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Protecting entanglement from decoherence
using weak measurement and quantum
measurement reversal
Yong-Su Kim†, Jong-Chan Lee†, Osung Kwon and Yoon-Ho Kim*

Decoherence, often caused by unavoidable coupling with the
environment, leads to degradation of quantum coherence1. For
a multipartite quantum system, decoherence leads to degra-
dation of entanglement and, in certain cases, entanglement
sudden death2,3. Tackling decoherence, thus, is a critical is-
sue faced in quantum information, as entanglement is a vital
resource for many quantum information applications includ-
ing quantum computing4, quantum cryptography5, quantum
teleportation6–8 and quantum metrology9. Here, we propose
and demonstrate a scheme to protect entanglement from de-
coherence. Our entanglement protection scheme makes use of
the quantum measurement itself for actively battling against
decoherence and it can effectively circumvent even entangle-
ment sudden death.

One way to cope with decoherence is to make use of
entanglement distillation protocols by which a pure maximally
entangled state may be obtained from multiple copies of partially
decohered states4,10–14. Note, however, that it is impossible to obtain
an entangled state from copies of fully decohered (that is, separable)
states by applying entanglement distillation15. Another method to
deal with decoherence is to rely on the so-called decoherence-free
subspace16,17. The decoherence-free subspace, however, requires
the interaction Hamiltonian to have an appropriate symmetry,
which might not always be present. The quantum Zeno effect may
also be used to suppress decoherence18,19 as well as to generate
entanglement20 under some specific situations.

Our scheme for protecting entanglement from decoherence
is based on the fact that weak quantum measurement can be
reversed. The reversibility of weak quantum measurement was
originally discussed in the context of quantum error correction21

and was demonstrated for a single superconducting qubit and
a single photonic qubit22–24. Recently, it was shown that weak
measurement and quantum measurement reversal can effec-
tively suppress amplitude-damping decoherence for a single
qubit25,26. Here, we experimentally demonstrate a scheme for
protecting entanglement from amplitude-damping decoherence
using weak measurement and quantum measurement rever-
sal. The scheme can reduce or even completely nullify the ef-
fect of decoherence as evidenced by increased concurrence of
the two-qubit system.

Consider a two-level quantum system (S) whose computational
bases are |0〉S and |1〉S. The environment (E) is initially at
|0〉E. Amplitude-damping decoherence, in which a particular
computational basis state is irreversibly and probabilistically
transferred to the other, results from state-dependent coupling
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Figure 1 | Scheme for protecting entanglement from decoherence using
weak measurement and quantummeasurement reversal. a, Owing to
decoherence D1 and D2 in the quantum channels, Bob and Charlie end up
sharing the quantum state ρd, which is either less entangled than |Φ〉 or
not entangled at all owing to ESD. b, Protecting entanglement from
decoherence using weak measurement and quantum measurement
reversal. Alice first carries out weak measurement (Mwk) on |Φ〉 before
distribution. Bob and Charlie, on receiving the qubits, carry out reversing
measurement (Mrev). The resulting shared quantum state ρr can be made
as close to the original |Φ〉 by choosing {p1,p2} and {pr1 ,pr2 } properly.

of the system qubit to the environment and is described by the
following quantum map,

|0〉S|0〉E → |0〉S|0〉E

|1〉S|0〉E →
√
D̄|1〉S|0〉E+

√
D|0〉S|1〉E (1)

where 0 ≤ D ≤ 1 is the magnitude of the decoherence and
D̄ = 1 − D (ref. 4). Amplitude-damping decoherence is highly
relevant for many practical qubit systems. For instance, amplitude-
damping decoherence is caused by photon loss for the vacuum–
single-photon qubit, by spontaneous decay for the atomic energy
level qubit and by zero-temperature energy relaxation for the
superconducting qubit.

We now investigate how the decoherence map of equation (1)
affects a two-qubit entangled state. In particular, we consider
a quantum communication scenario depicted in Fig. 1a where
Alice prepares a two-qubit entangled state |Φ〉 = α|00〉S+β|11〉S
(αα∗ + ββ∗ = 1) and distributes the qubits to Bob and Charlie
through quantum channels with decoherence D1 and D2. The
discussion, however, applies equally well to other types of two-qubit
entangled state and physical qubit of stationary nature.
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Figure 2 | Theoretical estimation of concurrence change as functions of
decoherence and weak measurement. The two quantum channels have
different decoherence D1 and D2. a–d, Plots for the maximally entangled
state |Φ〉 (|α| = |β|) (a,b) and for the non-maximally entangled state |Φ〉
(|α|< |β| with |α| =0.42) (c,d). Entanglement degradation due to
decoherence is shown in a and c. Weak measurement with strength p1 and
p2 and the optimal reversing measurement can circumvent decoherence as
shown in b and d. Plots b and d are for D1=0.6 and D2=0.8. The
horizontal planes represent zero concurrence. Note that c shows ESD and
d shows that even ESD-causing decoherence can be circumvented with
weak measurement of sufficient strength and corresponding optimal
reversing measurement.

Although the initial state was a pure two-qubit entangled state
|Φ〉, owing to decoherence, Bob and Charlie now share the two-
qubit quantum state ρd given as

ρd=


|α|2+|β|2D1D2 0 0

√
D̄1D̄2α

∗β

0 D1D̄2|β|
2 0 0

0 0 D2D̄1|β|
2 0√

D̄1D̄2αβ
∗ 0 0 D̄1D̄2|β|

2


where D̄k = 1−Dk (k = 1,2). The effect of decoherence D1 and
D2 on the initial state |Φ〉 can then be investigated by evaluating
concurrence Cd (which quantifies the amount of entanglement) of
the shared quantum stateρd (ref. 27), which is calculated to be

Cd=max
{
0,3d≡ 2

√
D̄1D̄2|β|(|α|−

√
D1D2|β|)

}
(2)

Note that Cd = 3d if 3d > 0. It is clear from equation (2) that
the stronger the decoherence, Dk→ 1 (k= 1,2), the smaller the
concurrence Cd. When the decoherence is strongest Dk = 1 (k=
1,2), concurrence Cd becomes zero, meaning that the two-qubit
system has become fully separable. Furthermore, it is interesting to
point out that, for a particular initial two-qubit state |Φ〉=α|00〉S+
β|11〉S with |β|≥ |α|, the decoherence causes entanglement sudden
death (ESD) in which Cd = 0 although decoherence is not at its
maximum:Cd=0 if decoherence

√
D1D2≥|α/β| (ref. 3).

Let us now describe our scheme, depicted in Fig. 1b, to
protect entanglement from decoherence by making use of weak
measurement and quantum measurement reversal. Before the
system qubits undergo decoherence (that is, coupling to the
environment), they are subject to weak measurement (Mwk),
which partially collapses the state towards |0〉S (refs 22–24). The
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Figure 3 | Schematic of the experiment. The initial two-qubit state |Φ〉 is
prepared with the two-photon polarization state. Weak measurement
(Mwk) and the optimal reversing measurement (Mrev) are carried out on
the polarization qubit using Brewster-angle glass plates (BPs) and
half-wave plates24 (HWPs). Amplitude-damping decoherence is
introduced to the polarization qubit using an interferometer26. See
Methods for details.

two-qubit weak measurement can be written as a non-unitary
quantum operation

Mwk(p1,p2)=
(
1 0
0
√
1−p1

)
⊗

(
1 0
0
√
1−p2

)
where p1 and p2 are the weak measurement strengths24. As the
computational basis state |0〉S does not couple to the environment
as shown in equation (1), the system qubits after the weak
measurement are less vulnerable to decoherence.

After the decoherence quantum channel, Bob and Charlie carry
out quantum measurement reversal operations on the qubits. The
two-qubit reversingmeasurement (Mrev) is a non-unitary operation
that can be written as

Mrev(pr1 ,pr2)=
(√

1−pr1 0
0 1

)
⊗

(√
1−pr2 0
0 1

)
where pr1 and pr2 are the strengths of the reversing measurement.
The optimal reversing measurement strength that gives the maxi-
mumamount of entanglement of the two-qubit stateρr is calculated
to be prk = pk + Dkp̄k, where p̄k = 1− pk (k= 1,2; refs 25,26).
Assuming that the reversingmeasurement is optimal, the two-qubit
state now shared by Bob and Charlie (after the sequence of weak
measurement, decoherence and reversingmeasurement) is given as

ρr=
1

A


|α|2+|β|2D1D2p̄1p̄2 0 0 α∗β

0 D1p̄1|β|2 0 0

0 0 D2p̄2|β|2 0

αβ∗ 0 0 |β|2


where A = 1 + {D1p̄1(1 + D2p̄2) + D2p̄2}|β|2. The concurrence
Cr of the two-qubit state ρr shared by Bob and Charlie is then
calculated to be

Cr=max

{
0,3r≡

2|β|(|α|−
√
D1D2p̄1p̄2|β|)

1+
{
D1p̄1

(
1+D2p̄2

)
+D2p̄2

}
|β|2

}
(3)

where Cr=3r if3r> 0.
We can draw two important conclusions from the result in

equation (3). First, Cr is always larger than Cd, which means that
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Figure 4 | Experimental data for protecting entanglement from
decoherence using weak measurement and quantummeasurement
reversal. a, As D is increased, the state ρd loses entanglement gradually.
b, Carrying out Mwk(p) and the corresponding optimal Mrev(pr) enables
distribution of entanglement under strong decoherence (D=0.6).
Negative values are3d for a and3r for b. The error bars represent the
statistical error of±1 standard deviation.

weak measurement and quantum measurement reversal indeed
can be used for protecting entanglement from decoherence. It is
possible to achieve ρr→ |Φ〉 provided that the strength of the
weak measurement pk and that of the corresponding optimal
reversing measurement prk (k = 1, 2) are sufficiently strong.
Second, even for the ESD condition (that is, for the initial state
|Φ〉 with |β| > |α|, Cd = 0 if decoherence

√
D1D2 ≥ |α/β|), by

applying the entanglement protection protocol with proper weak
measurement (p̄1p̄2≤ (1/D1D2)|α/β|2) and the corresponding
optimal reversing measurement, Bob and Charlie are able to share
some entanglement.

In Fig. 2, we show how Cd (3d) and Cr (3r) behave for
two particular initial states under different decoherence, weak
measurement and corresponding optimal reversing measurement.
It is clear that decoherence affecting the two qubits independently
and at differentmagnitudes can be circumvented by exploitingweak
measurement and quantummeasurement reversal.

Let us now describe the experimental demonstration of protect-
ing entanglement from decoherence using weak measurement and
quantummeasurement reversal for an entangled two-qubit system.
The experimental set-up consisting of three principle sections
(weak measurement, decoherence and reversing measurement) is
schematically shown in Fig. 3. Details of the experimental set-up
are described in the Methods section. For a clear demonstra-
tion, we consider identical decoherence and weak measurement
for both qubits, that is, D1 = D2 = D and p1 = p2 = p. In our
experiment, the system qubits are realized with the single-photon
polarization state; |0〉S and |1〉S refer to horizontal and vertical
polarization, respectively.

We first examine the effect of decoherence D on the initial two-
qubit entangled state |Φ〉 = α|00〉S+ β|11〉S without introducing
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Figure 5 | The success probability as a function of weak measurement
strength. Filled circles represent experimental data and the solid line is
calculated according to equation (4).

the weak measurement and the reversing measurement. The
resulting two-qubit state ρd is reconstructed with quantum state
tomography24,26 and concurrence Cd is then evaluated. Figure 4a
shows the experimental data for three input state conditions
(|α| = |β|, |α|> |β| and |α|< |β|) as a function of decoherence D.
In all cases, the data show loss of entanglement due to decoherence.
Note that, for |α|< |β|, ESDoccurs as expected in equation (2).

We now test whether our entanglement protection scheme,
based on weak measurement and quantum measurement reversal,
can indeed circumvent decoherence. To demonstrate the scheme’s
ability to protect entanglement even under severe decoherence, we
chose D= 0.6, at which ESD is demonstrated for the initial state
with |α|< |β| as shown in Fig. 4a. Figure 4b shows concurrence
Cr of the two-qubit state ρr as a function of weak measurement
strength p for two sets of initial states: |α| = |β| and |α| < |β|.
For each weak measurement strength p, the optimal reversing
measurement strength pr = p+Dp̄ was chosen. For the maximally
entangled two-qubit state (|α| = |β|), the weak measurement and
the reversingmeasurement indeed suppress two-qubit decoherence
so thatCr>Cd andCr→1 as p→1. Furthermore, as demonstrated
for a non-maximally entangled state (|α| < |β|), our scheme
can circumvent even ESD-causing conditions: for the weak
measurement strength p larger than a certain value, the two-qubit
state ρr exhibits a positive concurrence Cr, which means that Bob
and Charlie can now share entanglement even through quantum
channels of severe decoherence.

As the weak measurement and the reversal measurement
are non-unitary operations, our scheme naturally has less than
unity success probability25,26. As shown in Fig. 4b, the higher the
concurrence Cr, the larger the weak measurement strength p.
We can then explore the trade-off relation between the success
probability and weak measurement strength p. For a single qubit,
the overall success probability can be calculated by averaging the
state-dependent success probability for all states on the Bloch sphere
and is given by P1= (1/2)D̄p̄(2+Dp̄) (refs 25,26). For the two-qubit
state, the success probability is calculated to be

P2= (P1)2=
1
4
D̄2p̄2(2+Dp̄)2 (4)

We havemeasured P2 by averaging the success probabilities for four
two-qubit states, |00〉S, |01〉S, |10〉S and |11〉S. Owing to the symme-
try, averaging over the four two-qubit states is sufficient to obtain P2
experimentally. Figure 5 shows the experimentally obtained success
probability as a function of weak measurement strength p. Clearly,
the larger the weak measurement strength p, the less the success
probability. In the asymptotic limit of p→ 1, concurrence Cr can
be arbitrarily close to the initial value but P2→0.

We have demonstrated that weak measurement and quantum
measurement reversal can indeed be useful for battling against
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decoherence. In particular, for amplitude-damping decoherence,
we have shown that our protocol can distribute (protect)
entanglement even through (from) severe decoherence. We have
also studied the trade-off relation between the success probability,
concurrence and weak measurement strength. Although the
demonstration in this work was done for two-photon polarization
qubits, the protocol can easily be applied to other types of qubit,
making weak measurement and quantum measurement reversal
powerful tools for battling against decoherence. We thus believe
that it should be possible to effectively handle decoherence in
quantum information by combining the scheme for protecting
entanglement from decoherence discussed in this paper and
entanglement distillation.

Methods
State preparation. First, the two-qubit maximally entangled state
(|Φ〉 = α|00〉S + β|11〉S with |α| = |β|) is generated using type-I
frequency-degenerate spontaneous parametric down-conversion from a
6-mm-thick β-BaB2O4 crystal pumped by a 405 nm diode laser28. The photons
are frequency filtered with a set of interference filters with a 5 nm passband.
The non-maximally entangled states (|Φ〉 = α|00〉S+β|11〉S with |α| 6= |β|) are
generated by preferential amplitude reduction of one of the basis states using a set
of glass plates oriented at the Brewster angle13,24,26 (BPs).

Weakmeasurement and reversingmeasurement. The weakmeasurement and the
reversing measurement for the single-photon polarization qubit are implemented
with BPs and wave plates24. As the BP probabilistically rejects vertical polarization
(|1〉S) and completely transmits horizontal polarization (|0〉S), a single-photon
polarization qubit found behind a BP had been subject to weak measurement
or partial collapse measurement towards the |0〉S. The reversing measurement is
designed to reverse the effect of weak measurement by making partial collapse
measurement towards the |1〉S and it can be implemented by adding 45◦ half-wave
plates (HWPs) before and after the BPs. The weak measurement and the reversing
measurement strength p and pr can be varied by changing the number of BPs.

Amplitude-damping decoherence. The decoherence map of equation (1) causes
state-dependent coupling of the system qubit (the single-photon polarization
state) to the environment qubit (the single-photon path qubit) and is realized with
an interferometer shown in Fig. 3 (ref. 26). The displaced Sagnac interferometer
implements the coupling of the polarization qubit to the path qubit. The horizontal
polarization |0〉S entering the polarizing beam splitter (PBS) can be found only
at the |0〉E output mode. The vertical polarization |1〉S at the input of the PBS
can be found both at |0〉E and |1〉E output modes according to the angle θ of
the HWP. The probability that the vertical polarization |1〉S at the input of the
PBS ends up at the |1〉E output mode of the PBS corresponds to decoherence D
in equation (1) such that

√
D= sin2θ . As we are interested only in the system

qubit, we need to trace out the environment qubit once the coupling is done.
We realize the tracing out of the environment qubit by incoherently mixing |1〉E
(horizontally polarized) and |0〉E (vertically polarized) at another beam splitter
(BS) with a path-length difference sufficiently larger than the coherence length
(∼140 µm) of the single photon.
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