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Evidence that asthma is a developmental origin
disease influenced by maternal diet and bacterial
metabolites
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Asthma is prevalent in Western countries, and recent explanations have evoked the actions of

the gut microbiota. Here we show that feeding mice a high-fibre diet yields a distinctive gut

microbiota, which increases the levels of the short-chain fatty acid, acetate. High-fibre or

acetate-feeding led to marked suppression of allergic airways disease (AAD, a model

for human asthma), by enhancing T-regulatory cell numbers and function. Acetate increases

acetylation at the Foxp3 promoter, likely through HDAC9 inhibition. Epigenetic effects of

fibre/acetate in adult mice led us to examine the influence of maternal intake of fibre/acetate.

High-fibre/acetate feeding of pregnant mice imparts on their adult offspring an inability to

develop robust AAD. High fibre/acetate suppresses expression of certain genes in the mouse

fetal lung linked to both human asthma and mouse AAD. Thus, diet acting on the gut

microbiota profoundly influences airway responses, and may represent an approach to pre-

vent asthma, including during pregnancy.
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T
he prevailing explanation for the increase in certain
inflammatory conditions such as asthma and allergies has
been the hygiene hypothesis1,2, which proposes that

declining family size and improvements in personal hygiene
reduce the opportunities for cross-infections in young families.
This lack of exposure to infectious agents is thought to result in
inappropriate immune regulation, resulting in polarization to Th2
responses. Recently, however, much more attention has focused on
diet3–6, or the gut microbiota7–9, to explain prevalence of
inflammatory diseases particularly in Western countries.
Numerous studies have noted a correlation between asthma
incidence and obesity10–13. High fat14 and low fruit and
vegetable15 consumption is correlated with worse asthma
outcomes. Furthermore, Western-style fast food increases asthma
risk16–18, while a Mediterranean diet (high in fish, fruits, nuts and
vegetables) protects against wheeze and asthma in childhood19.
Consumption of fibre is often reduced in severe asthmatics, and
associated with increased eosinophilic airway inflammation20.

Although the above studies suggest that diet or the gut
microbiota may influence asthma in humans, the cellular
mechanisms that have been evoked to date involve either
inadequate immune regulation21, or a compromised airway
epithelium22. It is well documented that asthmatics have fewer
T regulatory cells (Tregs), and these are also less functional21,23.
Another view is that asthma is primarily an epithelial disorder22,
and, in certain susceptible individuals, impaired epithelial barrier
function renders the airways vulnerable to various insults, which
predispose to asthma. Recently, several groups including our own
have outlined mechanisms whereby diet or gut microbial products
might affect inflammatory diseases6,24, Treg biology25–28,
dendritic cell (DC) biology6 or epithelial integrity29. Dietary
fibre is fermented by colonic commensal bacteria to short-chain
fatty acids (SCFAs). SCFAs are anti-inflammatory24, promote gut
homeostasis30 and epithelial integrity4,29, and regulate the size
and function of the colonic Treg pool25–27. A recent study
reported that dietary fibre and the SCFA propionate protected
against allergic airway disease (AAD) in mice6. This study found
that propionate altered DC biology, which affected their ability to
promote Th2 responses. SCFAs are known to act via two principal
mechanisms: signalling through ‘metabolite-sensing’ G-protein
coupled receptors (GPCRs) such as GPR43, GPR41 and
GPR109A, and inhibition of histone deacetylases (HDACs) and
consequent effects on gene transcription4. In one study31, HDAC9
proved particularly important in regulating Foxp3-dependent
suppression, and optimal Treg function required acetylation of
several lysines in the forkhead domain of Foxp3, and this
suppressed IL-2 production. Although Foxp3 and its target genes
have been implicated mostly in Treg biology32, FoxP3 might also
be expressed by non-immune cells such as certain epithelia33

although this topic remains controversial.
The important role of Tregs in asthma21, coupled with

profound effects of SCFAs on Treg biology, prompted us to
examine diet and metabolites as a basis for the development of
asthma. Here we report that a high-fibre diet promotes a
microbiota that produces high levels of SCFAs, particularly
acetate, which suppressed the development of AAD in mice. This
was dependent on Treg cells, and HDAC9 inhibition by SCFAs
was a likely molecular mechanism whereby dietary fibre
suppressed AAD, since Hdac9� /� mice were highly resistant
to the development of AAD. Our findings emphasize the
importance of diet and bacterial metabolites, over hygiene, to
explain asthma. Moreover, in addition to our studies in adult
mice, we show that maternal diet and metabolites had profound
effects on the developing fetus, by affecting transcription of
certain Foxp3 target genes in the lung that have been linked to
asthma development.

Results
A high-fibre diet shapes gut microbial ecology. First, we
investigated whether a high-fibre diet alters gut microbial ecology,
or produces higher levels of SCFAs in faeces or blood. Faecal
pellets were collected after 3 weeks and microbiota composition
assessed by 16S sequencing. The diets had marked effects on the
composition of the microbiota by both unweighted and weighted
UniFrac (P¼ 2� 10� 5, Fig. 1a). Alpha diversity metrics available
in Qiime were compared between the three diets. While there
were no significant differences between control and high-fibre,
differences were observed between control and no-fibre diet. No-
fibre diet had lower Shannon index (P¼ 0.009), observed species
(P¼ 0.012) and chao1 (P¼ 0.027) than control. All of the sig-
nificant metrics with corresponding P values are given in
Supplementary Fig. 1. The diets caused significant perturbations
at the phylum level (Fig. 1b). Firmicutes dominated with the
control diet (P¼ 8.22� 10� 6; Qiime calculated ANOVA at a
phylum level), Bacteroidetes with a high-fibre diet (P¼ 0.0017)
and Proteobacteria with a no-fibre diet (P¼ 7.49� 10� 9).
Interestingly, the high-fibre diet increased (P¼ 1.53� 10� 5 and
8.01� 10� 4, 58- and 215-fold) two operational taxonomical
units (OTUs) of the Bacteroidetes phylum, with 95.0 and 98.5%
identity to high-acetate-producing Bacteroides acidifaciens
A40(T) strain (EzTaxon database). Differences in abundance
were also observed on the family level (Fig. 1c). The most
representative genera were Clostridium, Bacteroides, Pandoraea
and unknown genus of Alphaproteobacteria (Fig. 1d). An
unknown genus of Alphaproteobacteria appeared only with the
high-fibre diet. A massive blooming of Proteobacteria with the
no-fibre diet related to the genus Pandoraea, a member of family
Burkholderiaceae (Fig. 1c,d) with most abundant OTUs from this
genera aligning with Pandoraea norimbergensis CCUG 39188(T)
strain (97.55 to 99.6% sequence similarity, EzTaxon database).
Changes in the microbiota composition prompted us to assess
SCFA levels in faeces and serum by NMR spectroscopy. The high-
fibre diet increased total SCFA levels in both faeces and serum
(Fig. 1e). Of the SCFAs, acetate was the most abundant and the
high-fibre diet increased acetate in the faeces and serum, whereas
the no-fibre diet decreased acetate levels in the serum. In addi-
tion, the high-fibre diet increased propionate in the serum,
although levels were still very low. Therefore, a high-fibre
diet alters the composition of the gut microbiota to produce high
levels of SCFAs, leading in particular to high levels of acetate in
serum.

High-fibre diet protects against the development of AAD. To
investigate the immune regulatory effects of diet, and the changes
to the microbiota, on AAD, we used the house-dust mite (HDM)
model of AAD, which replicates many of the features of human
asthma. We fed mice with a control diet, a high-fibre diet (in
which the carbohydrates were replaced with high amylose maize
resistant starch) or a diet with no-fibre (Supplementary Table 1).
All diets contained similar levels of protein, fat and digestible
energy, and there were no differences in weight gain over the
course of any of the experiments. Mice were provided with the
different diets and three weeks later sensitized to HDM intrana-
sally (i.n. day 0, 1 and 2) and challenged i.n. on days 12–15 to
induce AAD, which was assessed on day 16 (Fig. 2a). In addition,
we also administered acetate (200mM) in the drinking water and
assessed the development of AAD. As expected, HDM induced all
the characteristic features of AAD: increased total cells and
eosinophils in bronchoalveolar lavage fluid (BALF), eosinophils
in blood, Th2 cytokine levels and IFN-g release from mediastinal
lymph node (MLN) T cells, IgE levels, lung inflammation,
tissue eosinophils, mucous-secreting cells (MSCs) and airway
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hyper-reactivity (AHR) in terms of airway resistance and
dynamic compliance (Fig. 2b–i). When the mice consumed the
high-fibre diet or acetate in the drinking water, features of AAD
failed to develop (Fig. 2b–i). Acetate had to be given for at least
3weeks to reduce the development of AAD and acetate still
suppressed AAD when administered 3 weeks before sensitization
only (Supplementary Fig. 2). Of note, the results were not
explained by pH of the acetate solution (Supplementary Fig. 3)
and extended to other models of AAD such as ovalbumin (OVA)
sensitization (Supplementary Fig. 4). However, acetate did not
suppress established AAD (Supplementary Fig. 5), at least using
the protocols used here. We also added propionate to the
drinking water (200mM) and found a trend towards lower
eosinophil numbers in BALF, decreased IL-13 release from MLN
T cells and decreased IgE levels (Supplementary Fig. 6), although
these differences did not reach significance. Propionate did result
in a small but significant decrease in IL-5 release from MLN T
cells. Together these data show that a high-fibre diet and the
consumption of acetate, in particular, protects against the
development of AAD.

Maternal diet suppresses AAD responses in adult offspring.
High levels of SCFAs could be expected to induce epigenetic
modifications, since SCFAs are natural inhibitors of HDACs. We
therefor determined whether the protective effect of high fibre
diet, or acetate, could extend to the developing fetus. Indeed
previous studies have established that maternal exposures
may influence asthma symptoms in offspring34. Pregnant mice
(embryonic age (E)13) were provided with control, high-fibre or
no-fibre diet, or acetate in the drinking water (Fig. 3a). The
offspring were weaned at 3 weeks of age onto the control diet.
When the offspring were 6 weeks old, AAD was induced.
Strikingly, when the mother consumed the high-fibre diet or
acetate, features of AAD failed to develop in the adult (6–8wk
old) offspring, as evidenced by a reduction of total cells and
eosinophils in BALF, eosinophils in blood, Th2 cytokine and
IFN-g release from MLN T cells, IgE, lung inflammation, tissue
eosinophils, MSCs and AHR (Fig. 3b–i). Maternal intake of a
high-fibre diet or acetate also protected against the development
of AAD when the offspring were younger (3 weeks old) or older
(16 weeks old) (Supplementary Fig. 7).
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Figure 1 | High-fibre diet alters the composition of the gut microbiota to produce high levels of acetate. Adult (6 week old female C57Bl6) mice

(obtained from the same facility and cohoused for 3 weeks) were provided different diets for 3 weeks then faeces and blood were collected. The

composition of the microbiota was significantly different (Anosim, 106 permutations) between diets using (a) unweighted (P¼ 2� 10� 5) and weighted

UniFrac (P¼ 2� 10� 5) analysis. Control diet (black triangles), high-fibre diet (blue squares), no-fibre diet (red circles). Relative abundance and

significantly (ANOVA) different (b) phyla, (c) family and (d) genera. (e) SCFA levels in faeces and serum measured by 1H-NMR spectroscopy. Data

represent meanþ s.e.m., n¼ 5. Significance is represented by *Po0.05, **Po0.01, Student’s t-test.
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Effects of maternal diet are mediated in utero. Interestingly, we
found that consumption of the high-fibre diet or acetate after
birth and throughout lactation (birth-3wks) had no effect on the
development of AAD in the offspring later in life (Supplementary
Fig. 8). In contrast, when mice received high-fibre diet or acetate
from E13 until birth only, AAD failed to develop in the offspring
(Fig. 4a–e). The effect of high-fibre diet and/or acetate may be due
to maternal transfer of a specific microbiota to the offspring at

birth. We next caesarean-transferred offspring from mice
receiving high-fibre diet or acetate to mothers receiving control
diet or water (Fig. 4f) and found that features of AAD were still
markedly reduced in the offspring (Fig. 4g–j). Similarly, the same
result was seen when the offspring were transferred immediately
after birth (Supplementary Fig. 9). However, when offspring were
transferred from mothers receiving the control diet or water to
mothers that had received high-fibre or acetate, they continued to
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Figure 2 | The effect of high-fibre diet and acetate on the development of AAD in adult mice. (a) Mice (female C57Bl6) were weaned onto control,

high-fibre diet, no-fibre diet, or acetate for 3 weeks and at 6 weeks old sensitized and challenged with HDM. The effect of high-fibre or no-fibre diet
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develop AAD (Supplementary Fig. 10), despite adopting a
microbiota more similar to their foster mother (Supplementary
Fig. 11). To investigate whether the effect was transferable
between mice, we cohoused the offspring from different mothers.
Only the mice whose mother received high-fibre diet or acetate
failed to develop AAD (Supplementary Fig. 12). Since the
microbial transfer was not a key factor in mediating suppression
of AAD in the offspring, we investigated whether acetate was
being transferred across the placenta to the fetus. It is likely that,
levels of acetate in the fetal blood were increased when the
mother was on a high-fibre diet or acetate (Fig. 4k). Together this
data shows that the effects of maternal intake of a high-fibre diet

or acetate on AAD are mediated in utero and are independent of
transfer of a specific microbiota.

Evidence that human asthma may associate with maternal diet.
To investigate the relationship between dietary fibre intake during
human pregnancy and SCFA levels, we obtained sera from
pregnant women and dietary fibre intake was calculated by a 24 h
food recall (Supplementary Table 2). Consistent with previous
studies on the relationship between fibre intake and serum acetate
levels35, we found that high dietary fibre intake during late
pregnancy was associated with higher acetate (but not propionate
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or butyrate) levels in serum (Fig. 5a). We next obtained serum
from pregnant women and data on the development of
respiratory symptoms in their infants, in the first year of life
(Supplementary Table 3). Strikingly, maternal acetate (but not
propionate or butyrate) levels equal to or above the median were
associated with a significant decrease in percentage of infants
requiring two or more general practitioner (GP) visits for cough
or wheeze and a trend toward reduced parent-reported wheeze
(Fig. 5b). Furthermore, this association was not observed if the
mothers were asthmatic (Supplementary Fig. 13, Supplementary
Table 4). Taken together, these results provide initial evidence for

a role of a high-fibre diet and production of acetate in protecting
against the development of airway disease in the offspring.

Hdac9� /� mice are protected against AAD. We next sought
to understand mechanisms whereby diet and metabolites
affected AAD, in both adults, and in offspring exposed to
high-fibre/acetate in utero. We have demonstrated previously
that the metabolite-sensing receptor GPR43 plays a role in the
regulation of inflammatory responses, including OVA-induced
AAD24. Trompette et al.6 likewise established a role for another
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SCFA-sensing receptor, GPR41, in the regulation of AAD. Both
GPR43 and GPR41 bind acetate, as well as other SCFAs with
various affinities. High-fibre diet and acetate still suppressed AAD
in Gpr43-deficient mice (Supplementary Fig. 14), suggesting that
signalling via GPR43 was not required for suppression of AAD.
This result was a deviation from our previous study24 and
presumably relates to animal house differences or different AAD
models. Regardless, this prompted us to explore a role for
HDACs, as SCFAs are known inhibitors of HDAC activity.
Indeed, cells from whole-lung of acetate-treated adult mice had
reduced HDAC activity (Fig. 6a). However, acetate had no effect
on HDAC activity in the offspring (Fig. 6a). It is unknown which
HDAC class acetate affects specifically, although HDAC9 has

been strongly implicated in the control of Treg biology31. In
support of this, we found that Hdac9� /� mice were highly
resistant to the development of AAD (Fig. 6b–e). Furthermore,
when Hdac9� /� females were crossed with WT males, the
Hdac9þ /� offspring were protected against the development of
AAD (Fig. 6f). Although indirect, this highlights the possibility
that acetate may inhibit HDAC9, as there are similar effects of
acetate-feeding, and HDAC9 deficiency, on AAD.

Acetate promotes Treg suppression of AAD. HDAC inhibition
is known to induce Treg cells31. We assessed acetylation at the
Foxp3 promoter region and found that acetate increased
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acetylation at H4 in both the adult and the offspring (Fig. 7a),
which depicts a ‘primed’ Foxp3 state. Indeed, Foxp3 was
expressed at higher levels in whole-lung of acetate-treated mice,
both adults and offspring, but only when AAD was induced
(Fig. 7b). This extended to an increase in the percentage and
number of Tregs in peripheral lymph nodes in adult and
offspring, when AAD was induced (Fig. 7c). Furthermore, the
Tregs from mice receiving acetate were more suppressive on a per
cell basis (Fig. 7d). To confirm the importance of Tregs, we next
employed anti-CD25 to deplete Tregs, and showed that Tregs
were required for acetate-mediated suppression of AAD in adult
mice (Fig. 7e–h). Furthermore, to address whether the inheritable
suppression of AAD induced by acetate involves Tregs and can be
recapitulated in young mice, we administered anti-CD25 to
3-week-old offspring from mothers given acetate during
pregnancy and induced AAD. Acetate administered to pregnant
mothers suppressed AAD in young offspring, and this was at least
partially dependent on Treg cells (Fig. 7i). Therefore, acetate
promotes acetylation at Foxp3, which promotes Tregs that are
highly suppressive and required for suppression of AAD in both
young and adult mice.

High-fibre/acetate promote gene regulation in fetal lung. Foxp3
is expressed by certain epithelia in the lung33. As acetylation at
the Foxp3 promoter was altered in the offspring when the mother
received acetate in the drinking water, we speculated that gene
expression in the lung may be affected by metabolites in utero.
Using microarray, we identified 23 genes, some of which were
highly differentially expressed in the lung of E21 fetuses from
high-fibre fed mothers versus control groups, and 20 differentially
expressed genes between acetate and control groups
(Supplementary Fig. 15, Supplementary Table 5). The majority
of genes identified were downregulated, which included the genes
with the highest fold-change. Molecular network analysis
indicated that putative targets for the effects of both high-fibre
and acetate were principally involved in embryonic and organ
development, cardiovascular disease, developmental disorders
and others (Supplementary Tables 6–8).

As both high-fibre and acetate suppressed the development of
AAD, we focused on genes that associated with both groups
(Fig. 8a, Supplementary Table 5). Three genes Nppa, Ankrd1 and
Pln were markedly downregulated in the lungs of both the high-
fibre and acetate-fed groups, versus control-fed mice, and
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recorded the highest fold-changes (Fig. 8b, Supplementary
Table 5). These genes (and Nppb) are co-regulated
(Supplementary Fig. 16), and their downregulation was con-
firmed using RT-qPCR (Fig. 8c). Nppa encodes for atrial
natriuretic peptide (ANP), a molecule mostly associated with
heart function, but which also has immune-modifying effects36.
We confirmed lower ANP protein in the lungs by western blot
(Fig. 8d). Moreover, Nppa transcripts remained downregulated
when the offspring were adults (Fig. 8e) suggestive of a sustained
epigenetic modification. We then investigated whether HDAC9
was involved in regulation of ANP. Interestingly, network
analysis predicted that HDAC9 was an inhibited upstream
regulator (Supplementary Table 6), which reiterates our
findings in Hdac9� /� mice (Fig. 6b–e). Indeed, the whole lung
of Hdac9� /� mice expressed very low amounts of ANP
compared with WT mice (Fig. 8f). Therefore, acetate-mediated
inhibition of HDAC9 is likely to account for the downregulation
of ANP. We then investigated whether Foxp3 was involved in the
downregulation of Nppa. Indeed, Nppa-bound Foxp3 was
detected at higher levels when the mice received acetate
(Fig. 8g), thereby demonstrating that Foxp3 binds directly to

the Nppa promoter region, which contains six putative binding
sites (Supplementary Fig. 17). Together these data demonstrate
that acetate alters gene expression in the fetal lung, including
downregulation of Nppa, which involves inhibition of HDACs
(likely HDAC9) and Foxp3 binding upstream of Nppa to suppress
ANP production.

Discussion
This study highlights the importance of a high-fibre diet and
acetate in priming Foxp3-mediated protection against the
development of asthma. A general scheme for this model is
summarized in Fig. 9. We showed that a high-fibre diet altered
the composition of the microbiota, increased SCFA production
(particularly acetate) and protected against the development of
AAD in adult mice. One of the main cellular mechanisms related
to acetate effects on Treg cells, particularly HDAC inhibition and
epigenetic modification of the Foxp3 promoter. As acetate crosses
the placenta, and previous studies had suggested a role for
maternal influences on asthma development in offspring, we
assessed effects of maternal diet during fetal development. These
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studies indicated an additional ‘developmental origin’ to asthma,
whereby in utero effects of maternal diet shape immune responses
in the airways of offspring later in life. This also involved Treg
biology, but also likely involves Foxp3-regulated genes in other
cell types such as epithelia.

Many studies now implicate an altered gut microbiota for the
pathogenesis of various diseases. Gut microbiota composition
relates to diet9,37; hence, a causative factor for asthma
susceptibility may be insufficient consumption of dietary fibre,
although antibiotic use could be an additional factor. A Western
diet-shaped gut microbiota may produce lower amounts of
SCFAs38. In our study, change in dietary fibre consumption led to
clear variations in the microbiota, evidenced by distinct
population clustering in principle component analysis. Further
analysis revealed a small decrease in microbial diversity when
mice were fed a no-fibre diet, which parallels associations between
Western and low-fibre diets and reduced diversity in human
population studies38,39. However, more marked changes were
observed in phylogenetic specifications. Our data in mice showed
that high-fibre diet increased Bacteroidetes and decreased
Firmicutes, which parallels findings in humans38. No-fibre diet
enriched Proteobacteria, which has been associated with Western
diets and disease states38,40,41. On the family level, high-fibre
diet supported the outgrowth of Bacteroidaceae, as reported
elsewhere6. This family contains particularly high-SCFA-
producing bacteria such as Bacteroides acidifaciens, of which
similar species were detected in our analysis. Bacteroides have
been associated with increases in Foxp3 expression among
CD4þ T cells28. Altogether our study shows that a high-fibre
diet, which was effective at preventing robust AAD in mice,

supports a microbiota containing a high abundance of regulatory
and non-pathogenic bacteria, which produce high levels of
immunoregulatory products such as SCFAs.

We have shown previously that acetate feeding suppressed
AAD, implicating a role for fibre. Recently, Trompette et al.6

showed similar findings on the role of dietary fibre. However, we
establish a distinct cellular and molecular mechanism: acetate
effects on Treg biology. This fits with the established role of
SCFAs in regulating HDAC activity, and the important role of
Tregs in asthma pathogenesis21. A clear result from the present
study was the important role of HDAC9 for development of
AAD. We showed that Hdac9� /� mice were resistant to the
development of AAD, suggesting that HDAC9 may in part be
involved in acetate-mediated suppression of AAD. Indeed,
Hdac9� /� mice have increased numbers of Tregs31, which are
known to suppress the development of AAD42. Furthermore,
higher levels of Hdac9 have been reported in human asthmatics43.
More specific analysis revealed that the Foxp3 promoter region
was highly acetylated at H4 and H3K9. Foxp3 activity is regulated
by reversible acetylation, and these acetylation patterns are an
indicator of a primed transcriptional state44,45. Indeed,
acetylation levels correlated with Foxp3 gene expression and
Tregs number, when AAD was induced, presumably because
Tregs are required to prevent inflammation. We speculate that
inadequate Treg immune regulation in individuals that consume
insufficient quantities of fibre may lead to inappropriate immune
responses to airborne and gut-encountered allergens. Such a
defect may be additive to other pathways relating to diet or gut
microbiota, and asthma pathogenesis.

A striking finding from this study was the ability of maternal
diet to shape airway responses in offspring, later in life. On top of
the influences that determine airway responses during adulthood,
this adds another dimension to the aetiology of asthma. However,
molecular and cellular pathways likely overlap. Acetate is the
likely mediator of this developmental effect, as acetate in drinking
water also yielded similar effects, and acetate is the predominant
metabolite produced from fibre by gut bacteria. Acetate is
also the main SCFA distributed throughout the body, including
to the developing fetus. For instance the concentrations of
acetate, butyrate and propionate in the lower colon range from
20 to 40mM, yet in the blood butyrate and propionate are usually
o5 uM, while acetate is 50–100 uM. There is a large body of
evidence for epigenetic influences in utero, which manifest later
in life46 particularly with regard to obesity, diabetes and
cardiovascular disease. The actions of HDACs are one of the
main epigenetic mechanisms for the regulation of gene
transcription. We also provided preliminary evidence that a
developmental origin of asthma could be extended to humans.
Our data showed a positive correlation between dietary fibre
intake and acetate levels in serum. This finding supports other
studies that show high-fibre diet correlates with high SCFA
levels38. We found that high-acetate levels in pregnant individuals
correlated with reduced GP visits for cough and wheeze per year
and wheeze in the first 12 months for their offspring. These
features are some of the most significant predictors for the
subsequent development of asthma in later life47,48. Future
analysis, when the children are older, will determine whether
these children do indeed go on to develop asthma.

Another mechanism whereby bacterial metabolites may
influence asthma susceptibility is through effects on cell types
in the lung, other than Tregs. This fits with evidence for an
epithelial cell contribution to asthma pathogenesis. High-fibre/
acetate consumption during pregnancy led to marked down-
regulation of Nppa transcripts in the lung. The Nppa gene in
humans has known polymorphisms that are associated with
asthma, with SNPs in the minor allele conferring protection49,50.
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maternally transferred acetate affects Treg biology in the fetus.
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How these SNPs affect the transcription of Nppa and subsequent
function and level of expression of ANP remains to be
determined. ANP binding to its receptors in the airways has
been implicated in causing persistent pro-inflammatory effects. In
one study, isatin, an endogenous inhibitor of ANP receptor
(NPRA) signalling and expression, inhibited airway inflammation
in a mouse model of allergic asthma. Leukocyte infiltration to the
airways, and airway hyper-reactivity were markedly suppressed
by blocking ANP signalling51. Receptors for ANP are highly
expressed in the lung tissue, including the lung epithelium. Mice
deficient in NPRA are resistant to methacholine-induced
bronchoconstriction52. Another report found that ANP
polarizes human DCs towards a Th2-promoting phenotype36.
Therefore, it is likely that inhibition of Nppa transcript expression
and the subsequent effect on ANP protein levels is consistent with
protection against AAD. Our finding that Hdac9� /� mice show
very low expression of ANP strengthens this conclusion.
Furthermore, we found that acetate increased Nppa-bound
Foxp3, demonstrating that Foxp3 binds directly to the Nppa
promoter region. Acetate-induced Foxp3 binding to Nppa
implicates Foxp3 not only in Treg induction but also direct
silencing of certain genes. Indeed, Foxp3 binding to promoter
regions has been associated with gene silencing53. It will be
important to determine the precise role of Foxp3 in gene
regulation in various cell types other than Tregs, such as
macrophages/DCs or epithelial cells. Deficiency of acetate/
SCFAs and consequent higher ANP production by DCs or
epithelial cells may be one mechanism responsible for skewing
T-cell responses to Th2. The fact that acetate and dietary fibre
had such a profound effect on gene expression in the fetal lung
may relate to the developmental state of cells, and the fact
they have yet to be ‘locked in’ to a gene expression programme54.
Thus, environmental effects that influence epigenetic mechanisms
may be particularly prominent in the developing fetus.

In summary, our findings show that high-fibre diet via the
production of acetate primes Foxp3-mediated protection against
the development of asthma. These findings align with the current
understanding that Tregs are critical in maintaining immune
regulation in asthma21. These findings potentially explain one
aspect of the ‘inheritance’ of asthma, via diet and epigenetic
effects. Furthermore, our data link known gene associations with
the development of asthma. Our data may relate to other
associations such as the low incidence of asthma in children
growing up on a farm55, which we speculate may relate to dietary
differences between rural and urban settings, or may relate to
microbes encountered in the farm environment that are geared
for high SCFA production (that is, faeces from livestock that
mostly digest fibre). Other organs and disease processes may well
be affected by maternal diet and epigenetic effects, such as
cardiovascular disease56 and may involve similar pathways—
microbiota-mediated production of SCFAs, acetylation leading to
Foxp3 expression and regulation of target genes within Treg cells,
or other Foxp3-expressing cells.

Methods
Animals. Female C57Bl6 and BALB/c mice were obtained from the Monash
Animal Research Platform, Monash University. Gpr43� /� and Hdac9� /� mice
were bred and maintained at the Monash Animal Research Platform. All mice were
maintained under specific pathogen-free and controlled environmental conditions
and randomly allocated to groups. All procedures were approved by the Animal
Ethics Committee of Monash University.

Diet and SCFAs. Diets used were ‘Control’ (8720310), ‘High fibre’ (SF11-025) and
‘No fibre’ (SF09-028) (Specialty feeds, Perth, Australia; see Supplementary Table S1
for nutritional parameters) and were refreshed three times per week. Acetate or
propionate (200mM, except where indicated) was dissolves into the drinking water

and refreshed three times per week. SCFA levels were determined by 1H-NMR
spectroscopy57.

Bacteria DNA sequencing and bioinformatics. DNA was extracted in
accordance with method of Yu and Morrison58. In brief, DNA was extracted and
purified using QIAamp DNA stool mini kit (Qiagen) and amplified using primers
selected to cover V1-V3 region of bacterial 16s rRNA gene. Sequencing of 16s RNA
gene amplicons was performed with Roche/454 FLX Genome Sequencer using
Titanium chemistry and manufacturer’s protocols and kits. Data analysis was done
using PyroBayes59, Pintail60 and Acacia61 for pre-processing, and final analysis
using Qiime v1.6.0 (ref. 62) with quality trimming settings: sequence lengths
of 300–600 bases, no ambiguous sequences and a maximum of 6 homopolymer
bases. Data have been deposited into the metagenomic database MG-RAST,
ID 12662.

Models of AAD. Mice were sensitized to HDM (Dermatophagoides pteronyssinus)
extract (i.n.; day 0, 1 and 2; 50 mg; Greer Labs, Lenoir, NC) in sterile saline (50 ml)
and challenged with HDM (i.n.; day 14–17; 5 mg in 50 ml saline) under isofluorane
anaesthesia. Where indicated mice were sensitized to OVA (i.p.; day 0 and 7;
50 mg; Sigma-Aldrich, St Louis, MO) with Rehydrogel (1mg; Reheis, Berkeley
Heights, NJ) in sterile saline and challenged (i.n.; day 12–15; 10 mg in 50 ml saline).
To recapitulate established disease, mice received HDM (i.n.; day 0, 1 and 2; 50 mg)
followed by two sets of challenges (days 11–13 and 33–34)64. Where indicated,
mice received an anti-CD25 antibody (i.p; day -3; 100mg, PC61).

Assessment of AAD. BALF and blood cell counts were performed64. Cytokine
release from MLN and serum IgE was assessed by ELISA. Single-cell suspensions
were prepared from MLNs by pushing through 70-mm sieves. A total of 1� 106

cells per well in 96-well U-bottomed plates were cultured in RPMI media
supplemented with 10% FCS, HEPES (20mM), penicillin/streptomycin
(10 mgml� 1), L-glutamine (2mM), 2-mercaptoethanol (50 mM), sodium pyruvate
(1mM). Cells were stimulated with HDM (20 mgml� 1) and cultured for 96 h
(37 �C, 5% CO2). Lungs were perfused, inflated, fixed, embedded, sectioned and
stained to enumerate tissue eosinophils (H&E) and MSCs23. AHR was assessed as
per the manufacturer’s instructions63,64. The investigator was blinded to
experimental groups.

Serum acetate from mothers. STUDY 1. Serum samples were collected from
n¼ 40 pregnant women without asthma, who were participating in a prospective
cohort study of viral infection in pregnancy at the John Hunter Hospital, Newcastle
between 2007 and 2009 (ref. 65). Samples were collected at a median gestational
age of 37.6 weeks (interquartile range: 36.6, 38.4 weeks). Infants of these mothers
were prospectively followed to 12 months of age66 and a validated parent
completed questionnaire67 on respiratory health, family medical history,
immunizations and infant feeding was completed. STUDY 2. Serum samples were
collected from n¼ 61 pregnant women who were participating in a prospective
cohort study at the John Hunter Hospital, Newcastle between 2004 and 2006
(refs 65,68). Samples were collected at a median gestational age of 36 weeks. At this
time, women also completed a 24 h food recall. Data were analysed using the
Foodworks database (Xyris, Brisbane)68. All procedures were approved and patient
consent was obtained.

HDAC activity. Nuclear extracts were isolated using an extraction kit (Abcam) and
HDAC activity assays (BioVision) were performed as per the manufacturer’s
instructions.

Chromatin immunoprecipitation. ChIP was performed as per the manufacturer’s
instructions. In brief, CD4þ Foxp3 cells were fixed in 0.6% paraformaldehyde,
washed with PBS then lysed in NP-40 lysis buffer (0.5% NP-40, 10mM Tris-HCL
at pH 7.4, 10mM NaCl, 10mM MgCl2 and protease inhibitors) followed by SDS
lysis buffer (1% SDS, 10mM EDTA, 50mM Tris-HCl at pH 8.1 and protease
inhibitors). Sonicated chromatin product was diluted in 1% Tritox X-100, 20mM
Tris-HCl at pH 8.0, 150mM NaCl, 2mM EDTA and protease inhibitors then pre-
cleared with Protein A/G–Sepharose and salmon sperm. ChIP was performed with
Anti-acetyl-Histone H3 (Lys9) and Anti-hyperacetylated Histone H4 (Penta)
Antibody (Millipore, USA). Chromatin was isolated with Protein A/G–Sepharose
and washed with low-salt buffer (0.1% SDS, 1% Triton X-100, 20mM Tris-HCl at
pH 8.1, 150mM NaCl and 2mM EDTA), high-salt buffer (0.1% SDS, 1% Triton
X-100, 20mM Tris-HCl at pH 8.1, 500mM NaCl and 2mM EDTA) and diluted in
LiCl buffer (0.5% NP-40, 0.5% Deoxycholate, 10mM Tris-HCl at pH 8.1, 1mM
EDTA and 0.25M LiCl). DNA was eluted in elution buffer (1% SDS and 100mM
NaHCO3), de-crosslinked by high-salt treatment (200mM NaCl) at 65 �C and
treated with proteinase K (40 mgml� 1 proteinase K, 10mM EDTA, 40mM Tris-
HCl at pH 8.1) at 50 �C. Isolated DNA was subject to qPCR using primers specific
for GAPDH (F 50-CTG CAG TAC TGT GGG GAG GT-30 , R 50-CAA AGG CGG
AGT TAC CAG AG-30), Foxp3 promoter (F 50-CTG AGG TTT GGA GCA
GAA GGA, R 50-GAG GCA GGT AGA GAC AGC ATT G-30). Nppa promoter
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(F 50-TCT TCT GCT GGC TCC TCA CT-30 , R 50-GCA CGA TCT GAT GTT
TGC TG-30).

Treg assessment. A total of 1� 106 cells per well in 96-well U-bottomed plates
were stained for CD4, CD25 and Foxp3 using the eBioscience perm kit as per
manufacturer’s instructions and analysed by flow cytometry. For suppression
assays CD4þ Foxp3GFPþ and CD4þ Foxp3GFP cells were isolated by FACS
(495% pure). CD4þ Foxp3GFP cells (5� 104) and varying numbers of CD4þ
Foxp3GFPþ cells were cultured in RPMI (200ml, 10% fetal calf serum; 72 h, 37 �C)
with anti-CD28 (1mgml� 1; BD Pharmingen) and plate bound anti-CD3
(1mgml� 1). Cells were pulsed for the final 18 h of culture with [3H] thymidine
(Amersham International, UK) and enumerated using a microbeta counter.

Gene array and RT-PCR. Cells were lysed in Trizol and RNA extracted as per
manufacturer’s instructions (Sigma). Gene array was carried out using Affymetrix
(Ramacoitti Centre, Sydney) including analysis by Affymetrix Transcription
Analysis Console (TAC) 2.0 software. For RT-PCR, RNA was reverse transcribed
into cDNA and gene expression determined by SYBR Green (Sigma) incorporation
relative to the house keeping gene rpl13 (F 50-ATC CCT CCA CCC TAT GAC
AA-30 , R 50-GCC CCA GGT AAG CAA ACT T-30). Foxp3 (F 50-ACT CGC ATG
TTC GCC TAC TT-30 , R 50-AGG GAT TGG AGC ACT TGT TG-30), Ankrd1
(F 50-TGC GAT GAG TAT AAA CGG ACG-30 , R 50-GTG GAT TCA AGC ATA
TCT CGG AA-30), Pln (F 50-AAA GTG CAA TAC CTC ACT CGC-30 , R 50-GGC
ATT TCA ATA GTG GAG GCT C-30), Nppb (F 50-GAG GTC ACT CCT ATC
CTC TGG-30 , R G50-CC ATT TCC TCC GAC TTT TCT C-30).

Western blot. Samples were lysed and protein extracted according to the estab-
lished protocols (Abcam). BCA (Biorad) was used to determine protein con-
centrations for loading. Samples were ran on 15% SDS–PAGE, transferred to
nitrocellulose membranes and using the SNAP i.d. system (Millipore) probed with
anti-ANP (Sigma, 1/500) or anti-b-actin (Millipore, 1/500) and anti-rabbit sec-
ondary antibody (Abcam). Development was by West Pico chemiluminescent
substrate (Thermo Scientific) with 10 s exposure to autoradiography film. Band
intensity was determined by ImageJ 1.47. Images have been cropped for pre-
sentation. Full-size images are presented in Supplementary Figs 18 and 19.

Statistical analysis. Animal numbers were initially predetermined using Mead’s
resource equation. Data were analysed using GraphPad Prism (GraphPad Software,
CA) and are represented as the mean±s.e.m. Unpaired Student’s t-test was used to
determine differences between two groups. Po0.05 was considered statistically
significant. Outliers were determined and excluded using Grubb’s test. For human
data, w2-test was used to determine the difference between proportions, and
Spearman’s rank correlation was used. To validate findings, each experiment was
performed at least twice. Significance in microbiota comparisons was calculated
with Qiime-based ANOVA, beta diversity significance was based on Anosim and
106 Monte Carlo permutations. Non-parametric two-sample t-test with 1000
Monte Carlo permutations was used in alpha diversity comparisons.
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