter-
pretation of these measurements is quite complex (70). For
example, “low” vitamin E levels in premature newborns were
interpreted as representing a deficient state; whether or not this
is the case actually depends on the specific target cell or organ
and on the actual ROS milieu (71). In contrast, glutathione
may be deficient in premature infants because of excessive
oxidization by ROS coupled with reduced glutathione reduc-
tase reaction with the electron acceptor NADPH (72). Finally,
melatonin acts as an antioxidant in the retina and brain (73),
and its cyclic production is disrupted in premature infants
(74), possibly increasing the risk of ROS-mediated damage.

Antioxidant Therapies: Enzymatic and
Nonenzymatic Approaches

Although the use of supplemental antioxidants represents a
logical strategy to prevent or ameliorate lung injury from
excess generation of ROS, caution must be exercised because
ROS are critically important second messengers in various

cell signaling pathways that control normal cellular functions.
In addition, intracellular generation of ROS is important in
bacterial killing by alveolar macrophages and neutrophils, and
antioxidants may interfere with this process and contribute to
worsening tissue injury.
Multiple cell culture models have suggested that overex-

pression of antioxidants prevents ROS-induced injury. Il-
izarov et al. (75) generated stable cell lines overexpressing
MnSOD and/or catalase (1.5- to 2-fold increase in activity)
and then exposed them to 95% O2 for 10 d. Significantly, more
cells overexpressing MnSOD were viable (�40%) compared
with cells overexpressing catalase alone or control cells
(�10%). Overexpression of catalase with MnSOD had a small
additional benefit, suggesting that scavenging O2

·� is the
important rate-limiting step. Overexpression of either MnSOD
or CuZnSOD also reversed the growth inhibitory effects of
hyperoxia, with optimal protection from hyperoxic injury
occurring with 1.5- to 3-fold increases in activity (76). Pre-
vention of mitochondrial oxidation seemed to be a critical
factor, because markers of mitochondrial function and cell
survival correlated directly with the extent of mitochondrial
localization of antioxidant activity and not overall activity
within the cell (77). Overexpression of SOD not only reduced
ROS production, but also mitigated the activation of the
JNK/AP-1 pathway (78). Activation of this MAPK signal
transduction pathway has been implicated in the pathogenesis
of ROS-induced mitochondrial injury and apoptotic cell death.
Finally, bacterial infection and associated inflammation have
been shown to significantly increase ROS production. Expo-
sure of lung epithelial cells (both airway and alveolar), mono-
cytes, and macrophages to hyperoxia for as little as 24 h is
associated with significant increases in bacterial adherence
and IL-8 production as well as impaired phagocytosis and
bacterial clearance, with overexpression of SOD having sig-
nificant beneficial effects (79–81). Because nosocomial infec-
tion is a predictor of BPD (82), antioxidant therapy could also
be protective through this mechanism.
Other data demonstrating the efficacy of SOD in preventing

hyperoxia-induced lung injury come from studies of geneti-
cally engineered mice. Transgenic mice lacking MnSOD die
within the first 10 d of life in room air, whereas mice lacking
CuZn or EC-SOD have reduced survival and more lung injury
in response to ROS, but a normal lifespan (83–85). In con-
trast, transgenic mice overexpressing MnSOD in alveolar type
II cells are able to survive longer with significantly less lung
injury in hyperoxia compared with wild-type controls (86). In
addition, newborn EC-SOD transgenic (SP-C promoter
driven) mice exposed to hyperoxia showed significantly less
pulmonary neutrophil influx and reduced glutathione, with
preservation of alveolar development compared with wild-
type littermates (60). Transgenic mice had significantly less
pulmonary neutrophil influx and oxidized glutathione at 7 d,
preservation of alveolar surface and volume density, and
preserved differentiation of type I alveolar epithelium, com-
pared with wild-type littermates. Taken together, these data
indicate that SOD is critically important in preventing hyper-
oxia-induced lung injury and preserving normal alveolar ar-
chitecture.
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The antioxidant vitamins, ascorbic acid (vitamin C) and
�-tocopherol (vitamin E), are known to inhibit ROS-induced
lipid peroxidation. Berger et al. (87) studied the administra-
tion of high-dose antioxidant vitamins in a premature baboon
model of BPD compared with standard antioxidant vitamin
supplementation. Although higher doses significantly raised
vitamin C and E concentrations in plasma and the lung, no
protective effects could be demonstrated. These studies ques-
tion whether raising antioxidant vitamin concentrations alone
will be effective in preventing ROS-induced injury in high-
risk preterm infants.
Supplementation of vitamins A, C, and E has also been

studied in preterm infants in an attempt to prevent with
ROS-induced injury. Concentrations of vitamin A (i.e. retinol)
may be deficient in very low birth weight infants, presumably
from increased absorption of parenteral vitamin A into the i.v.
tubing or from higher nutritional requirements (88). A multi-
center trial of high-dose vitamin A supplementation in prema-
ture infants found a small (7%), but statistically significant
reduction in the incidence of BPD (89). However, follow-up
of treated infants did not demonstrate any long-term benefits
of vitamin A in reducing chronic respiratory morbidity (90).
Vitamin C has both oxidant and antioxidant activities and is
thought to contribute to the regeneration of membrane-bound
�-tocopherol (91). Although preterm infants may be relatively
deficient in vitamin E, randomized controlled trials have
consistently failed to demonstrate a significant benefit of
�-tocopherol in preterm infants (92,93). Of concern, is that
pharmacologic concentrations of vitamin E were associated
with an increased risk of sepsis and necrotizing enterocolitis,
precluding the routine use of these doses in high-risk preterm
infants (94).

N-Acetylcysteine (NAC) is a source of the essential amino
acid L-cysteine and a precursor of the antioxidant glutathione.
A multicenter, double-blind trial of NAC was conducted in
391 ventilated, extremely low birth weight infants. Infants
were randomized by 36 h of age to receive 16–32 mg/kg/d of
NAC or placebo i.v. for 6 d (95). The study showed no
reduction in survival or the incidence or severity of BPD at 36
wk corrected age or improved pulmonary function when the
infants were studied at term (96).
A multicenter, randomized trial of prophylactic rhSOD has

been performed to determine whether intratracheal treatment
significantly reduced the incidence of BPD and improved
pulmonary outcome at 1-y corrected age (97). Three hundred
two intubated, premature infants (600–1200 g at birth) re-
ceived either intratracheal rhSOD (5 mg/kg) or placebo every
48 h (as long as intubation was required) up to 1 mo of age.
Although there were no differences in the incidence of death
or BPD, 37% of placebo-treated infants had repeated episodes
of wheezing or other respiratory illness severe enough to
require treatment with asthma medications (e.g. bronchodila-
tors and corticosteroids) compared with 24% of rhSOD treated
infants at 1-y corrected age. In the highest risk infants, �27
wk gestation, 42% treated with placebo received asthma med-
ications compared with 19% of rhSOD-treated infants. rhSOD
was also associated with a 55% decrease in emergency de-
partment visits and a 44% decrease in subsequent hospitaliza-

tions. This study demonstrates that rhSOD may reduce ROS-
induced pulmonary injury, although this may not be readily
apparent when only evaluating early outcomes based on cur-
rent BPD definitions. Future studies using long-term outcome
variables may be needed to more definitively determine
whether treatments to scavenge ROS are effective.

Summary

Oxidative stress, particularly, in the preterm newborn,
arises in multiple organ systems and subcellular compart-
ments. This occurs due to inadequate detoxifying mechanisms
such as inducible antioxidant enzymes, glutathione stores, and
nutritional antioxidants. Oxidative molecular damage to DNA
can arrest appropriately timed proliferation and differentiation
and damage to lipids in cell membranes, and key regulatory
enzymes can provoke maladaptive inflammatory responses
that can amplify the initial injuries. More subtle effects on
ROS-mediated signaling and depletion of NO available for
endogenous proangiogenic signaling can further contribute to
disrupted organ development, including excitotoxic neuronal
damage. Although these aspects have suggested the rationale
for antioxidant therapy, its uses in the prevention of BPD,
ROP, or brain injury in preterm newborns has not yet yielded
unequivocal success. Further studies aimed at superior target-
ing to improve the therapeutic index of antioxidants will be
necessary.
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