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Experimental EPR-steering using Bell-local states
D. J. Saunders1,2, S. J. Jones1,2, H. M.Wiseman1,2* and G. J. Pryde1,2*

The concept of ‘steering’ was introduced in 1935 by
Schrödinger1 as a generalization of the EPR (Einstein–
Podolsky–Rosen) paradox. It has recently been formalized as
a quantum-information task with arbitrary bipartite states
and measurements2, for which the existence of entanglement
is necessary but not sufficient. Previous experiments in this
area3–6 have been restricted to an approach7 that followed
the original EPR argument in considering only two different
measurement settings per side. Here we demonstrate exper-
imentally that EPR-steering occurs for mixed entangled states
that are Bell local (that is, that cannot possibly demonstrate
Bell non-locality). Unlike the case of Bell inequalities8–11,
increasing the number of measurement settings beyond
two—we use up to six—significantly increases the robustness
of the EPR-steering phenomenon to noise.

It was Einstein, Podolsky and Rosen who first highlighted
the fact that ‘as a consequence of two different measurements
performed upon the first system, the second system may be
left in states with two different [kinds of] wavefunctions’12. For
them, this spooky action at a distance was unacceptable, and
proved that the Copenhagen interpretation of quantum mechanics
was incomplete. In the example they used to illustrate this
‘paradox’, the two different kinds of wavefunction were position
andmomentum eigenstates, which are clearly incompatible because
‘precise knowledge of [Q] precludes such a knowledge of [P]’
(ref. 12). In this paradigm, Reid7 first developed quantitative criteria
for the experimental demonstration of the EPR paradox on the
basis of Heisenberg’s uncertainty relation (1P)(1Q) ≥ h̄/2; see
also ref. 13.

In the same year as the EPR paper, Schrödinger introduced
the term ‘steering’1 to describe the EPR paradox, and generalized
it to more than two measurements, saying ‘Since I can predict
either [Q] or [P]without interferingwith [the second] system,. . . [it]
must know both answers; which is an amazing knowledge.
[The second system] does not only know these two answers
but a vast number of others’. It is only very recently that
general EPR-steering inequalities, allowing for measurements of
an arbitrary number of different observables by the two parties,
have been developed14. This followed the first formal definition
of steering in refs 2,15, which proved that demonstrating EPR-
steering is strictly easier than demonstrating Bell non-locality
(that is, violating a Bell inequality) but strictly harder than
demonstrating non-separability (by quantum state tomography
or entanglement witnesses16). The existence of this hierarchy is a
logical consequence of the definitions, and its strictness was proved
by consideration of two-qubit Werner states and restriction to
projective measurements. Although non-projective measurements
could, in theory, be more powerful17, this is a remote possibility
for such a simple state, and we restrict ourselves to projective
measurements here also. Finally, we emphasize that none of
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these forms of quantum non-locality allows for the possibility of
faster-than-light signalling.

Here we exploit the modern formulation of EPR-steering for
the first time, demonstrating EPR-steering with discrete binary-
outcome measurements on Werner states18 of a pair of photon-
polarization qubits. This family of states (singlets with isotropic
noise) is well studied, and it is proven that some of the states we
use to demonstrate EPR-steering violate no Bell inequality. This is
not the case for any of the states used in previous demonstrations3–6
of the EPR paradox, which relied on the EPR–Reid inequalities, and
usedmeasurements with continuous outcomes.

EPR-steering is a form of quantum non-locality that is
logically intermediate2,15 between Bell non-locality19 and non-
separability. The second party, Bob, trusts quantum mechanics
to describe his own measurements, but makes no assumptions
about the distant first party, Alice, who has to convince
him that she can affect the nature of his quantum state by
her choice of measurement setting. So termed in analogy to
Bell inequalities, EPR-steering inequalities14 are a superset of
the former, and a subset of entanglement witnesses. Steering
inequalities are, in principle, easier to violate experimentally
than Bell inequalities because of the asymmetry between the
parties; see Fig. 1. Instead of considering correlation functions
for classical variables (measurement outcomes) on the two
sides, in EPR-steering we consider correlations between classical
variables declared by Alice but quantum expectation values
measured by Bob.

Here we consider linear EPR-steering inequalities14 involving
statistics collected from an experiment with nmeasurement settings
for each side. For qubits, we can take Bob’s kth measurement
setting to correspond to the Pauli observable σ̂ B

k , along some
axis uk . Denoting Alice’s corresponding declared result (we make
no assumption that it is derived from a quantum measurement)
by the random variable Ak ∈ {−1,1} for all k, the EPR-steering
inequality is of the form

Sn≡
1
n

n∑
k=1

〈Ak σ̂
B
k 〉≤Cn (1)

We call the quantity Sn the steering parameter fornmeasurement
settings. The boundCn is themaximum value Sn can have if Bob has
a pre-existing state known to Alice, rather than half of an entangled
pair sharedwith Alice. It is easy to see that this bound is

Cn=max
{Ak }

{
λmax

(
1
n

n∑
k=1

Ak σ̂
B
k

)}
(2)

where λmax(Ô) denotes the largest eigenvalue of Ô.
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Figure 1 | The steering task. Bob is sceptical that Alice can remotely affect (steer) his state. Bob trusts his measuring device (represented by the white
box), in particular that it behaves according to the laws of quantum mechanics, but makes no assumptions about Alice’s system and devices (represented
by the black box). The steps in the task, from top (1) to bottom (4) are as follows. (1) Bob receives his qubit. He is unsure whether he has received (a) half
of an entangled pair or (b) a pure state sent by Alice. (2) After Bob receives his qubit, he announces to Alice his choice of measurement setting from the
set {σ̂ B

k }. (3) Bob records his own measurement results σ B
k and receives the result Ak that Alice declares. (4) Bob combines the results to calculate (over

many runs) the steering parameter Sn. If this is greater than a certain bound, Alice has demonstrated steering of Bob’s state, and thus Bob can be sure that
he received a, not b.
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Figure 2 | Platonic-solid measurement schemes. Measurement axes uk are defined by the Bloch-space directions through antipodal pairs of vertices of
regular figures. a–e, Square, n= 2 (a), and the four suitable Platonic solids: octahedron, n= 3 (b); cube, n=4 (c); icosahedron, n=6 (d), and
dodecahedron, n= 10 (e). The bullet symbols show the orientations of pure states in optimal cheating ensembles for two-qubit Werner states. In d and e
these states align with the measurement axes (vertices), but in a–c they have the dual arrangement, on the face centres, similar to the situation in
random-access codes28.

To derive useful inequalities we consider measurement
settings based around the four Platonic solids that have vertices
that come in antipodal pairs (Fig. 2). Each pair defines a
measurement axis uk , giving us an arrangement for n = 3,
4, 6 and 10 settings. For n = 2 settings, we use a square
arrangement. For each measurement scheme (except for n= 10,
which we did not implement experimentally) we do the
following: (i) Derive the bound Cn in the inequality (1).
(ii) Experimentally demonstrate EPR-steering by violating the
inequality using Werner states. (iii) Theoretically show that
Alice can saturate the inequality by sending Bob pure states
drawn by her from a particular ensemble. (iv) Experimentally
demonstrate (iii) above by nearly saturating the EPR-steering
inequality in that way.

Werner states18 are the best-known class of mixed entangled
states. For qubits, they can be written as

Wµ=µ|9
−
〉〈9−|+ (1−µ)I/4 (3)

where |9−〉 is the singlet state and I is the identity, and where
µ ∈ [0,1]. Werner states are entangled if and only if (iff) µ> 1/3
(ref. 18). They can violate the Clauser, Horne, Shimony and Holt20
(Bell–CHSH) inequality only if µ> 1/

√
2, and cannot violate any

Bell inequality if µ< 0.6595 (ref. 9). Reference 2 showed that these
states are also steerable, with n→∞ settings, iffµ>1/2.With n=2
projective measurements they are steerable iff µ> 1/

√
2, no better

than the Bell–CHSH inequality. Deriving analytical expressions for
the bounds Cn is a simple exercise in geometry (see Methods).
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Figure 3 | Experimental set-up. Pairs of identical photons are produced
using type-I SPDC and directed, by single-mode fibres, to a linear-optics
controlled-Z logic gate. After the gate, qubit 1 passes through a pair of
Hanle wedge DPs. By varying the azimuthal angle between the optical axes
of the DPs, we control the amount of depolarizing noise, which sets µ (see
Methods). Abbreviations: SMFC, single-mode fibre coupler; MMFC,
multi-mode fibre coupler.

For the square, octahedron and cube we find C2 = 1/
√
2 and

C3 = C4 = 1/
√
3 ≈ 0.5773. For higher n the exact expressions

are lengthy; the approximate numerical values are C6 ≈ 0.5393
and C10 ≈ 0.5236. For a Werner-state experiment, the expected
value of Sn is µ (shown below). Thus, using n ≥ 3 enables us to
demonstrate EPR-steering for some Bell-local states, that is, states
with 0.6595>µ>1/2. Also, with n as small as 6,Cn is alreadywithin
8% of the n→∞ limit.

Consider the EPR-steering experiment, Fig. 1, from the point
of view of an honest Alice, who does share a suitable entangled
state with Bob. She claims to be able to prepare different types of
state for Bob by making different remote measurements on her
half of the state. If the state is a Werner state, she would claim to
be able to prepare mixed states aligned (or anti-aligned) along any
Bloch-sphere axisu. They agree to test this along a specific set of axes
{uk}. Tomaximize the correlation Sn in equation (1), Alicemeasures
−σ̂k , and announces her result Ak . The value of the correlation Sn
thus obtained will be µ, independent of n, owing to the Û ⊗ Û
invariance of the Werner state. Thus, for a given n, it should be
possible to demonstrate EPR-steering ifµ>Cn.

We experimentally demonstrate EPR-steering with Werner
states in a polarization-encoded two-qubit photonic system, as
shown in Fig. 3 and detailed in the Methods section. In Fig. 4 we
show data for a variety of Werner states; in each case we measured
the Bell–CHSH parameter, B, following the method of ref. 21, and
the EPR-steering S3 parameter. We clearly see states that violate
both a Bell–CHSH inequality and an S3 inequality, states that violate
an S3 inequality but not a Bell–CHSH inequality and states that
violate neither inequality, but are still entangled.

The amount of entanglement required to demonstrate steering
decreases as the number of equally spaced measurement axes
increases, that is, for Platonic solids of increasing order (Fig. 2). We
measure Sn for states near the various steering bounds; see Fig. 5.We
compare the values of S2 and S3 for each of three particular states.
These states experimentally show that there exist cases where a state
violates both the S2 and S3 inequalities, violates neither inequality
or—most interestingly—violates the S3 but not the S2 inequality.
Similar behaviour is observed for states near the S4 and S6 bounds.
The S3 and S4 comparison is not especially interesting asC3=C4.

Now consider the EPR-steering experiment, Fig. 1, from the
point of view of a dishonest Alice, who shares no entanglement
with Bob. Such an Alice can adopt the following ‘cheating’ strategy.
Draw a state |φj〉 from some local-hidden-state (LHS) ensemble
En = {|φj〉} and send it to Bob. Then, when Bob announces the
measurement uk , announce a resultAk(j) on the basis of the selected
local hidden state and knowledge of Bob’s measurement setting.
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Figure 4 | Experimental demonstration of S3 steering with Bell-local
states. Data for tests of Bell non-locality (using the two-setting Bell–CHSH
inequality) and EPR-steering using our three-setting inequality. The
horizontal dashed line is the Bell–CHSH inequality bound, and the vertical
dashed line is the S3 bound. The diagonal blue line shows the predicted
values for Werner states of varying µ. Each data point corresponds to a
different experimentally produced Werner state. Error bars represent one
standard deviation, and are calculated from Poissonian counting statistics.

Althoughwe call this a cheating strategy, Alice cannot actually cheat;
the boundCn in equation (1) is defined exactly so that it is saturated
by the optimal cheating LHS ensemble. That is, the bounds we
have derived are tight; a value of Sn greater than Cn is necessary to
demonstrate EPR-steering.

From the symmetry of Bob’smeasurement scheme, there are two
obvious candidate LHS ensembles En: the vertex ensemble and the
dual ensemble. In the first case the states |φj〉 are oriented on the
Bloch sphere in the directions of the vertices of the figure defining
{uk}. In the second, they are oriented in the direction of the face
centres (that is, the vertices of the dual figure). Interestingly, both of
these possibilities are optimal, but for different values ofn; see Fig. 2.
Given an optimal ensemble, Alice’s optimal ‘cheating’ strategy,
having been told Bob’s measurement axis uk , is to announce as A
the more likely outcome (+1 or −1) of Bob’s measurement on the
state |φj〉 she has sent.

The experimental realization is simple—Alice prepares a single
qubit state using a polarizing beam splitter (PBS), a half-wave
plate (HWP) and a quarter-wave plate (QWP), and this state
is measured by Bob as before. We experimentally demonstrate
the near-saturation of the bound Cn using the optimal cheating
ensemble for Alice, achieving above 95% saturation for all testedCn,
as shown in Fig. 5. The small discrepancy from perfect saturation is
due to imperfect state preparation and measurement, even though
the prepared states were tomographically measured to overlap with
the ideal states to >99% fidelity. The discrepancy increases with
n as the cumulative effect of slight misalignments in a series of
measurements or preparations tends to reduce the observedCn.

Our demonstration of EPR-steering using states that violate
no Bell inequality is possible only because we have broken
the conceptual shackles of previous EPR experiments3–6. These
followed the approach of ref. 7 based on the uncertainty relation
for two observables with continuous spectra. We used discrete
measurements on entangled qubits, and used up to n = 6
measurement settings, showing that that increasing n makes the
EPR-steering inequality much more robust to noise. In our work
we made the fair-sampling assumption, that undetected photons
are statistically identical to detected photons. Thus we were
content with an experimental efficiency far below that necessary
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Figure 5 | EPR-steering and ‘cheating’ strategies for increasing n. The four plots show the measured EPR-steering correlation Sn for various Werner states
against their tomographically reconstructed values of µ, for n= 2,3,4 and 6. The blue diagonal line in each plot represents the theoretical value of Sn. The
vertical shaded regions represent different entanglement classes for Werner states. Left to right: separable; non-separable but not steerable (even for
n→∞); steerable but not Bell non-local; potentially Bell non-local; Bell non-local by the simple Bell–CHSH test. (For 0.7071>µ>0.7056, there is a
positive Bell-non-locality test using 465 settings a side11.) The red solid horizontal line represents the Sn theoretically attainable by a ‘cheating’ strategy by
Alice. This is the face-centred ensemble, except for n=6, where it is the vertex ensemble. This defines the steering bound Cn—EPR-steering is
demonstrated if Sn exceeds this. As in Fig. 1, the orange solid line (slightly below Cn) represents the experimentally attained value using the optimal
cheating ensemble. The square highlights a state that is both steerable for n= 2 and n= 3 and also Bell non-local. The circle and right-pointing triangle
show states that become steerable as n increases, from n= 2 to n= 3 and n=4 to n=6 respectively. The diamond is a state that is steerable for two
different measurement schemes and is Bell local. The up-pointing triangle is not steerable, whereas the down-pointing triangle is steerable in principle but
could not be steered using any of the finite-n inequalities implemented by us. Error bars (shown only when large enough to be clearly seen) are one
standard deviation and are calculated from Poissonian counting statistics.

to demonstrate EPR-steering without this assumption. However,
because the degree of correlation required for EPR-steering is
smaller than that for violation of a Bell inequality, it should be
correspondingly easier to demonstrate steering of qubits without
making the fair-sampling assumption. This would provide an
important and exciting extension of the fundamental principles
we have demonstrated, and open the door to the application of
EPR-steering phenomena for quantumcommunication protocols.

Methods
Werner-state production. To realize the Werner states, we start by generating
identical single photons through type-I spontaneous parametric downconversion
(SPDC). These photon pairs are initially unentangled in polarization. We use a
non-deterministic controlled-Z gate22–25 to entangle them in polarization. Ideally,
this creates the state (H1⊗ I)|9−〉, where H1 is the Hadamard gate22 acting
on qubit 1. Mixture was controllably added, enabling a change of µ, using the
depolarizer (DP) method of Puentes et al.26—see Fig. 3 and description below. This
method produces ‘Werner-like’ states—states equivalent up to local rotations to
the Werner states of equation (3).

The Werner-like states are described by ρ = (Û ⊗ I)Wµ(Û ⊗ I)†, where Û
is a single-qubit unitary operation. We can undo Û to retrieve a Werner state by
incorporating a unitary transformation in the measurement settings of qubit 1.
To find the optimal unitary operation, we first tomographically reconstruct ρ

following ref. 27. We numerically search for Û by maximizing the fidelity of Wµ

with (Û ⊗ I)ρ(Û †
⊗ I). The maximizing Û is then used to rotate the measurement

settings for qubit 1.

Photon source and controlled-Z gate. Source: a 60mW, linearly polarized,
continuous-wave 410-nm-wavelength laser is used to pump a BiBO (bismuth
borate) nonlinear crystal to produce pairs of 820 nm single photons through type-I
SPDC. With a coincidence window of 3 ns, a coincidence rate of approximately
10,000 counts s−1 is achieved. Controlled-Z gate: the gate is implemented using a
passively stable beam displacer configuration, as in ref. 22. We are not concerned
with the gate’s limited success probability in generating entangled states, as wemake
the fair-sampling assumption. The effective efficiency (coincidences-to-singles
ratio) is≈0.2% in this experiment.

Depolarizer method. By varying the azimuthal angle between two quartz-glass
Hanle DPs26, we create a tunable, variable depolarizing device. It couples
the polarization degree of freedom to the spatial degree of freedom—tracing
over spatial information induces mixture. By optimizing these procedures,
high-quality Werner states (fidelity >93.5% in each case) were produced
for a wide range of µ.

Measurement technique. We implement single-qubit polarization measurements
on each qubit using a QWP, an HWP, a PBS and fibre-coupled single-photon
counting modules (SPCMs), enabling us to measure along arbitrary axes on the
Bloch sphere for each qubit. By choosing different combinations of measurement

848 NATURE PHYSICS | VOL 6 | NOVEMBER 2010 | www.nature.com/naturephysics

© 2011 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys1766
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS1766 LETTERS
axes, we can carry out a variety of measurement tasks: evaluating the Bell–CHSH
inequality, evaluating the steering parameter Sn for different n or tomographically
reconstructing the Werner-like states, ρ.

Calculating Cn. In each case we search over the possible sets {Ak}, numerically
evaluating the maximand in equation (2). Then, choosing one of the sets that
attains the maximum, we use the geometry of the relevant Platonic solid to evaluate
it analytically. The same analytical expressions are found from the optimal LHS
ensembles En of Fig. 2. Those not given in themain text are:

C6= 1− (5L6/12)
√
4− sec2(3θ/2)

C10= 1−
1
10

1+
tan2θ
sinθ

√9L210−4

Here L6 = 4/
√

10+2
√
5 and L10 = 4/(

√
15+
√
3) are the side lengths of

an icosahedron and dodecahedron respectively, circumscribed by the Bloch
sphere, and θ = π/5.
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The authors wish to point out that there were systematic errors in some of the demonstrations of Alice’s optimal attempt to cheat (orange 
lines in Fig. 5, for n = 3, 4 and 6), due to misalignment of the waveplates. The data have been retaken with the corrected settings and are 
included in the following corrected figure (the plot for n = 2 is unchanged). The arguments of the paper are unaffected by this correction. 
These changes have been made in the PDF and HTML versions of this Letter.
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