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The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications.
Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis,
increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these
alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In
rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased
inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged
brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of
neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a ‘sensitized’
or ‘primed’ phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability
to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like
sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of
neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that
reverse aging-associated deficits.
Neuropsychopharmacology Reviews (2017) 42, 318–333; doi:10.1038/npp.2016.185; published online 12 October 2016
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INTRODUCTION

Advances in the biomedical sciences have led to a significant
increase in the elderly population. For instance, 13% of the
population in the United States was estimated to be 65 years
old or older in 2010. Moreover, the population 85 years and
over is projected to rise from 5.5 million in 2010 to 19
million by 2050 (Federal Interagency Forum on Aging-
Related Statistics, 2012). This increasing trend in the older
population is palpable on a global scale and can be attributed
to overall reduction in mortality and a longer life span
(Federal Interagency Forum on Aging-Related Statistics,
2012). Increase in life span, however, is met with a newer
challenge to extend health span of the aging individuals. In
other words, slowing aging in itself is not sufficient unless
paralleled with healthy aging. Although aging is not a
disease, it is a significant risk factor for functional decline,
affective impairments, exaggerated response to illnesses,
dementia, and overall vulnerability for diseases (Hayflick,
2007; Seals and Melov, 2014). Conversely, life events

associated with psychological stress and injury can also lead
to accelerated aging-associated impairments and dementia
(Epel et al, 2004; Smith et al, 2013). This review presents (1)
findings from clinical and animal studies that have helped
elucidate the dynamics and mechanisms underlying aging,
(2) the role of microglia in enhanced inflammatory signaling
in the aged brain, (3) the role of caloric restriction and
blood-borne factors on delaying aging, and (4) the effects of
psychological stress on premature aging and aging-associated
impairments.

CLINICAL FEATURES OF NORMAL AGING

Aging is a progressive natural phenomenon characterized by
anatomical and functional decline paralleled with cognitive
impairments. Despite identification of a constellation of
changes associated with aging, a standard definition of
normal aging has yet to reach consensus (Fjell et al, 2014). In
humans, the distinguishing criteria for normal vs patholo-
gical aging are: central nervous system (CNS) injury, amyloid
plaques (based on positron emission tomography (PET)),
neurodegeneration, neuropsychiatric conditions, dementia,
and impaired performance on cognitive tests (Arani et al,
2015; Fabbri et al, 2016; Tegeler et al, 2016). Thus, the
applied definition of normal aging may include an absence of
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frank pathology and dementia, and presence of cognitive
decline (eg, executive function) that is common to the aging
population. An accurate understanding of normal aging may
be hindered by cross-sectional studies, which fail to consider
individual differences, such as, genetics, socioeconomic
status, environment, and lifestyle. For instance, in compar-
ison with longitudinal design, cross-sectional analysis was
found to overestimate age-associated cognitive decline
(Singh-Manoux et al, 2012). There is also a lack of consensus
on the age of onset of cognitive decline. For example, a cross-
sectional analysis showed that episodic memory decline
begins as early as 20s, whereas longitudinal analysis of the
same project estimated cognitive decline to occur around the
age of 60 (Ronnlund et al, 2005). Aging-associated neuroa-
natomical changes also revealed sexual dimorphism in that
males were likely to undergo greater reduction in brain
elasticity and stiffness than their female counterparts (Arani
et al, 2015; Sack et al, 2009). Thus, the confounding
variability presented by age, sex, individual differences, and
methods of analysis highlights that although aging is a
natural phenomenon, it is not a uniform phenomenon.
Nevertheless, there is mounting evidence revealing the
overall anatomical and behavioral changes associated
with aging.

Neuroanatomical and Behavioral Changes in
Aging: Evidence from Clinical Studies

Neuroimaging studies have confirmed volumetric changes in
brain regions of the elderly (Storsve et al, 2014; Zhang et al,
2016). Overcoming the drawbacks of cross-sectional studies
that have largely dominated clinical studies on aging, newer
research based on the longitudinal studies has reported
significant tissue atrophy in the temporal and occipital
regions in non-pathological aging (Pfefferbaum et al, 2013;
Storsve et al, 2014). In an elegant study based on the idea that
replicating DNA in human neurons incorporate atmospheric
14C radioactive carbon, Spalding et al (2013) showed
increased 14C levels in human hippocampal genomic DNA,
indicative of postnatal neurogenesis, into at least the fifth
decade of life (Spalding et al, 2013). New neurons were
generated at a rate of 1.75% during adulthood with a modest
but significant decline with old age. These results support
previous findings of postnatal neurogenesis in humans, and
underscore its quantitative and qualitative changes in aging
(Knoth et al, 2010). Decelerated neurogenesis and hippo-
campal atrophy are associated with memory deficits in
humans (Cameron and McKay, 1999).
Corresponding with the volumetric changes and deficits

associated with neurogenesis, elderly individuals show rapid
impairments in cognitive and affective functioning. Cogni-
tive decline, primarily in executive functioning and memory
formation, is one of the most pronounced consequences of
aging (Daselaar et al, 2006; Hedden and Gabrieli, 2004;
Townsend et al, 2006). Although aging itself is not associated
with decline in affective functioning, aged individuals,
compared with the young, are more vulnerable to depressive

symptoms associated with physical illnesses, and life events
(English and Carstensen, 2015; Fiske et al, 2009, 2013).
Furthermore, elderly individuals with depression also have
accelerated cognitive decline. Overall, these findings indicate
an age-dependent association between anatomical changes,
and cognitive and affective functioning in aging (Gualtieri
and Johnson, 2008).

Immune Dysregulation in Aging: Evidence from
Clinical Studies

Peripheral immune system. One of the hallmarks of aging is
elevated oxidative stress and inflammation (Finkel and
Holbrook, 2000). Indeed, the term ‘inflamm-aging’ has been
coined to describe the heightened inflammatory status that is
characteristic of the aging process and is attributed to
cumulative exposure to antigens and stress (Franceschi et al,
2000). On one hand, there is evidence of aging-associated
deterioration of the adaptive immune system that affects
T-cell and B-cell functions (Gibson et al, 2009; Grubeck-
Loebenstein et al, 2009). These changes are attributed to
aging-associated immune senescence that impairs the ability
to fight infections and produce antibodies critical for the
efficacy of vaccines (Grubeck-Loebenstein et al, 2009). On
the other hand, there is evidence indicating enhanced
presence of innate immune cells and circulating cytokines
in the elderly. This change may indicate a shift away from
antigen-specific adaptive immune response in the aged
individuals to a more innate immunity-driven response that
is associated with heightened inflammation. For example,
increased number of monocytes, neutrophils, and elevated
levels of circulating cytokines have been consistently
reported in elderly individuals (Leng et al, 2005; Roubenoff
et al, 1998; Tan et al, 2007). Notably, higher levels of
inflammation in the elderly are associated with neurobeha-
vioral complications. For instance, a recent cross-sectional
study investigating the association between inflammatory
markers and executive functioning in an elderly population
indicated an age-associated increase in the serum expression
of C-reactive protein (CRP), IL-6 and IL-10. Elevated levels
of these cytokines were inversely associated with executive
performance on neuropsychological tests (Tegeler et al,
2016). In addition, a separate multistage population-based
study reported that serum levels of IL-6 and soluble TNFα
could be used as an inflammatory index to predict mortality
in the elderly (Varadhan et al, 2014). Taken together, these
findings reveal an increase in systemic levels of inflammatory
signaling molecules in elderly humans.

Central immune system. Heightened inflammatory signaling
in aging is evident in the peripheral system and the CNS
alike. For instance, microarray studies of the adult and aged
human prefrontal cortex reported age-dependent increased
expression of inflammation-associated genes, such as, NFKB,
Toll-like-receptor (TLR)-4, IL-1R, and GFAP (Primiani et al,
2014). Similarly, age-related increase in IL-6, oxidative
damage, and concurrent reduction in total antioxidant
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capacity levels was reported in the cerebrospinal fluid of
healthy adults (Guest et al, 2014). These findings collectively
indicate an age-associated increase in inflammatory signaling
and oxidative stress in the aging brain and in the CNS as
a whole.
The increased neuroinflammatory profile has primarily

been attributed to aging-associated changes in microglia, the
innate immune cells of the CNS. During embryogenesis,
microglia originate from yolk sac-derived myeloid progeni-
tors and take up residence in the brain (Kierdorf et al, 2012).
Although initially considered ‘quiescent’ cells primarily
responsible for clearing cellular debris in the brain, microglia
are now known as dynamic players in synaptic pruning,
maintaining homeostasis and are primary responders to
insult and injury in the CNS (Lou et al, 2016; Nimmerjahn
et al, 2005; Paolicelli et al, 2011). Under homeostatic
conditions, microglia display a ramified phenotype, marked
by numerous processes. In response to inflammatory insult,
these cells undergo morphological alterations, marked by
shorter, thicker processes and enhanced expression of
inflammatory markers (Streit et al, 1999). Histological
examination of the human postmortem brain samples have
revealed pronounced morphological changes in microglia of
the aged brain. These changes are marked by deramification,
cytoplasmic fragmentation, and shortening of cellular
processes even in absence of frank pathology (Streit et al,
2004). Taken together, molecular analysis of the brain and
cerebrospinal fluid, paralleled by imaging and histological
studies, reveal an augmented inflammatory profile of the
aged human brain.
Current clinical evaluations of microglia activation have

relied largely on TSPO (Translocator Protein (18 kDa))
binding activity detected via PET. TSPO is a peripheral
benzodiazepine receptor expressed on the outer mitochon-
drial layer of microglia, and is believed to be upregulated
during microglial activation (Rupprecht et al, 2010). Several
PET scan studies have revealed increased receptor binding of
the TSPO ligands, R-[11C]PK11195 and [11C]vinpocetine, in
the cortical and subcortical brain regions of healthy elderly
participants (Gulyas et al, 2011; Schuitemaker et al, 2012).
Increased TSPO binding has been interpreted as enhanced
microglia activation. Although some PET studies have shown
increased TSPO ligand-binding activity in the brains of older
adults, other studies did not (Suridjan et al, 2014). These
discrepancies have been attributed to the difference in ligand
types, off-target binding (such as the vascular endothelial
cells), uneven distribution of the radioactive ligand in the
brain parenchyma, and tissue-dependent differences in
ligand affinity (Suridjan et al, 2014; Turkheimer et al,
2015). For example, use of higher-affinity TSPO ligands
increased vascular binding, in turn masking ligand binding
in the microglia (Rizzo et al, 2014). Overall, PET studies have
indicated that increased TSPO binding may not necessarily
reflect increased TSPO expression in vivo. Furthermore,
increased TSPO expression may not be indicative of the
inflammatory phenotype of microglia (Scholz et al, 2015).
Taken together, although TSPO binding may be optimized as

a method to examine microglia, the aforementioned
methodological variabilities and interpretations demand a
thorough and critical evaluation of the findings.

NEUROIMMUNE DYSREGULATION IN
AGING: EXPERIMENTAL EVIDENCE

Animal models have played a significant role in recapitulat-
ing the neurological, inflammatory and behavioral correlates
of human aging. In particular, rodents serve as the most
popular animal models owing to their shorter life span,
manipulability, convenience, and relative similarities to aging
in humans. For instance, the average lifespan curve for mice
(Mus musculus) is consistent with that of humans, indicating
similar patterns of decline in health span between the two
species (Mitchell et al, 2015). Despite these similarities, there
also exist inherent differences in patterns of aging among
species and strains. Indeed, the use of different strains of
rodents has generated significant variability in research,
hindering interpretation of the findings. For example, a
longevity study performed on 19 strains of specific-
pathogen-free mice and rats showed marked differences in
lifespan ranging from 312 to 782 days within the mouse
strains (Festing and Blackmore, 1971). Moreover, sex was a
strong determinant of lifespan, as females outlived the males
in 14 out of the 19 strains, although no significant difference
was detected in the remaining 5 strains (Festing and
Blackmore, 1971). In an extensive longitudinal and cross-
sectional study conducted on 30 most commonly used
strains of inbred mice, the authors showed strain and sex
differences in lifespan, physiological, and histopathological
changes (Sundberg et al, 2011). Additional determinants of
aging and longevity include, microbiome, housing environ-
ment etc. As most animals used in aging studies are ‘aged’ in
animal facilities, female mice are fairly popular due to their
lower propensity to engage in aggressive behavior or fighting.
However, given the sexual dimorphism, aging in one sex may
not be representative of aging in the strain as a whole. An
extensive resource on aging in various mouse strains is
available in the Mouse Phenome Database provided by the
Jackson Laboratory, Maine. Taken together, these studies
elucidate numerous ways in which aging may manifest in
different species and sexes. Therefore, it is important to note
that although rodents serve as an important model for
studying aging, the variability in the models demands critical
consideration.
Nonetheless, decades of research has made enormous

strides in advancing the scientific understanding of aging in
humans and rodents. Corresponding with clinical findings in
the human elderly, aged mice showed deficits in neurogen-
esis and memory (van Praag et al, 2005). Animal studies have
implicated microglial dysregulation in aging-associated
neurogenic and behavioral deficits (Streit et al, 2008). For
instance, microglia depletion in hippocampal culture from
aged mice, but not from young mice, promoted formation of
neurospheres (indicative of neural progenitor cell
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proliferation), suggesting an anti-neurogenic role of micro-
glia in the aged brain (Vukovic et al, 2012). Although the
precise role of microglia in neurogenesis remains unclear,
microglia are known to undergo several transcriptional and
morphological changes that contribute to aberrant immu-
nological and neuronal responses in aging. These changes,
collectively referred to as ‘priming’, are discussed below.

The Primed Microglia

Microglia are strictly regulated by factors within the CNS
microenvironment during homeostasis (Biber et al, 2007).
With aging, microglia take on a ‘primed’ phenotype, which is
characterized by an exaggerated and uncontrolled inflam-
matory response to an immune stimulus (Perry and Holmes,
2014). Early reports on aging showed increased IL-1β,
reactive oxygen species, and lipid peroxidation levels that
corresponded with impaired long-term potentiation (LTP) in
the dentate gyrus of aged rats (Murray and Lynch, 1998).
Furthermore, intraventricular administration of IL-1β was
sufficient to induce lipid peroxidation in adult rats, high-
lighting the causal relationship between inflammatory
signaling and metabolic stress, the two major characteristics
of aging (Giulian et al, 1986). Notably, elevated IL-1β was
reported in some studies and not others. For instance, aged
(~22 month old) Wistar and Fisher 344 rats (Gemma et al,
2005; Lynch, 1999) were reported to show elevated brain
IL-1β, whereas (23–26 month old) Fisher 344 ×BN F1 and
Fisher 344 rats (Barrientos et al, 2009; Gee, Ding, and Keller,
2006) and (18–22 month old) BALB/c and C57BL/6 mice did
not exhibit increased baseline levels of brain IL-1β (Hascup
et al, 2016; Huang et al, 2008; Wynne et al, 2010). Whether
baseline IL-1β is elevated in the aged brain may depend on
the strain and age of animals used in the study. Nevertheless,
it is important to note that the primed profile associated with
microglia in aging does not refer to an enhanced immune
response at baseline, rather it refers to an exaggerated
inflammatory response to an immune challenge/stimulus
(Cunningham et al, 2005).
Microglia priming has been most widely characterized in

the context of systemic inflammation and neurodegenerative
conditions. Repeated exposure to systemic immune challenge
induces microglia priming. For example, a single LPS
injection increased serum levels of IL-1β with no concurrent
changes in brain IL-1β levels. However, a second injection
(24 h later) significantly increased brain IL-1β levels with a
much smaller increase in serum IL-1β (Puntener et al, 2012).
Similarly, in a neurodegenerative model of ME7 prion
disease mice, microglia displayed an ameboid, deramified
morphology, distinct from the ramified microglia in the
control mice. This morphological alteration was associated
with a greater increase in brain IL-1β following LPS
injections in the ME7 mice, compared with the saline
control (Cunningham et al, 2005). LPS-induced increase in
brain IL-1β was also associated with reduced locomotor
activity in the ME7 mice, indicating that microglial priming
in the prion disease model induces exaggerated immune

response as well as sickness behavior (Combrinck et al,
2002). These findings show that central and peripheral
immune changes can trigger priming in microglia that
display an exaggerated inflammatory response in response to
an otherwise mild immune challenge.

Exaggerated Inflammatory Response to Immune
Challenge in Aging

A consequence of microglia priming in aging is an increased
reactivity to peripheral immune challenge (Barrientos et al,
2011; Frank et al, 2010; Sierra et al, 2007). For instance,
systemic injection of LPS caused an exaggerated and
sustained neuroinflammatory response in the aged mice
(Godbout et al, 2005). This exaggerated expression of
cytokines in the aged mice was associated with the prolonged
sickness (Godbout et al, 2005) and depressive-like behavior
(Godbout et al, 2008). In addition, minocycline, a tetracy-
cline antibiotic with anti-inflammatory actions on microglia,
reduced LPS-induced augmentation of inflammatory med-
iators, such as IL-1β, indoleamine 2,3 dioxygenase and TLR2,
indicating that the neuroinflammatory response and sickness
behavior following LPS is mediated by microglial activation
(Henry et al, 2008). Subsequent studies showed that the
excessive IL-1β protein produced in the aged brain after LPS
challenge was derived from the primed (MHCII positive)
microglia (Henry et al, 2009). It is important to note that LPS
enhances expression of pro-inflammatory (eg, IL-1β) and
anti-inflammatory (eg, IL-10) mediators in aged mice
compared with the adult (Henry et al, 2009). Although
IL-10 expression may indicate a compensatory step against
the pro-inflammatory response, IL-1β production in aged
mice was not attenuated despite presence of IL-10 (Henry
et al, 2009). A recent study showed that microglial IL-10
binds to astrocytes that modulate microglial inflammatory
signaling in a transforming growth factor (TGF)-β-depen-
dent manner (Norden et al, 2014). Aging was associated with
reduced IL-10 receptor on aged astrocytes that resulted in a
failure to resolve microglia activation in the aged brain
(Norden et al, 2016). Overall, these findings indicate that
increased immune reactivity to systemic immune challenge
in the aged brain is attributed to primed microglia. Several
reports have elucidated (and have postulated) the mechan-
isms of peripheral-to-central immune signaling in the
context of sickness behavior and cognitive impairments.
Peripheral inflammatory mediators, such as cytokines,
engage in communication with the CNS via (i) vagal
afferents containing cytokine receptors that serve as direct
transmitters of peripheral immune signals to the brain, (ii)
direct diffusion into the brain via leaky blood-brain-barrier
in the circumventricular organs, such as, paraventricular
nucleus of the hypothalamus and area postrema (iii) active
energy-dependent transport of cytokines by brain endothelial
cells, and (iv) propagation of peripheral cytokine signals via
brain endothelial cell receptors (Dilger and Johnson, 2008;
Maier, 2003; Miller et al, 2009).
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Further evidence implicating peripheral immune stimula-
tion and microglia priming comes from surgical stress and
cognitive decline, both of which are common among older
adults (Moller et al, 1998). In rodent models, aged but not
young adult rats displayed memory impairments and
elevated hippocampal IL-1β levels 4 days after laparotomy
(Barrientos et al, 2012). Moreover, intracisternal IL-1
receptor antagonist attenuated the laparotomy-induced
hippocampal IL-1β and reversed memory deficits, further
highlighting the exaggerated neuroinflammatory response to
a peripheral challenge (Barrientos et al, 2012). Taken
together, central inflammatory signaling in the aged brain
can be comprehended in twofolds: (i) microglia take on a
primed phenotype as a function of aging, (ii) and exhibit an

exaggerated inflammatory response when triggered by an
immune challenge (Figure 1).
The primed profile of microglia associated with aging is

also evident in CNS pathologies. For example, microglia
from healthy aged mice exhibited a gene expression profile
similar to that of microglia from the APP-PS1 mice, a model
of Alzheimer’s disease. Namely, both conditions showed
enriched expression of genes associated with lysosomal
function, oxidative phosphorylation, integrins, and signaling
molecules implicated in Alzheimer’s Disease (Holtman et al,
2015). Furthermore, compared with the young brain,
microglia from the aged brain were found to internalize
53% fewer amyloid beta plaques, suggesting inefficient
phagocytosis in aged microglia (Njie et al, 2012). These

AgingChronic stress

+ Aging
+ Chronic stress/
Immune challenge/
Injury

MHCII
CX3CR1
IL1β
Epigenetic changes

“Surveying”

“Primed”

“Hyperactive”

++ MHCII
+ IL1β

CX3CR1 

+++ MHCII
+++ IL1β

CX3CR1 --

-

Figure 1. Aging and environmental factors are intertwined in a dynamic, bidirectional relationship. Under homeostatic conditions, microglia are highly
dynamic cells, constantly ‘surveying’ the brain microenvironment. Clinical and animal studies support findings of microglial priming (or ‘sensitization’) with
aging. The ‘primed’ microglia are characterized by a dystrophic morphology including, de-ramified processes, spherical cell body, and fragmented
cytoplasm (Streit et al, 2004). Associated with these morphological alterations are biochemical changes, such as elevated expression of antigen
presentation molecules (MHCII), Toll-like receptors, pro-inflammatory cytokines (IL-1β), reduced expression of regulatory molecules (CX3CR1 and
CD200R) (Frank et al, 2006; Maher et al, 2004), DNA methylation changes and telomere shortening (Flanary and Streit, 2003; Zannas et al, 2015).
Microglia of the aged brain also show deficient phagocytic activity and impaired mobility under baseline (Damani et al, 2011). This primed profile of
microglia has been documented in aging and chronic psychological stress. Primed microglia are vulnerable to subsequent immune stimuli, such as
immune challenge, stress, and aging. As such, upon exposure to these stimuli, the primed microglia take on a ‘hyperactive’ state marked by exaggerated
pro-inflammatory response and resistance to regulation (Barrientos et al, 2009; Frank, Barrientos, et al, 2010; Godbout et al, 2005; Kinsey et al, 2008;
Willette et al, 2012; Wynne et al, 2010).
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aged microglia also expressed significantly higher levels of
TNFα and IL6 in response to ex vivo LPS (Njie et al, 2012). A
series of studies using a ME7 prion disease model showed
dystrophic morphology of microglia and enhanced expres-
sion of inflammatory mediators such as IL-1β and COX-2
following in vivo LPS challenge. The exaggerated inflamma-
tory changes in ME7 mice were also associated with
impairments in spatial learning (Cunningham et al, 2009).
These characteristics, representative of microglial priming
and subsequent hyperactivation, are similar to those in the
aged brain (Cunningham et al, 2005).
Despite some morphological and transcriptional over-

lapping between microglia in normal aging and pathological
aging (eg, neurodegenerative conditions), there exist sig-
nificant differences in the progression of aging. As such,
although microglia in animal models of neurodegenerative
conditions serve as examples of the primed phenotype, these
microglia represent priming under more chronic conditions,
compared with priming as a result of normal aging. It is also
important to consider that the primed microglia associated
with normal aging may respond differently based on the
immune challenge. Acute challenge, such as Escherichia coli
in aged rats (discussed above) induced exaggerated neuroin-
flammatory response and memory impairments that were
completely resolved by 14 days (Barrientos et al, 2009).
However, chronic immune challenge, such as, Bacillus
Calmette-Guerin triggered prolonged depressive-like beha-
vior that persisted beyond 21 days (Kelley et al, 2013). Thus,
the inflammatory response of the primed microglia in aging
is dependent on the duration and intensity of immune
stimulation.

Markers of Microglia Priming

The primed profile of microglia has primarily been
characterized based on gene expression, morphology, and
mobility. Microglia under normal aging (ie, aging in absence
of neurodegeneration) showed upregulation of genes asso-
ciated with antigen presentation, such as MHCII, CD86, and
CIITA (Frank et al, 2006; Godbout et al, 2005; VanGuilder
et al, 2011), and suppression of anti-inflammatory genes,
such as IL-10 and CD200 (Frank et al, 2006). Similarly, TLR
1, 2, 4, 7 and co-receptor CD14, which together comprise
antigen receptors of the innate immunity, were also
upregulated in the aged mice (Letiembre et al, 2007). The
microglial morphology in the aged rodent brain was first
characterized via electron microscopy, revealing their
spherical morphology that was distinct from microglia of
the young adult brain (Vaughan and Peters, 1974).
Furthermore, the number of microglia was found to increase
by 65% between the ages of 3 and 27 months (Vaughan and
Peters, 1974). This morphological profile of the aged
microglia first reported in rats has also been confirmed in
mice, gerbils, and dogs (Hwang et al, 2008; Korhonen et al,
1997; Norden and Godbout, 2013; Streit and Xue, 2010).
Taken together, microglia undergo aging-associated

morphological changes that are concurrent with increased
expression of inflammatory markers.
In addition to the augmented inflammatory profile, the

dynamic behavior of microglia is also altered in aging. In the
healthy adult brain, microglia are found in a highly dynamic
state, constantly surveying the CNS microenvironment
(Nimmerjahn et al, 2005). In the aged mice, however,
microglia show significantly diminished mobility under
baseline conditions. For example, although microglia from
young mice responded to extracellular ATP by extension of
old processes and formation of new, aged microglia were
found to withdraw and even eliminate their existing
processes (Damani et al, 2011). In response to in vivo focal
laser injury, microglia from both young and aged mice
accumulated around the injury site 4 days post injury.
However, microglia in the young mice, but not in the aged
showed disaggregation at 16 days post injury, suggesting
prolonged accumulation of the aged microglia and impaired
ability for disaggregation (Damani et al, 2011). Together,
these findings indicate that microglia of the aged brain show
an abnormally sustained response to non-homeostatic
conditions, such as injury.

Transcriptional Profile of the Aged Brain: Close
Ties with an Inflammatory Profile

Concurrent with changes in microglial antigen presentation
markers and morphology, transcriptional alterations have
also been reported via microarray studies in aged humans
and animals. In healthy humans between the ages 26 and 106
years, genes associated with inflammatory response and
metabolism were significantly upregulated in the prefrontal
cortex as a function of age (Lu et al, 2004). Most notable
increases occurred in cytokines, complement components
and cell adhesion-related genes, although remarkable de-
creases were observed in genes involved in synaptic
transmission, vesicular transport, and protein signaling (Lu
et al, 2004). Interestingly, gene expression profile changes in
aging occurred in a region-dependent and sexually di-
morphic manner. For example, in the human brain, 5029
genes in the superior frontal gyrus, compared with 1110 in
the entorhinal cortex, were altered with age. Moreover, the
male brains showed greater alterations in overall gene
expression, altough increased immune activation was
characteristic of both sexes (Berchtold et al, 2008). Together,
these findings indicate aging-associated changes that vary
across brain regions and sexes. Furthermore, these changes
are associated with an overall increase in neuroinflammatory
signaling that can be attributed to the primed profile of
microglia.
Corresponding with these data, microarray results from

the mice brain also showed an age-associated upregulation of
genes that code for lysozyme, complement, MHC proteins,
and others implicated in immune function (Godbout et al,
2005). The only report examining the brain-region-specific
transcriptional profile of microglia demonstrated a heigh-
tened baseline expression of genes associated with
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metabolism and immune response in the cerebellum and
hippocampus (Grabert and Michoel, 2016). Notably, aging
induced an overall increase in the expression of immunor-
eceptor tyrosine-based activation motif (ITAM) with no
change in immunoreceptor tyrosine-based inhibitory motif.
For example, there was an age-dependent increase in the
expression of amplifying receptors (such as, TREM1,
SIRPB1a, etc), and a corresponding reduction (eg, CD200
receptor) or stable expression (eg, CD300a) of inhibitory
receptors in microglia. This selective increase in the ITAM
genes is suggestive of an immune-vigilant phenotype of the
aged microglia. In the same study, the hippocampal
microglia showed a 30% decline in overall gene expression
between the ages 4 and 22 months, a finding the authors
referred to as ‘potential disengagement of aged hippocampal
microglia with their environment compared to their young
adult counterparts’ (Grabert and Michoel, 2016). These
aging-induced region-dependent changes hold significant
implications in the health of the elderly. For example, the
hippocampus is particularly susceptible to age-associated
functional impairments and overt pathology such as
neuronal degeneration (Mosher and Wyss-Coray, 2014;
Vukovic et al, 2012; West et al, 1994). Taken together, aging
induces region-dependent changes in the expression of
inflammatory markers that are responsible for the hyper-
vigilant immune status of the aged brain.

Microenvironmental Regulation of Microglia in the
Aging Brain

Although the precise mechanisms underlying heightened
neuroinflammation in aging remain elusive, one of the
potential contributors is the impaired regulatory signaling
between microglia and other cell types in the brain. For
example, neurons and microglia are engaged in constant
interaction via secreted and membrane-bound ligands and
receptors. Neuronal signals regulating microglial activation
have been categorized as Off signals and On signals. The
former refer to constitutively expressed signals (such as,
CX3CL1 and CD200) that maintain the homeostatic
functions of microglia, whereas the latter refer to inducible
signals (such as, ATP and TREM2 ligand) that trigger
pro- and anti-inflammatory activation in microglia
(Biber et al, 2007).
Microglia are the only CNS cells to express the fractalkine

receptor CX3CR1, a constitutively expressed marker that
serves a critical role in postnatal synaptic development and
behavioral outcomes. Indeed, mice lacking CX3CR1 undergo
deficient synaptic pruning and brain development, subse-
quently resulting in abnormal social behavior (Paolicelli et al,
2011; Zhan et al, 2014). Microglial CX3CR1 interaction is
mediated via its ligand CX3CL1, which is constitutively
expressed by neurons as a membrane-bound and a secreted
protein (Hughes et al, 2002). Aged mice, but not adults,
showed reduced baseline levels of CX3CL1 that remained
unaltered after a systemic LPS challenge (Wynne et al, 2010).
LPS-injected aged mice, however, showed protracted

downregulation of CX3CR1 and reduced social behavior,
which was accompanied by elevated IL-1β and reduced
TGFβ (Wynne et al, 2010). Furthermore, in vitro treatment
of microglial cells with LPS followed by TGFβ significantly
attenuated LPS-induced IL-1β expression (Wynne et al,
2010). Indeed, the critical role of CX3CR1 in microglial
regulation and prevention of neurotoxicity has been
repeatedly demonstrated in various in vivo models of
neuroinflammation (Cardona et al, 2006). Taken together,
these findings provide evidence for a key immunomodula-
tory role of CX3CR1 in absence of which microglia of the
aged brain take on a dysregulated, pro-inflammatory
phenotype.
In addition to fractalkine proteins, CD200, one of the

best-studied members of the immunoglobulin superfamily, is
another critical component of microglial regulation. In the
CNS, CD200 and its receptor CD200r are expressed by
neurons and microglia, respectively, and this interaction is
crucial to the maintenance of microglial quiescence (Biber
et al, 2007). Indeed, despite normal lifespan and no obvious
behavioral abnormalities, CD200-knockout mice have
deramified microglia with upregulated levels of CD11b and
CD45 at baseline, overall indicative of an activated
phenotype (Hoek et al, 2000). Compared with young adults,
aged rats showed reduced neuronal CD200 that was
associated with the increased microglial MHCII expression
(Lyons et al, 2007). IL-4 treatment of cultured neurons and
intracerebroventricular administration of IL-4 markedly
increased CD200 expression in hippocampal neurons
(Lyons et al, 2007). IL-4 is a cytokine associated with
microglia regulation. Aged mice failed to upregulate IL-4Rα
in response to LPS, and did not elicit an alternative
(regulatory) immune response to ex vivo IL-4 (Fenn et al,
2012). Moreover, IL-4 knockout mice had reduced baseline
expression of CD200 at mRNA and protein levels, which
was associated with enhanced glial production of IL-1β,
TNFα, and IL-6 following LPS treatment (Lyons et al, 2009).
Furthermore, this heightened inflammatory profile was
associated with exacerbated sickness behavior, lack of social
exploration, and enhanced anxiety-like behavior (Lyons et al,
2009). Aging-induced impairment in IL-4 signaling that
occurs following LPS treatment is also evident in traumatic
spinal cord injury in aged mice. For example, compared with
adult mice, the aged mice showed deficient IL-4Rα expres-
sion, that corresponded with reduced arginase production
and impaired functional recovery following spinal cord
injury (Fenn et al, 2014). These findings suggest an aging-
induced impairment of microglial regulation, primarily
marked by failure to revert to the homeostatic state after
the resolution of inflammation. Taken together, these
findings indicate that a deficient CD200-CD200r signaling
in the brain may contribute to the elevated inflammatory
phenotype associated with aging. Indeed, microglial priming
in aging could be attributed to impairments in CX3CL1-
CX3CR1 and CD200-CD200r signaling between neurons and
microglia.
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Microglial Senescence and Hypoactivation:
Implications for Aging

Although the immunological profile of the aged brain is
generally discussed in the context of microglial priming and
enhanced pro-inflammatory signaling, some findings
indicate that microglia undergo senescence as a function of
aging. Some reports have implicated the deramified
morphology and cytoplasmic fragmentation of the aged
microglia in microglial senescence (Streit et al, 2004).
Microglial senescence is also associated with reduced
proliferation. For example, repeated nerve crush injury
resulted in the increased microglial proliferation in young
rats, but not in the aged (Miller and Streit, 2007). A primary
feature of cellular senescence is reduced potential for cell
replication due to telomere shortening. Indeed, age-
associated increase in telomerase activity and reduction in
telomere length has been reported in the rat brain
(Flanary and Streit, 2003), indicating that microglia of the
aged brain have a reduced potential for proliferation.
In addition, microglial senescence has also been associated
with increased oxidative stress accumulating over cellular
lifespan (Streit et al, 2008). Overall, these reports of
senescence are suggestive of functional deficiency and
reduced proliferation of microglia with age. On the contrary,
aging has also been associated with an increase, rather than
a decrease, in microglial population (Gebara et al, 2013;
Mouton et al, 2002; Tremblay et al, 2012). This paradox
of microglial priming and proliferation concurrent with
senescence in the aging brain remains unclear (Streit and
Xue, 2010).
Although microglia hyperactivation is detrimental to

normal brain function, microglia hypoactivation, as de-
scribed above, may also be associated with undesirable health
outcomes. Some clinical reports have implicated depression
with lower levels of inflammatory markers such as, CRP and
IL-6 (Almeida et al, 2009; Whooley et al, 2007). In addition, a
randomized trial using TNFα antagonist as a treatment for
depression failed to alleviate disease symptoms (Raison et al,
2013). These findings suggest that the lowering inflammatory
response may not necessarily be the global solution to mental
health impairments. Interestingly, therapeutic treatments
such as, electroconvulsive therapy and transcranial current
stimulation, in rats were associated with a pro-inflammatory
phenotype of microglia, marked by morphological altera-
tions, and increased MHCII expression and proliferation
(Jansson et al, 2009; Rueger et al, 2012). On the basis of these
findings, microglia activation at optimal levels may serve to
alleviate depression. However, it is important to note that
these therapeutic interventions were tested on naive animals,
and therefore, may not reflect the effects that may occur in
animals with depressive-like behavior. Nevertheless, it is
important to note that microglial activation is associated
with production of trophic factors, such as brain-derived
neurotrophic factor (BDNF), which is crucial to the
development of neurons and synaptic plasticity (Parkhurst
et al, 2013; Trang et al, 2009). Overall, these reports indicate

that microglial activation may present as a problem or as a
resolution to a problem. For example, some individuals
diagnosed with major depression may show reduced levels of
inflammatory markers, whereas others may show elevated
levels. In light of these findings, the idea of a personalized
treatment approach has also been proposed to address the
discrepancies in disorders such as, major depression
(Yirmiya et al, 2015).
As in the context of psychological disorders, microglia

hypoactivation has also been reported in aging and
aging-associated pathologies. For example, PS1-APP mice
(a model of Alzheimer’s Disease) showed an age-dependent
reduction in receptors and enzymes involved in beta amyloid
degradation, although still maintaining elevated levels of
cytokine (Hickman et al, 2008). Although this disease model
is not representative of normal aging, these findings overall
revealed the heterogeneous nature of microglia activation, in
which the microglia may be functionally hyperactive for
cytokine production, whereas hypoactive for clearance of
plaques and debris. Overall, these findings indicate that
microglial activation cannot be simply categorized as
harmful or beneficial. Instead microglial activation at
optimal levels is necessary for the maintenance of homeo-
static functions and overall health.

REVERSAL OF AGING-ASSOCIATED
DEFICITS VIA IMMUNE ALTERATIONS

Rejuvenation of the Aged Brain via Blood-Borne
Factors

Aging-associated decline in physiology and function also
occurs beyond the brain in peripheral organs such as
muscles, heart, and bone. Replenishing the circulatory
system with young blood has been shown to rejuvenate
peripheral organs and reverse functional deficits in animals
(Sinha et al, 2014). Recent studies from parabiosis models of
heterochronically paired animals (aged and young animals
that share the circulatory system via vascular anastomosis)
showed increased neurogenesis and improved cognitive
functions in the aged mice following exposure to young
blood (Villeda et al, 2014). These findings were the first to
implicate blood-borne factors in reversing the effects of aging
in brain regions, such as the hippocampus, that are located in
close proximity to vascular supply. Further studies identified
the role of peripheral blood cells, as well as secreted blood
factors in aging-induced changes in the brain. Indeed, gene
expression analysis of the choroid plexus, a brain region
marked by epithelial lining that serves as a neurovascular
interface, revealed an aging-induced upregulation of
interferon-I (IFN-I) and downregulation of interferon-II
response genes (Baruch et al, 2014). Moreover, neutralizing
antibodies against IFN-I restored growth factor levels and
cognitive functioning in aged mice, thus demonstrating the
role of blood-derived factors in aging-induced neurological
deficits (Baruch et al, 2014). Additional evidence for the role
of blood-borne systemic factors in aging-induced
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impairments was provided by Villeda et al (2011) who
showed that older mice that share a blood supply with
younger mice show increased neurogenesis, enhanced LTP
and improved cognitive functioning. Conversely, younger
mice heterochronically paired with older mice showed
reduced cell proliferation in the dentate gyrus and impaired
neurogenesis. Furthermore, plasma transfer from younger
mice into the aged was sufficient to replicate the findings
from the parabiosis experiments, elucidating the role of
blood-borne soluble factors, and not blood cells, in reversing
aging-associated impairments in the brain (Villeda et al,
2011). In particular, aging-associated increase in systemic
levels of CCL11 was associated with impaired neurogenesis
and learning deficits, which were reversed by systemic
and intrahippocampal administration of neutralizing
anti-CCL11 antibody in the aged mice (Villeda et al, 2011).
Corresponding with these findings, another study using
parabiosis showed brain endothelium remodeling and
restoration of cerebral blood flow in aged mice exposed to
young blood (Katsimpardi et al, 2014). The study attributed
the aging-associated vascular and blood flow impairments

specifically to reduced circulating levels of GDF11, a
secreted protein of the TGF family (Katsimpardi et al,
2014). Although the definitive role of GDF11 in
aging-induced vascular deficits was challenged by subsequent
studies, the role of blood-borne factors in aging-associated
physiological and behavioral alterations in the brain has
garnered further credence and offers therapeutic promise
(Castellano et al, 2015; Egerman et al, 2015). Indeed,
clinical trials involving plasma and plasma protein transfer
from younger individuals are already underway for the
treatment of aging-associated diseases such as, Alzheimer’s
disease. Examples of the projects include: The Plasma
for Alzheimer SymptoM Amelioration (PLASMA) Study
(clinicaltrials.gov; NCT02256306) and A Study to Evaluate
Albumin and Immunoglobulin in Alzheimer’s Disease
(AMBAR; clinicaltrials.gov; NCT01561053). Taken
together, emerging evidence supports that alterations in
systemic factors in aging drive neurogenic and functional
impairments, and that manipulation of these factors
may allow for reversal of aging-induced dysregulation
(Figure 2).

Figure 2. Reversal of aging-associated deficits via immune alterations. Aging is associated with reduced neurogenesis, impaired learning and memory,
as well as increased pro-inflammatory markers, antigen presentation molecules and oxidative stress. Recent findings from parabiosis models (left) have
shown that exposure to young blood restores neurogenesis, learning and memory and neuronal functions in older mice via increase in growth factors and
endothelial remodeling in older mice (Baruch et al, 2014; Katsimpardi et al, 2014; Villeda et al, 2011). Caloric restriction (middle) is associated with
prolonged life, increased gray matter volume, improved motor function, and reduced chronic pathology (eg, neoplasia) and inflammatory markers
(complement proteins, antigen presentation markers, and pro-inflammatory cytokines) in rodents, non-human primates, and humans (Colman et al, 2009;
Willette et al, 2012; Witte et al, 2009). Clinical and animal reports show that aerobic exercise (right) in humans and voluntary running in rodents is
associated with enhanced neurogenesis, improved learning and memory, increased hippocampal BDNF, and dampened inflammatory response to
immune challenge and microglia proliferation (Barrientos et al, 2011; Colcombe et al, 2003; Gebara et al, 2013).
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Reversal of Aging-Associated Deficits via Caloric
Restriction

In addition to exposure to young blood, caloric restriction
has also been known to enhance longevity and improve
cognitive functioning via immunological alterations. Caloric
restriction involves reduction of consumed calories without
inducing malnutrition (Trepanowski et al, 2011). According
to a recent study on post-menopausal obese females, a low-
calorie diet for 12 weeks led to a significant weight reduction
that corresponded with improved memory, enhanced gray
matter volume and functional connectivity in the hippo-
campus and inferior frontal gyrus (Prehn et al, 2016).
Interestingly, these cognitive changes were no longer present
over a prolonged period of time, despite the maintenance of
reduced weight (Prehn et al, 2016). These findings demon-
strated, for the first time, that caloric restriction-induced
enhanced cognitive functioning in humans is a result of
weight reduction rather than sustained reduced weight.
Similarly, another study also reported a memory improve-
ment of 20% in normal and overweight elderly females,
following 30% caloric restriction for a period of 3 months
(Witte et al, 2009). These changes were associated with
reduced plasma levels of insulin and inflammatory markers
such as CRP (Witte et al, 2009). These caloric restriction-
associated changes were not reported in subjects treated with
unsaturated fatty acid diet (diet composition: 20% increase in
unsaturated fatty acid, no change in total fat), indicating that
reduced consumption of overall calories, and not just
reduced saturated fatty acids, improves memory perfor-
mance in humans.
The benefits of caloric restriction observed in humans have

also been reported in other species, such as rats, mice, and
monkeys (Colman et al, 2009; Richardson et al, 2015; Youm
et al, 2016). In a 20-year-long longitudinal study on Rhesus
monkeys, the survival rates of monkeys under calorie-
restriction diet (30% of normal diet) and those under normal
diet were reported to be 80% and 50%, respectively (Colman
et al, 2009). Furthermore, monkeys under the caloric
restriction condition had delayed onset of aging-associated
pathology, such as, neoplasia, cardiovascular diseases, and
glucose-associated impairments, and showed higher gray
matter volume in subcortical regions (Colman et al, 2009). In
a separate study, functional neuroimaging results showed
that caloric restriction in older monkeys reduced iron
deposition in the brain and improved motor performance
on multiple measures (Kastman et al, 2012). Similarly,
caloric restriction in mice was associated with life span
extension by 20% (Patel et al, 2015). In a separate study on
rats, a 10% caloric restriction prolonged lifespan at the same
level as 40% caloric restriction (Richardson et al, 2015).
Interestingly however, prolonged life in the 40% caloric
restriction rats, but not in 10%, was accompanied by
significant reduction in aging-associated pathology, such as
neoplasia, indicating that higher caloric restriction induces
longevity while delaying chronic pathology (Richardson et al,
2015). Taken together, findings of increased longevity have

been reported in several species and have been corroborated
by multiple studies.
Transcriptomic and immunohistochemical evaluations of

aged mice and rats indicate that the benefits of caloric
restriction are mediated via immune and metabolic pathways
(Martin et al, 2016). Indeed, the first study examining the
effects of caloric restriction on the transcriptome profile of
aged mice revealed key reversal of aging-associated markers,
such as complement subunits, lysozyme, antigen presenta-
tion proteins, heat shock proteins, and other inflammation
and stress-related genes (Lee et al, 2000). These findings were
further confirmed via subsequent microarray studies, as well
as network-based investigations (Swindell, 2009). Further-
more, caloric restriction-associated reversal of aging-induced
brain atrophy was also associated with reduced IL-6 levels,
thus highlighting the role of immune mediators (Willette
et al, 2010). Taken together, clinical findings supporting the
benefits of caloric restriction are in line with animal studies,
which revealed that the resulting delay in mortality and
neuroprotective effects are mediated by reversal of inflam-
matory and metabolic changes associated with aging. Over-
all, studies reveal that rejuvenation of the aged brain by
caloric restriction and by exposure to young blood are both
mediated by overall attenuation of inflammatory signaling in
the aged brain.

The Benefits of Exercise in Delaying Aging

The clinical benefits of aerobic exercise on preventing brain
tissue loss have been reported in older adults via cross-
sectional and longitudinal studies (Colcombe et al, 2003;
Colcombe et al, 2006). For example, 6 months of aerobic
exercise was associated with significant increases in brain
oxygen uptake, and cortical gray and white matter volume in
older adults (Colcombe et al, 2006). Although exercise has
long been known to improve immunity, cognitive function-
ing and overall health, the exact mechanisms underlying
these benefits remain elusive. In this context, exercise
paradigms using aged animals have identified potential
factors and mechanisms that may elucidate the relationship
between exercise and aging. Older mice that engaged in
voluntary running showed significant improvement in
spatial memory and increased neurogenesis compared to
non-runners (van Praag et al, 2005). Exercise was also shown
to prevent age-associated increase in microglia proliferation
(Gebara et al, 2013). In aged rats, exercise prevented learning
impairments following peripheral immune challenge, and
this effect was associated with increased expression of
hippocampal BDNF (Barrientos et al, 2011). The same study
also demonstrated that exercise prevents microglia priming
in aged rats. For example, hippocampal IL-1β levels were
reduced in old runners, but not in old sedentary rats.
Microglia from runner rats also had lower IL-1β, TNFα, and
IL-6 mRNA following ex vivo LPS challenge (Barrientos et al,
2011). Overall, these findings indicate that exercise increases
neurogenesis and improves cognitive functioning in aged
animals, while reducing microglia priming associated with
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aging. Importantly, these benefits of exercise indicate that
the overall aging-associated deficits may be a cumulative
consequence of aging and sedentary lifestyle. Indeed,
findings from caloric restriction experiments have shown
that reduction in caloric intake can significantly prolong
lifespan and prevent microglia priming associated with age.
Overall, (i) higher caloric expenditure via exercise and (ii)
reduced caloric intake via caloric restriction both confer their
benefits by attenuating the enhanced inflammatory profile of
the aged brain (Figure 2).

AGING IN THE CONTEXT OF
PSYCHOLOGICAL STRESS

The rejuvenating effects of caloric restriction and exercise
indicate that aging, a natural and progressive phenomenon,
is yet susceptible to environmental factors and lifestyle, of
which stress is an example. Indeed, mounting evidence from
clinical and animal studies has begun to shine a light on the
intertwined relationship between aging and psychological
stress.

Overlapping Characteristics of Chronic Stress
and Aging: Clinical Evidence

Recent clinical findings showed that the epigenetic profile
(such as, DNA methylation in glucocorticoid (GC) respon-
sive regions) of subjects exposed to lifetime stress resembled
the epigenetic changes in aging-associated diseases (Zannas
et al, 2015). In addition, the methylation profile of
individuals exposed to lifetime stress displayed an acceler-
ated epigenetic aging profile, which was not present in
individuals exposed to acute stress (Zannas et al, 2015).
These findings indicate that prolonged exposure to stress
may pose a significant risk for premature aging in adults.
The potential link with chronic stress and premature aging is
also reported in the context of telomere shortening in
humans. A recent study showed that chronic stress
associated with long-term caregiving for demented spouse
was associated with shortened telomere length, lower levels
of telomerase activity, and increased oxidative stress (Epel
et al, 2004). Psychological stress is known to trigger
inflammatory response and premature shortening of telo-
mere length, leading to cellular senescence, which is
characteristic of aging (Lindqvist et al, 2015). Moreover,
the inflammatory profiles altered during stress and during
aging revealed striking similarities (Jurgens and Johnson,
2012). For example, postmortem brain analysis of depressed
suicide victims showed an activated morphological profile of
microglia similar to that in the aged brain (Streit et al, 2004;
Torres-Platas et al, 2014). Taken together, the inflammatory
and metabolic correlates of chronic stress in adults are
similar to those in older individuals, indicating that adults
exposed to chronic stress are vulnerable to premature aging.

Pro-inflammatory Effects of Psychological Stress:
Experimental Evidence

Animal studies have played an instrumental role in high-
lighting the aberrant effects of psychological stress on the
immune system. Rodents exposed to repeated social defeat
stress and inescapable foot-shock exhibit heightened neu-
roinflammatory responses that underlie prolonged behavior-
al deficits. For example, microglia in the stressed brain
undergo profound morphological changes, marked by large
amoeboid cell bodies and thicker processes (Frank et al,
2007; Wohleb et al, 2011). These morphological alterations
were associated with the classical activation profile, char-
acterized by the increased expression of antigen presentation
molecule (MHCII), cell surface markers (TLR4 and CD14),
and pro-inflammatory cytokines and chemokines (IL-1β,
TNFα, IL-6, and CCL2) (Frank et al, 2007; Ramirez et al,
2016; Wohleb et al, 2011). Moreover, the elevated expression
of pro-inflammatory cytokines in microglia was found to be
maintained for at least 24 days after the cessation of stress
(Ramirez et al, 2015). This primed or ‘sensitized’ profile of
microglia in psychological stress was responsible for the
long-term re-establishment of anxiety in mice initially
exposed to repeated social defeat stress (Wohleb et al,
2014). For example, primed microglia from the stress-
exposed mice, but not naive mice, elicited an exaggerated
inflammatory response to acute social defeat stress, and this
response was sufficient for the recurrence of anxiety-like
behavior (Wohleb et al, 2014). Stress-induced microglia
priming also increased vulnerability to subsequent peripheral
immune challenge. For example, intraperitoneal LPS induced
a markedly higher production of microglial IL-1β, TNFα,
iNOS, and CD14 in stress-exposed mice compared with
naive mice (Wohleb et al, 2012). Microglial activation and
inflammatory signaling following psychological stress has
been reported in mice and rats alike, and has also been
recapitulated in other models, such as restraint stress and
foot-shock stress (Frank et al, 2007; Hinwood et al, 2012;
Kreisel et al, 2014; Tynan et al, 2010; Voorhees et al, 2013).
Taken together, psychological stress leads to activation of the
microglia, which then take on a primed profile, and elicit an
exaggerated inflammatory response when exposed to sub-
sequent immune challenge. This evidence of microglia
priming is a key characteristic in both, stress and aging
(Figure 2).

The Overlap between Psychological Stress and
Aging: Experimental Evidence

The heightened inflammatory signaling observed in humans
under stress and aging has been well recapitulated in animal
models. Compared with the younger mice, aged mice
showed increased anxiety-like behavior following repeated
social defeat stress (Kinsey et al, 2008). Furthermore, the
peripheral myeloid cells from the aged mice exposed to
repeated social defeat were more resistant to the apoptotic
effects of GCs (further discussion on the immune effects of
GCs is provided later in this review). The effects of aging
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have been also documented in other cell types. For example,
natural killer cell and lymphocyte activity, which are
reported to diminish with age in monkeys and mice, were
further attenuated following restraint stress in aged mice
(Coe, 2004; Padgett, 1998). A longitudinal study on aging in
Rhesus monkeys showed exacerbated brain volume loss and
stress reactivity (as indicated by increased hostility, resis-
tance, and fear response) in response to social stress
(Kastman et al, 2012). These effects were not observed in
monkeys placed on 30% caloric restriction, suggesting that
caloric restriction may attenuate the stress-induced beha-
vioral and anatomical impairments associated with aging
(Willette et al, 2012). Overall, culminating evidence points to
an interaction between stress and aging such that the
elevated immune profile of the aged brain is further
augmented in animals exposed to psychological stressors
(Figure 2).
Although stress can accelerate and mimic aspects of aging,

the converse also holds true. In other words, the effects of
stress in older adults are more pronounced than in younger
adults. Indeed, older adults were found to display higher
levels of circulating corticosterone at baseline that was
associated with hippocampal atrophy and memory deficits
(Lupien et al, 1998). This age-associated increase in
corticosterone was also reported in rats, and was associated
with a decline in hippocampal neurogenesis (Cameron and
McKay, 1999; Sapolsky, 1992). Moreover, corticosterone
depletion via adrenalectomy rescued these neurogenesis
deficits in aged rats to a level comparable to the young
adults (Cameron and McKay, 1999). Increased corticoster-
one has also been associated with the impaired hippocampal
neurogenesis and neuronal development in the context of
psychological stress (Lehmann et al, 2013; McKim et al,
2016). Together, these findings provide the evidence of
increased corticosterone in psychological stress, as well as in
aging. Although historically characterized as anti-inflamma-
tory, GCs exert dynamic actions on the immune system.
Indeed, it is important to note the seemingly paradoxical and
context-dependent effects of GCs. For example, one of the
mechanisms underlying the anti-inflammatory effects of GCs
is the inhibition of nuclear factor-κB (NF-κB), a major
transcription factor for the inflammatory-response genes
(De Bosscher et al, 2000). However, accumulating evidence
indicates that prior exposure to GCs can instead promote
NF-κB activity and increase the pro-inflammatory response
to subsequent LPS, indicating that GCs can exert a priming
effect to subsequent immune challenge (Frank et al, 2010;
Munhoz et al, 2006). Moreover, pharmacological or surgical
depletion of GC signaling before stress prevented the
microglial expression of pro-inflammatory cytokines in
response to LPS (Frank et al, 2012).
These reports of elevated GCs in the aging brain provide

significant insight into the role of GCs in age-associated
priming. Relevant to this, hippocampal expression of nuclear
GC receptors has been reported to increase with age in rats
(Barrientos et al, 2015). As GC receptors reside in the
cytoplasm in their inactive form and in the nucleus in their

active form, the increased presence of nuclear GC receptors
is indicative of increased GC receptor signaling. Indeed, the
enzyme, 11β-hydroxysteroid dehydrogenase (11β-HSD1),
involved in the conversion of the inactive corticosterone
into its active form, was increased with aging (Barrientos
et al, 2015), and aging-associated memory impairments were
prevented in 11β-HSD1-knockout animals (Yau et al, 2015).
Furthermore, enhanced GC receptor activity in aging was
associated with increased microglial expression of MHCII,
which was reversed by GC receptor antagonist (Barrientos
et al, 2015). Taken together, these findings highlight the role
of increased GC signaling in aging-associated microglia
priming. More importantly, as GCs are the primary
responders in stress regulation, these reports reveal a
dynamic and bidirectional relationship between psychologi-
cal stress and aging, in which one may exacerbate the effects
of the other (Lupien et al, 2009).

CONCLUSION

Aging is a progressive phenomenon and not a disease by
itself. However, an aged brain is significantly vulnerable to
immune stimuli in comparison to a younger brain. For
example, stimuli otherwise considered mild for an adult
brain can elicit deleterious consequences in the aging brain.
Given the unprecedented increase in lifespan, the health
effects of aging are more significant than ever, to global
health and economy. Furthermore, increased lifespan is
accompanied by increased exposure to lifetime stress, which
in turn leads to the accelerated aging, primarily marked by
premature senescence, diseases, and poor quality of life.
Dysregulation of microglia, the innate immune cells of the
brain, is a key factor underlying the deleterious consequences
of aging and stress. Microglia of the aged brain take on a
‘primed’ or ‘sensitized’ phenotype, characterized by dys-
trophic morphology, progressive accumulation of metabolic
stress, increased cell-surface expression of antigen recogni-
tion molecules, and an exaggerated inflammatory response to
immune challenge. This augmented inflammatory profile of
microglia in the aged brain is associated with impairments in
synaptic plasticity, neurogenesis, and emotional and cogni-
tive deficits. Recent studies have provided significant insight
into these physiological and biochemical alterations that
occur with age.
Indeed, advancements in aging research have shown

significant therapeutic promise. Recent findings in animals
indicating that manipulation of the peripheral immune
system may restore cognitive functioning and cellular activity
in the brain have generated the idea of blood-induced
rejuvenation of the aged brain. As such, clinical trials using
blood-borne components have been launched as potential
therapies against Alzheimer’s Disease and age-related
macular degeneration (clinicaltrials.gov; NCT02256306,
NCT01561053, NCT 00766649). Furthermore, exercise,
physical activity, and caloric restriction in humans and
animals have also been shown to promote healthy aging.
A clearer understanding of the mechanisms underlying aging
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is imperative to tackling aging-associated disorders and
functional impairments, and thus promoting the develop-
ment of a healthy society.
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