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Nanophotonic coherent light–matter interfaces
based on rare-earth-doped crystals
Tian Zhong1, Jonathan M. Kindem1, Evan Miyazono1 & Andrei Faraon1

Quantum light–matter interfaces connecting stationary qubits to photons will enable optical

networks for quantum communications, precise global time keeping, photon switching and

studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials

for optical quantum memories and quantum transducers between optical photons, microwave

photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium

rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal.

Cavity quantum electrodynamics effects including Purcell enhancement (F¼42) and

dipole-induced transparency are observed on the highly coherent 4I9/2–
4F3/2 optical

transition. Fluctuations in the cavity transmission due to statistical fine structure of the

atomic density are measured, indicating operation at the quantum level. Coherent optical

control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical

coherence times (T2B100 ms) and small inhomogeneous broadening are measured for the

cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable

quantum light–matter interfaces.
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Q
uantum light–matter interfaces (QLMIs) are quantum
devices composed of light emitters with quantum states
that can be controlled via optical fields and entangled to

photons1,2. They enable distribution of quantum entanglement
over long distances in optical quantum networks for quantum
communications1. Quantum networks of atomic clocks have also
been proposed for precise global time keeping and studies of
fundamental physics2. Realizing QLMIs requires control of light
and matter at the single atom and single photon level, which
enables optoelectronic devices such as optical modulators and
nonlinear optical devices operating at the most fundamental
level3. QLMIs are also expected to play a leading role in realizing
optical to microwave quantum transducers for interconnecting
future superconducting quantum machines via optical fibres4,5.

Scalable and robust QLMIs require emitters to have long spin
coherence times and coherent optical transitions. For integrated
optical quantum networks, these emitters need to be coupled to
on-chip optical resonators that capture the photons in a single
mode and further couple them into optical fibres or waveguides.
The solid-state emitters most investigated so far for on-chip
QLMIs are semiconductor quantum dots (QDs)6 and nitrogen
vacancy (NV) centres in diamond7. To date, complete quantum
control of single QD and NV spins, spin–photon entanglement
and entanglement of remote NVs via photons have been
realized8–10. Both QDs11 and NVs12 have been coupled to
optical nanocavities. However, the challenge in growing optically
identical QDs limits their prospects for a scalable architecture6.
NVs embedded in nanostructures have long electronic spin
coherence times13, but suffer from optical spectral instabilities
such as blinking and spectral diffusion14. These spectral
instabilities have so far impeded the coherent coupling between
optical fields and NV centres in nanoresonators that are essential
for further developments of QLMIs.

Rare-earth ions (REIs) embedded in host crystals at cryogenic
temperatures exhibit highly coherent quantum states in the 4f
orbital15. The Zeeman or hyperfine states of REIs can have
coherence times as long as 6 hours16, the longest ever
demonstrated in a solid. These states are connected via optical
transitions with the narrowest linewidth in the solid state (sub-
kHz) and small inhomogeneous broadening (MHz to GHz)17.
This outstanding optical and spin coherence makes REI-doped
crystals the state-of-the-art material for macroscopic solid-state
optical quantum memories18,19. Integrated REI-doped waveguide
quantum memories have also been developed20,21. Detection and
control of single REI spins has been recently demonstrated in
bulk material, but not using the transitions employed in optical
quantum memories at cryogenic temperatures22,23. Coupling the
highly coherent optical transitions of REIs to nanocavities will
enable on-chip QLMIs, where REI ensembles act as quantum
memories and single REIs act as qubits24.

Here we demonstrate high-cooperativity coupling of a
neodymium (Nd3þ ) ensemble to photonic nanocavities
fabricated directly in the yttrium orthosilicate (YSO) host crystal
and show coherent optical control of REIs coupled to
nanophotonic cavities. These results are enabled by the long
coherence time and small inhomogeneous broadening of cavity-
coupled REIs, which are essential properties that may lead to
nanophotonic QLMIs with better prospects for scalability than
those based on NVs and QDs.

Results
Photonic nanocavities in YSO. The nanocavities, one of which is
shown in Fig. 1a, were fabricated in neodymium-doped YSO
(Nd3þ :YSO) using focused ion beam milling. For this study, we
used devices fabricated in two types of samples with Nd doping of

0.2% and 0.003% (Scientific Materials Inc.). The photonic crystal
cavity is made of grooves milled in a triangular nanobeam25

(Fig. 1b) (see Methods). Finite-difference time-domain
simulations26 indicate a transverse electric (TE) mode with
quality factor exceeding 1� 105, mode volume Vmode¼ 1.65(l/
nYSO)3¼ 0.2 mm3 and mode profile shown in Fig. 1b. Here V is
defined as Vmode¼

R
V E(r)|E(r)|2d3r/max(E(r)|E(r)|2), where E(r)

is the electric field and E(r) is the electric permittivity at position
r. Two 45� angled cuts at both ends of the nanobeam (that is,
couplers) allow for coupling light from a direction normal to the
chip (that is, b in Fig. 1b) using a confocal microscope setup
(see Methods). A broadband light source was coupled into the
resonator from one end and the transmitted light was collected
from the other coupler with typical efficiencies ranging from
20% to 50%. The transmitted spectrum shows a resonance with
quality factor Q¼ 4,400 (Fig. 1c) in the device used for the
following measurements. Arrays of devices were reproducibly
fabricated with similar performance (Supplementary Fig. 1 and
Supplementary Note 1).

Coupling rate between REIs and the nanocavity. The coupling
of Nd3þ ions to the nanocavity was observed through
enhancement in photoluminescence (PL) and emission rates.
With the 0.2% device cooled at 3.5 K (Montana Instruments
cryostation), an 810 nm laser coupled into the cavity excited PL in
the 4I9/2–4F3/2 transition that was then collected from the output
coupler (Fig. 2a). The PL spectrum shows two lines at 883.05 and
884.06 nm, corresponding to two inequivalent sites (Y1 and Y2) of
Nd3þ in YSO. An important observation is that the inhomoge-
neous linewidth of the ions in the cavity is the same as in the bulk
material, for both the 0.2% (Dinhom¼ 16.0GHz) and 0.003%
(5.9 GHz) devices (Supplementary Note 2). A small inhomoge-
neous linewidth (on the order of B10GHz) is important for
scaling to networks of multiple QLMIs (Supplementary Note 3).
The cavity resonance was tuned across the Nd3þ PL line using a
gas condensation technique12. The spectrograms in Fig. 2b–d
show enhancement of the Y1 line when the cavity is resonant with
it, which is a signature of coupling. The Y2 line exhibits negligible
enhancement, because its dipole moment is not aligned with the
TE cavity polarization (D1 axis of the YSO crystal, Fig. 1b). The
spontaneous emission rate enhancement was characterized via
lifetime measurements. A pulsed laser at 810 nm excited
fluorescence of the Y1 line, which was filtered using a
monochromator and detected with a single photon counter
(Fig. 2e). From single exponential fits, we calculated a reduction
in lifetime from 254 ms when the cavity is detuned by
Dl¼ 0.3 nm, to 87 ms on resonance. Taking into account the
branching ratio of the 883 nm transition (bB4.5%, see Methods),
the reduction in lifetimes corresponds to an ensemble averaged
Purcell factor27 F¼ 42, which agrees well with the estimations
that assume a uniform spatial distribution of Nd3þ ions in the
resonator (Supplementary Note 4). A single ion positioned at the
maximum cavity field would experience a Purcell factor of B200.
A similar result was obtained in a 0.003% cavity with lower
quality factor (Supplementary Fig. 2 and Supplementary Note 5).

Optical coherence time for cavity-coupled REIs. Coherent and
stable optical transitions are essential for QLMIs. We character-
ized the optical coherence time T2 of the 883-nm transition using
two-pulse (p/2� p) photon echo techniques (Fig. 3a), with an
applied magnetic field of B¼ 0.5 T (see Methods). The laser
pulses were coupled in and the echoes were collected via the
couples when the 0.2% and 0.003% cavities were on resonance
with the Nd transition. As only a small sub-ensemble (o100
ions) in the cavity was excited, the weak echo signal required
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detection using single photon counters. A typical echo from the
0.2% cavity is shown in Fig. 3d. The echo decays as a function of
the (p/2�p) time delay t are plotted in Fig. 3b together with
photon echoes from bulk substrates. Echo intensity decays by e
for delay t1/e. For the 0.2% sample, Tc

2 ¼ 4t1=e ¼ 2:8 � 0:4 ms
was measured for the cavity, which shows a good agreement with
the bulk value of Tb

2 ¼ 3:2 � 0:4 ms. For the 0.003% sample, the
echo exhibited two exponential decays. The slower decays give
Tb
2 ¼ 100 � 5 ms (bulk) and Tc

2 ¼ 94 � 5 ms (cavity), which
match with values reported in ref. 28. The fast decays are likely
due to the superhyperfine interactions between Nd3þ and its
neighbouring yttrium ions, which commonly manifests as

modulated echoes decaying faster than T2 (ref. 28). No
oscillations were observed in Fig. 3a because of the fast mod-
ulation frequency (B1MHz) due to the strong magnetic field.
Oscillations of echoes for the initial 10 ms delay were observed
when the B field was reduced to o100mT. In addition, changes
in the T2 values were not observed as the excitation power was
varied, which indicates the measurement was not significantly
affected by instantaneous spectral diffusion. In sum, the good
agreement on T2 between the cavity and bulk confirms that the
optical coherence property of Nd3þ ions is not affected by the
nanofabrication. For higher Purcell factors, the T2 in cavities
should decrease owing to the T2r2T1 limit and would become
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Figure 1 | Photonic crystal nanobeam resonator fabricated in Nd:YSO. (a) Scanning electron microscope image of the device. Scale bar, 2 mm.

The red inset is a zoomed-in view of the 45� angle-cut coupler that allows vertical coupling of light from a microscope objective. The blue inset shows the

grooves forming the photonic crystal. (b) Schematics of the nanobeam resonator with simulated electric field (E along D1) profiles of the fundamental TE

resonance mode. The TE polarization aligns with the D1 axis of the YSO crystal. A magnetic field of 500mT is applied in the D1–D2 plane at an angle of

a¼ 135� with respect to the D1 axis. (c) Broadband cavity transmission spectrum showing the cavity resonance with quality factor Q¼4,400.

� (nm) 
� (nm) 

883
883

884
884

885
885

P
ho

to
lu

m
in

es
ce

nc
e 

co
un

ts

0

50

100

150

0

50

100

150

Detuning (GHz)
–100 –50 500 100

Li
fe

tim
e 

(μ
s)

100

150

200

250

t (μs)
0 200 400 600

C
ou

nt
s

102

101

Δ �=0 nm

Δ �=0.3 nm

883 nm
via cavity

Via other states

4F5/2

4F3/2

4I9/2

810 nm

70

60

50

40

30

T
im

e 
(a

. u
.)

20

10

a b

f

e

d

c

Δ �

Δ �=0 nm

Y1 Y2

Figure 2 | Purcell-enhanced coupling of Nd3þ ions to the YSO cavity mode. (a) Schematic of energy levels for Nd3þ in YSO. Optical excitation at

810 nm results in PL at several wavelengths with only the 883-nm transition enhanced by the cavity. (b) Spectrogram showing the Nd3þ PL, while the

cavity is tuned across resonance using gas condensation. The dashed line is a guide to the eye indicating the central wavelength of the cavity resonance.

The cavity resonance is not visible, because there is no background luminescence to populate the cavity mode. PL spectra in the uncoupled (c) and coupled

(d) cases. The cavity resonance was drawn to indicate the cavity location. (e) Lifetime measurements for coupled (tc¼ 87ms, Dl¼0) and uncoupled

(t0¼ 254ms, Dl¼0.3 nm) cases. (f) Change in lifetime as a function of the cavity detuning, which fits well with the calculation (red curve) using quality

factor Q¼4,400, 4.5% branching ratio and field intensity averaged over the mode volume.
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smaller than the bulk value. This regime is not reached here,
because the Purcell enhanced 2T1 is not smaller than Tb

2 .
The observation of photon echoes demonstrates coherent

optical control of the quantum state of cavity-coupled ions. This
control was further extended by varying the p pulse duration and
observing Rabi oscillations in the echo intensities as shown in
Fig. 3c. A Rabi frequency of B6MHz is estimated. The same
oscillation was not observed in the bulk. For the coupled laser
power, the optimal p pulse duration is 0.4 ms. The oscillations are
not visible for pulse duration o0.3 ms, because of the limited
rise/fall times (B200 ns) of the pulse-generating setup (Methods).

A B12-fold increase in the echo intensity is observed in the
cavity-coupled case compared with the uncoupled case (that is,
detuning Dl¼ 15 nm) as shown in Fig. 3d. This enhancement can
be attributed to a combination of several effects: the higher
atomic absorption rate through the Purcell effect29, stronger
intracavity field intensity and high echo collection efficiency as
the ions emit dominantly into the cavity mode. The spectral
diffusion of the coupled ions using three-pulse photon echoes was
also investigated. The homogeneous linewidths were broadened
at rates of 6.1 kHz ms� 1 for the 0.2% doped cavity and
380Hz ms� 1 for the 0.003% cavity. These slow spectral
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Figure 3 | Photon echo measurements from an ensemble of Nd3þ ions in the cavity. (a) Two-pulse photon echo sequence (p/2�p) used to measure T2.

(b) Two-pulse photon echo decays measured in both the cavity (red) and the bulk (black) samples with two different doping concentrations. The inset plots

the echo decays measured with a 0.2% doped sample. (c) Oscillation of echo intensity with increasing width of the p rephasing pulse. The periodic

signal reveals the ensemble averaged Rabi frequency of the coupled ions. The ideal p pulse duration for the input power was 0.4ms. (d) Enhanced photon

echo intensity (byB12-fold) when the cavity is coupled, compared with the uncoupled case (cavity detuned by Dl¼ 15 nm so that the transition is outside

the photonic bandgap).
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statistical variations of the ion density. Large fluctuations are expected, because the density N is low (few tens), which agrees with the

measurement. The fluctuation within the inhomogeneous linewidth is noticeably larger than that at far detunings (425GHz) and the technical background
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diffusions permit repeated optical addressing of the ions for 10 s
of ms (Supplementary Fig. 3 and Supplementary Note 6).

Dipole-induced transparency and statistical fine structure.
QLMIs require efficient interactions between atoms and photons,
which is why quantum memories use long atomic clouds or
doped crystals to achieve large optical depth. One key advantage
provided by nanoresonators is that efficient atom–photon inter-
action can be achieved in a small volume with only a handful of
ions. This is readily observable in our system, where the Nd3þ

ions coherently interact with the intracavity field and control its
transmission via dipole-induced transparency30. With the cavity
tuned to 883 nm, the cavity transmission was probed using
broadband light and a dip was observed at resonance (Fig. 4a).
The depth of the dip depends on the collective coupling
cooperativity Z ¼ 4N�g2= kGhð Þ, where �g is the ensemble
averaged coupling strength, k is the cavity full linewidth, Gh is
the Nd3þ homogeneous linewidth and N is the number of ions
per Gh. Considering an empirical collective dipole–cavity
coupling model, the normalized cavity transmission in the
presence of unsaturated resonant ions is,

T ¼ k
iDþ kþ 4N�g2=Gh

�
�
�
�

�
�
�
�

2

; ð1Þ

which simplifies to T¼ (1þ Z)� 2 for zero detuning31. The cavity
transmission can be controlled by varying the probe light power
and observing the saturation of the ions at increasing intracavity
photon number (Supplementary Fig. 4 and Supplementary
Note 7). The saturation photon number in the nanocavity was
measured to be hncavi¼ 2� 10� 5.

To better resolve the spectrum, a narrow (B20 kHz)
Ti:Sapphire laser was scanned across the resonance (see Methods)
to give the transmitted signals shown in Fig. 4b,c. A 75% decrease
in transmission was measured at zero detuning, which corre-
sponds to a collective cooperativity Z B1.2. Fitting using a
Gaussian spectral density distribution (green line) with
measured parameters �g ¼ 2p� 6 MHz, Gh¼ 2p� 100 kHz and
Ginhom¼ 16.0 GHz gives a peak ion density of NE53. Because of
the statistical fine structure (SFS) of the inhomogeneously
broadened line, a variation in the transmitted intensity
(hdTi2 � d2T

dN2 hdNi2), owing to dN ¼
ffiffiffiffi
N

p
fluctuations in the

ion spectral density is expected32. This expected variation is
represented in Fig. 4b by the green shaded region and shows good
agreement with that of the measured signal. This variation within
the inhomogeneously broadened line, on which the statistical
fluctuations of the ion spectral density are imprinted, is
significantly larger than the spectrometer technical noise (grey
area) and laser shot noise at far detunings (425GHz), thus
confirming that the static SFS in spectral density N(Dl) is probed.
Two traces of the laser scan over the same 100MHz bandwidth
near zero detuning at different times are shown in Fig. 4c. The
high degree of correlation reflects the static and repeatable nature
of SFS. Notably, the current platform would allow detection and
control of a single ion coupled to the cavity if Noo1 and the laser
linewidth were narrower than Gh (Supplementary Fig. 5 and
Supplementary Note 8).

Discussion
The results reported in this paper (long optical coherence time,
small inhomogeneous broadening, enhanced coherent optical
control and resonant probing of cavity-coupled REIs) demon-
strate REI-based nanophotonics as a promising approach for
robust and scalable quantum photonic networks integrating
memories and single REI qubits. Single photon rates exceeding
1MHz can be achieved with single REIs in nanocavities with

Q/VB104–105 (V is normalized to (l/n)3) and the inhomoge-
neous broadening allows for frequency multiplexing of multiple
REIs. To use the interface as an optical quantum memory,
efficient optical pumping into the long-lived Zeeman level needs
to be demonstrated. Bulk REI quantum memories already boast
high storage efficiency33 with multi-mode capacity28. Their
implementations in our nanophotonic platform open the
possibility of multiplexed systems for on-chip quantum
repeaters. For Nd, high-fidelity storage of entanglement based
on atomic frequency comb has been demonstrated34,35. With
cavity impedance matching29, unit storage efficiency is achievable
with a mesoscopic ensemble of cavity-coupled ions. Meanwhile,
long-lived nuclear spin coherence of 9ms in 145Nd (ref. 36) bodes
well for spin–wave quantum memories using our nanoresonators.
These devices can be further coupled to superconducting or
optomechanical devices, to enable hybrid quantum systems4.
Furthermore, the technology can be readily transferred to other
wavelengths, such as 1.5 mm for telecom quantum memories
using Er3þ :YSO or 580 nm for long-haul quantum hard drives
using Eu3þ :YSO (ref. 16).

Methods
YSO nanoresonator design and fabrication. The nanobeam has an equilateral
triangular cross-section with each side of 780 nm. This geometry allows a circular
fundamental mode field that can be efficiently coupled with a free space laser beam.
The cavity is formed by 40 equally spaced grooves of lattice constant 340 nm on the
nanobeam, except for a defect introduced at the centre by perturbing the lattice
constant. The depth of the grooves is 65% of the beam height. The triangular
nanobeam resonator was fabricated using focused ion beam milling followed by
wet etching of Gaþ contaminated YSO in diluted (10%) hydrochloric acid. An ion
beam of 20 kV, 0.2 nA was used to fabricate the suspended nanobeam waveguide by
milling at 30� angle with respect to the crystal surface normal. A small ion beam of
23 pA was then used to accurately pattern the grooves on top of the nanobeam.
Limited by the finite width of the focused ion beam, the side walls of the grooves in
the actual device were not vertical, but had an angle of 6�. This leads to a degraded
theoretical Q of 5.0� 104. We were able to reproducibly fabricate arrays of
resonators (up to six) in a batch (Supplementary Fig. 1), with all the devices
measuring resonances close to 883 nm and quality factors varying from 1,100
to 10,000.

Experimental setup for the photon echo measurements. A 500-mT external
magnetic field was applied at a¼ 135� relative to the crystal D1 axis using a pair of
permanent magnets (see Fig. 1b). The p/2 and p Gaussian pulses were generated by
amplitude-modulating the Ti:Sapphire laser with two acousto-optic modulators
(AOMs) in series, with each in a double-pass configuration. The two pulse widths
were 250 and 400 ns at a repetition rate of 1 kHz. The average (peak) power of the
excitation pulses was 210 nW (320 mW) measured after the objective lens. The
extinction ratio between the on and off level of the pulses was B120 dB, ensuring
sufficient signal-to-noise ratio for detecting echo photons using a Si single-photon
counter (Perkin Elmer SPCM). A third shutter AOM in single-pass configuration
was inserted just before the photon counter to block the strong excitation pulses
from saturating the detector. The extinction ratio of this shutter AOM was 30 dB.

High-resolution laser spectroscopy on cavity-coupled Nd3þ ions. For the
cavity transmission experiments, the Ti:Sapphire laser (M Squared SolsTiS)
was continuously scanned at a rate of 10MHz per second. The high-sensitivity
charge-coupled device camera in the spectrometer (Princeton Instruments PIXIS)
registers the transmitted photon counts intermittently at an adjustable frame rate
(frames per second (fps)) with an exposure time 0.01 s for each frame. Therefore,
one exposure corresponds to a spectral width of 10MHz� 0.01¼ 100 kHz scanned
by the laser, which is equal to the homogeneous linewidth of the 0.2% doped
sample. The long-term drift of the laser is 10MHz per hour, so the drift during
each exposure should be inconsequential. Each data point in Fig. 4b,c represents
the photon count collected in one camera exposure, corresponding to the signal
contributed by the ions within one homogeneous linewidth. The frame rate was
0.1 fps for the coarser scan in Fig. 4b, corresponding to a spectral interval of
100MHz between two adjacent data points. The frame rate was 8.2 fps for the fine
scan in Fig. 4c, with a spectral intervalB1MHz. Each data point was obtained with
one scan. Several scans at different spectral regions were performed and stitched
together to cover the entire bandwidth in Fig. 4b.

Estimation of the branching ratio. The measured optical depth of a 15-mm-long
nanobeam resonator at 3.8 K was d¼ 0.1, from which we deduce an oscillator
strength of f ¼ 6.5� 10� 7 and a spontaneous emission rate of this transition to be
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g883¼ 1/t883¼ 1/5.6ms (ref. 24). With a measured bulk medium lifetime
t0¼ 250 ms, the branching ratio was thus estimated to be t0/t883E4.5%.
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