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Equivalence of wave–particle duality to entropic
uncertainty
Patrick J. Coles1,2, Jedrzej Kaniewski1,3 & Stephanie Wehner1,3

Interferometers capture a basic mystery of quantum mechanics: a single particle can exhibit

wave behaviour, yet that wave behaviour disappears when one tries to determine the

particle’s path inside the interferometer. This idea has been formulated quantitatively as an

inequality, for example, by Englert and Jaeger, Shimony and Vaidman, which upper bounds the

sum of the interference visibility and the path distinguishability. Such wave–particle duality

relations (WPDRs) are often thought to be conceptually inequivalent to Heisenberg’s

uncertainty principle, although this has been debated. Here we show that WPDRs correspond

precisely to a modern formulation of the uncertainty principle in terms of entropies, namely,

the min- and max-entropies. This observation unifies two fundamental concepts in quantum

mechanics. Furthermore, it leads to a robust framework for deriving novel WPDRs by applying

entropic uncertainty relations to interferometric models. As an illustration, we derive a novel

relation that captures the coherence in a quantum beam splitter.
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W
hen Feynman discussed the two-path interferometer
in his famous lectures1, he noted that quantum
systems (quantons) display the behaviour of both

waves and particles and that there is a sort of competition
between seeing the wave behaviour versus the particle behaviour.
That is, when the observer tries harder to figure out which path of
the interferometer the quanton takes, the wave-like interference
becomes less visible. This trade-off is commonly called wave–
particle duality (WPD). Feynman further noted that this is ‘a
phenomenon which is impossible... to explain in any classical
way, and which has in it the heart of quantum mechanics. In
reality, it contains the only mystery [of quantum mechanics].’

Many quantitative statements of this idea, so-called WPD
relations (WPDRs), have been formulated2–13. Such relations
typically consider the Mach–Zehnder interferometer (MZI) for
single photons, see Fig. 1. For example, a well-known formulation
proven independently by Englert2 and Jaeger et al.3 quantifies the
wave behaviour by fringe visibility, V, and particle behaviour by
the distinguishability of the photon’s path, D. (See below for
precise definitions; the idea is that ‘waves’ have a definite phase,
while ‘particles’ have a definite location, hence V and D,
respectively, quantify how definite the phase and location are
inside the interferometer.) They found the trade-off:

D2 þV2 � 1 ð1Þ
which implies V ¼ 0 when D ¼ 1 (full particle behaviour means
no wave behaviour) and vice versa, and also treats the
intermediate case of partial distinguishability.

It has been debated, particularly around the mid-1990s14–16,
whether the WPD principle, closely related to Bohr’s
complementarity principle17, is equivalent to another
fundamental quantum idea with no classical analogue:
Heisenberg’s uncertainty principle18. The latter states that there
are certain pairs of observables, such as position and momentum
or two orthogonal components of spin angular momentum,
which cannot simultaneously be known or jointly measured.
Likewise, there are many quantitative statements of this
idea, known as uncertainty relations (URs; see, for example,

refs 19–29), and modern formulations typically use entropy
instead of s.d. as the uncertainty measure, so-called entropic
uncertainty relations (EURs)24. This is because the s.d.
formulation suffers from trivial bounds when applied to finite-
dimensional systems21, whereas the entropic formulation not
only fixes this weakness but also implies the s.d. relation22 and
has relevance to information-processing tasks.

At present, the debate regarding wave–particle duality and
uncertainty remains unresolved, to our knowledge. Yet, Feyn-
man’s quote seems to suggest a belief that quantum mechanics
has but one mystery and not two separate ones. In this article, we
confirm this belief by showing a quantitative connection between
URs and WPDRs, demonstrating that URs and WPDRs capture
the same underlying physics; see also refs 30,31 for some partial
progress along these lines. This may come as a surprise, since
Englert2 originally argued that equation (1) ‘does not make use of
Heisenberg’s uncertainty relation in any form’. To be fair, the UR
that we show is equivalent to equation (1) was not known at the
time of Englert’s paper, and was only recently discovered25–29.
Specifically, we will consider EURs, where the particular entropies
that are relevant to equation (1) are the so-called min- and max-
entropies used in cryptography32.

In what follows, we provide a general framework for deriving
and discussing WPDRs—a framework that is ultimately based on
the entropic uncertainty principle. We illustrate our framework
by showing that several different WPDRs from the literature are
in fact particular examples of EURs. Making this connection not
only unifies two fundamental concepts in quantum mechanics,
but also implies that novel WPDRs can be derived simply by
applying already-proven EURs. Indeed, we use our framework to
derive a novel WPDR for an exotic scenario involving a ‘quantum
beam splitter’33–36, where testing our WPDR would allow the
experimenter to verify the beam splitter’s quantum coherence (see
equation (17)).

We emphasize that the framework provided by EURs is highly
robust and entropies have well-characterized statistical meanings.
Note that current approaches to deriving WPDRs often involve
brute force calculation of the quantities one aims to bound; there
is no general, elegant method currently in use. Our approach
simply involves judicial application of the relevant UR. Moreover,
we emphasize that URs can be applied to interferometers in two
different ways. One involves preparation uncertainty, which says
that a quantum state cannot be prepared having low uncertainty
for two complementary observables, and it turns out that this is
the principle relevant to the original presentation of equation (1)
in ref. 2. The other involves measurement uncertainty, which
says that two complementary observables cannot be jointly
measured7,31, and we discuss why this principle is actually what
was tested in some recent interferometry experiments34,37.

Results
Framework. We argue that a natural and powerful way to think of
wave–particle duality is in terms of guessing games, and one’s
ability to win such games is quantified by entropic quantities.
Specifically, we consider complementary guessing games, where
Alice is asked to guess one of two complementary observables—a
modern paradigm for discussing the uncertainty principle. In the
MZI, see Fig. 1, this corresponds to either guessing which path the
photon took or which phase was applied inside the interferometer.
The which-path and which-phase observables are complementary
and hence the uncertainty principle gives a fundamental restriction
stating that Alice cannot be able to guess both observables.

Our framework treats this complementary guessing game for
binary interferometers. By binary, we mean any interferometer
where there are only two interfering paths, that is, all other paths
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t1 t2
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Which path (Z )? Which phase (W )?

|0〉

|1〉

Figure 1 | MZI for single photons. Passing through the first beam splitter

(BS) creates a superposition of which-path states, |0i and |1i, at time t1,

then the system interacts with an environment E¼ E1E2. Finally, at time t2, a

phase shift f is applied to the lower arm and the two beams are

recombined on a second beam splitter. (While this is the typical setup, our

framework also allows E to play a more general role, for example, being

correlated to the photon before it enters the MZI.) Our complementary

guessing game proceeds as follows. In one game (coloured red), Alice tries

to guess which of the two paths the photon took given that she has access

to a portion of E denoted E1, which could be, for example, a gas of atoms

whose internal states record information about the presence of a photon. In

the other game (coloured blue), one of two phases, f¼f0 or f¼f0þ p, is
randomly applied to the lower interferometer arm and Alice tries to guess f
given that she has access to a different portion of E denoted E2, which could

be, for example, the photon’s polarization. We argue that WPDRs impose

fundamental trade-offs on Alice’s ability to win these two games.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6814

2 NATURE COMMUNICATIONS | 5:5814 | DOI: 10.1038/ncomms6814 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


are classically distinguishable (from each other and from the two
interfering paths). In addition to the MZI, this includes as special
cases, for example, the Franson interferometer38 (see Fig. 2) and
the double-slit interferometer (see Fig. 3). Note that binary
interferometers go beyond interferometers with two physical paths.
For example, in the Franson interferometer, there are four possible
paths but post-selecting on coincidence counts discards two of
these paths, which are irrelevant to the interference anyway.

Now we link wave and particle behaviour to knowledge of
complementary observables. In the case of particle behaviour, the
intuition is that particles have a well-defined spatial location,
hence ‘particleness’ should be connected to knowledge of the path
inside interferometer. For binary interferometers, there may be
more than two physical paths, but only two of these are
interfering. Hence, we only consider the two-dimensional (2D)
subspace associated with the two which-path states of interest,
denoted |0i and |1i. This subspace can be thought of as an
effective qubit, denoted Q, and the standard basis of this qubit:

which path : Z ¼ 0j i; 1j if g ð2Þ

corresponds precisely to the which-path observable. For example,
in the double slit (Fig. 3), |0i and |1i are the pure states that one
would obtain at the slit exit from blocking the bottom and top
slits, respectively.

Wave behaviour is traditionally associated with having a large
amplitude of intensity oscillations at the interferometer output.
Indeed, this has been quantified by the so-called fringe visibility,

see equation (7), but to apply the uncertainty principle we need to
relate wave behaviour to an observable inside the interferometer.
Classical waves (for example, water waves) are often modelled as
having a well-defined phase and being spatially delocalized. The
analogue in our context corresponds to the quanton being in a
equally weighted superposition of which-path states. Hence,
eigenstates of the ‘wave observable’ should live in the XY plane of
the Bloch sphere, so we consider observables on qubit Q (the
interfering subspace) of the form

which phase : W ¼ w�j if g;

w�j i ¼ 1ffiffiffi
2

p 0j i � eif0 1j i
� �

:
ð3Þ

In terms of the guessing game, guessing the value of the wave (or
which-phase) observable corresponds to guessing whether a
phase of f¼f0 or f¼f0þp was applied inside the inter-
ferometer (see, for example, Fig. 1). While f0 is a generic phase,
its precise value will be singled out by the particular experimental
setup. When the experimenter measures fringe visibility, this
corresponds to varying f0 to find the largest intensity contrast,
and mathematically we model this by minimizing the uncertainty
within the XY plane, see the second of equations (4).

Entropic view. Our entropic view associates a kind of
behaviour with the availability of a kind of information, or lack of
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Figure 2 | Franson interferometer for entangled photons. In this

interferometer, the ‘quanton’ consists of two photons. That is, a source

produces time–energy entangled photons that each head separately

towards a MZI that contains a long arm (depicted with extra loops) and a

short arm. A simple model considers the 4D Hilbert space associated with

the four possible paths: |SSi, |SLi, |LSi and |LLi with S¼ short path and

L¼ long path. Two of these dimensions are post-selected away by

considering only coincidence counts, that is, the photons arriving at the

same time is inconsistent with the |SLi and |LSi paths. The remaining paths,

|0i¼ |SSi and |1i¼ |LLi, are indistinguishable in the special case of perfect

visibility and they produce interference fringes as one varies f¼fAþfB.

Namely, the intensity of coincidence counts at detector pair DA
0;D

B
0

� �
oscillates with f. Interaction with an environment system, or making the

beam splitters asymmetric, may allow one to partially distinguish between

|SSi and |LLi, and our entropic uncertainty framework can be applied to

derive a trade-off, for example, of the form of equation (1). This trade-off

captures the idea that Alice can either guess which path (|SSi versus |LLi)
or which phase (f¼f0 versus f¼f0þp), but she cannot do both (even if

she extracts information from other systems E1 and E2).
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Figure 3 | Double-slit interferometer for arbitrary quantum particles.

The first guessing game (coloured red) involves Alice guessing which slit

the quanton goes through, given that she can measure a system E1 that has

interacted with, and hence may contain information about, the quanton. In

the second game (coloured blue), Bob randomly chooses the source’s

vertical coordinate, and Alice tries to guess where the source was located,

given some other system E2 and given where the quanton was finally

detected. Note that the source’s location determines the relative phase

between the which-slit states, |0i and |1i, and we assume that Bob chooses

one of two possible locations such that the relative phase is either 0 or p.
Here, the state |0i (|1i) is defined as the pure state at the slit exit that one

would obtain from blocking the bottom (top) slit. Our framework provides a

WPDR that constrains Alice’s ability to win these complementary games.

Furthermore, one can reinterpret the probability to win the second game,

for the case where E2 is trivial, in terms of the traditional fringe visibility.

The latter quantifies the amplitude of intensity oscillations as one varies the

detector location y. Note that varying y changes the relative path lengths

from the slits to the detector and hence is analogous to applying a relative

phase f between the two paths. (This assumes that the envelope function

(dashed curve) associated with the interference pattern is flat over the

range of y values considered, which is often the case when L is very large.)

So, the double-slit fringe visibility is equivalent to the notion captured by V
in equation (7), where the detector is spatially fixed but a phase is varied,

and we relate V to our entropic measure of wave behaviour in the Methods

section.
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behaviour with missing information, as follows:

lack of particle behaviour : Hmin Z jE1ð Þ

lack of wave behaviour : min
W2XY

Hmax W jE2ð Þ ð4Þ

where Hmin and Hmax are the min- and max-entropies, defined
below in equations (6), which are commonly used in quantum
information theory, Z is the which-path observable in
equation (2), W is the which-phase observable in equation (3)
(whose uncertainty we optimize over the XY plane of the Bloch
sphere) and E1 and E2 are some other quantum systems that
contain information, and measuring these systems may help to
reveal the behaviour (for example, E1 could be a which-path
detector and E2 could be the quanton’s internal degree of free-
dom). Note that we use the same symbols (Z, W and so on) for
the observables as for the random variables they give rise to. Full
behaviour (no behaviour) of some kind corresponds to the
associated entropy in equations (4) being zero (one). We for-
mulate our general WPDR as

HminðZ jE1Þþ min
W2X Y

HmaxðW jE2Þ � 1: ð5Þ

This states that, for a binary interferometer, the sum of the
ignorances about the particle and wave behaviours is lower
bounded by 1 (that is, 1 bit). Equation (5) constrains Alice’s
ability to win the complementary guessing game described above.
If measuring E1 allows her to guess the quanton’s path, that is, the
min-entropy in the first of equations (4) is small, then, even if she
measures E2, she still will not be able to guess the quanton’s
phase, that is, the max-entropy in the second of equations (4) will
be large (and vice versa).

To be clear, equation (5) is explicitly an EUR, and it has been
exploited to prove the security of quantum cryptography39. The
usefulness of equation (5) for cryptography is due to the clear
operational meanings of the min- and max-entropies32, which
naturally express the monogamy of correlations as they give the
distances to being uncorrelated (Hmax) and being perfectly
correlated (Hmin). One can replace these entropies with the von
Neumann entropy in equation (5) and the relation still holds;
however, the min- and max-entropies give more refined
statements about information processing since they are also
applicable to finite numbers of experiments. From ref. 32, the
precise definitions of these entropies, for a generic classical-
quantum state rXB, are

Hmin X jBð Þ ¼ � log pguess X jBð Þ;

Hmax X jBð Þ ¼ log psecr X jBð Þ; ð6Þ
where all logarithms are base 2 in this article. Here, pguess(X|B)
denotes the probability for the experimenter to guess X correctly
with the optimal strategy, that is, with the optimally helpful
measurement on system B. Also, psecr X Bjð Þ ¼
maxsBF rXB; 1 � sBð Þ2 quantifies the secrecy of X from B, as
measured by the fidelity F of rXB to a state that is completely
uncorrelated.

The fact that equation (5) can be thought of as a WPDR, and
furthermore that it encompasses the majority of WPDRs found in
the literature for binary interferometers, is our main result.

Discussion
To illustrate this, we consider the celebrated MZI, shown in Fig. 1,
since most literature WPDRs have been formulated for this
interferometer. In the simplest case, one sends in a single photon
towards a 50/50 (that is, symmetric) beam splitter, BS1, which
results in the state j þ i ¼ j0iþ j1ið Þ=

ffiffiffi
2

p
, then a phase f is

applied to the lower arm giving the state 0j i þ eif 1j i
� �

=
ffiffiffi
2

p
.

Finally, the two paths are recombined on a second 50/50 beam

splitter BS2 and the output modes are detected by detectors D0

and D1. Fringe visibility is then defined as

fringe visibility : V :¼ pD0
max � pD0

min

pD0
max þ pD0

min

; ð7Þ

where pD0 is the probability for the photon to be detected at
D0; pD0

max ¼ maxfpD0 maximizes this probability over f,
whereas pD0

min ¼ minfpD0 . In this trivial example, one has V ¼ 1.
However, many more complicated situations, for which the
analysis is more interesting, have been considered in the extensive
literature; we now illustrate how these situations fall under the
umbrella of our framework with some examples.

As a warm-up, we begin with the simplest known WPDR, the
predictability–visibility trade-off. Predictability P quantifies the
prior knowledge, given the experimental setup, about which path
the photon will take inside the interferometer. More precisely,
P ¼ 2pguess Zð Þ� 1; where pguess(Z) is the probability of correctly
guessing Z. Non-trivial predictability is typically obtained by
choosing BS1 to be asymmetric. In such situations, the following
bound holds4,5:

P2 þV2 � 1: ð8Þ
This particularly simple example is a special case of Robertson’s
UR involving s.d.30,31,40,41. However, ref. 41 argues that
equation (8) is inequivalent to a family of EURs where the
same (Rényi) entropy is used for both uncertainty terms,
hence one gets the impression that entropic uncertainty is
different from wave–particle duality. On the other hand, ref. 41
did not consider the EUR involving the min- and max-entropies.
For some probability distribution P¼ {pj}, the unconditional min-
and max-entropies are given by Hmin(P)¼ � logmaxj pj and
HmaxðPÞ ¼ 2log

P
j

ffiffiffiffi
pj

p
. We find that equation (8) is equivalent to

HminðZÞþ min
W2X Y

HmaxðWÞ � 1; ð9Þ

which is an EUR proved in the seminal paper by Maassen and
Uffink23, and corresponds to E1 and E2 in equation (5) being
trivial. The entropies in equation (9) are evaluated for the state at
any time while the photon is inside the interferometer. It is
straightforward to see that HminðZÞ ¼ � log 1þP

2 and in Methods
we prove that

min
W2XY

Hmax Wð Þ ¼ log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

p� �
: ð10Þ

Plugging these relations into equation (9) gives equation (8).
Let us move on to a more general and more interesting

scenario where, in addition to prior which-path knowledge, one
may obtain further knowledge during the experiment due to the
interaction of the photon with some environment F, which may
act as a which-way detector. Most generally, the interaction is
given by a completely positive trace preserving map E, with the
input system being Q at time t1 and output systems being Q and F
at time t2, see Fig. 1. The final state is rð2ÞQF ¼ Eðrð1ÞQ Þ, where the
superscripts (1) and (2) indicate the states at times t1 and t2. We
do not require E to have any special form to derive our WPDR, so
our treatment is general.

The path distinguishability is defined by D ¼ 2pguess Z Fjð Þ� 1,
where pguess(Z|F) is the probability for correctly guessing the
photon’s path Z at time t2 given that the experimenter performs
the optimally helpful measurement on F. We find that
equation (1) is equivalent to

HminðZ jFÞþ min
W2X Y

HmaxðWÞ � 1; ð11Þ

where the entropy terms are evaluated for the state rð2ÞQF , which
corresponds to E1¼ F and E2 being trivial in equation (5). First, it
is obvious from the operational meaning of the conditional min-
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entropy in the first of equations (6) that we have
HminðZ jFÞ ¼ � log 1þD

2 , and second we use our result
equation (10) to rewrite equation (11) as equation (1). As
emphasized in ref. 2, we note that equation (1) and its entropic
form equation (11) do not require BS1 to be symmetric. Hence, D
accounts for both the prior Z knowledge associated with the
asymmetry of BS1 as well as the Z information gained from F.

The above analysis shows that equations (1) and (8)
correspond to applying the preparation UR at time t2 (just before
the photon reaches BS2). Preparation uncertainty restricts one’s
ability to predict the outcomes of future measurements of
complementary observables. Thus, to experimentally measure P
or more generally D, the experimenter removes BS2 and sees how
well he/she can guess which detector clicks, see Fig. 4a. Of course,
to then measure V, the experimenter reinserts BS2 to close the
interferometer. We emphasize that this procedure falls into the
general framework of preparation uncertainty.

On the other hand, URs can be applied in a conceptually
different way. Instead of two complementary output measure-
ments and a fixed input state, consider a fixed output
measurement and two complementary sets of input states.
Namely, consider the input ensembles from equations (2) and
(3), now labelled as Zi¼ {|0i,|1i} and Wi¼ {|w±i}, where i stands
for ‘input’, to indicate the physical scenario of a sender inputting
states into a channel. Imagine this as a retrodictive guessing game,
where Bob controls the input and Alice has control over both F
and the detectors. Bob chooses one of the ensembles and flips a
coin to determine which state from the ensemble he will send,
and Alice’s goal is to guess Bob’s coin flip outcome. Assuming BS1
is 50/50, the two Zi states are generated by Bob blocking the
opposite arm of the interferometer, as in Fig. 4b, while the Wi

states are generated by applying a phase (either f0 or f0þ p) to
the lower arm.

It may not be common knowledge that this scenario leads to a
different class of WPDRs, therefore we illustrate the difference in
Fig. 4. For clarity, we refer to D introduced above as output
distinguishability, whereas in the present scenario we use
the symbol Di and call this quantity input distinguishability,
defined by

Di ¼ 2pguess Zi j Fð ÞD0
� 1; ð12Þ

where pguess Zi Fjð ÞD0
is Alice’s probability to correctly guess Bob’s

Zi state given that she has access to F and she knows that detector
D0 clicked at the output. Likewise, we define the notion of input
visibility V i via:

V i ¼ max
W2XY

2pguess Wið ÞD0
� 1

h i
; ð13Þ

which quantifies how well Alice can determine Wi given that she
knows D0 clicked.

Now the uncertainty principle says there is a trade-off: if Alice
can guess the Zi states well, then she cannot guess the Wi states
well and vice versa. In other words, Alice’s measurement
apparatus, the apparatus to the right of the dashed line labelled
t1 in Fig. 1, cannot jointly measure Bob’s Z and W observables.
EURs involving von Neumann entropy have previously been
applied to the joint measurement scenario27,42, we do the same
for the min- and max-entropies to obtain (see Methods for
details)

D2
i þV2

i � 1; ð14Þ
which can now be applied to a variety of situations.

As an interesting application of equation (14), we consider the
scenario proposed in ref. 33 and implemented in refs 34–36,
where the photon’s polarization P acts as a control system to
determine whether or not BS2 appears in the photon’s path and
hence whether the interferometer is open or closed, see Fig. 5.
Since P can be prepared in an arbitrary input state rð2ÞP , such as a
superposition, this effectively means that BS2 is a ‘quantum beam
splitter’, that is, it can be in a quantum superposition of being
absent or present. The interaction coupling P to Q is modelled as
a controlled unitary as in Fig. 5. In this case, the two visibilities
are equivalent (see Methods)

V i ¼ V ¼ 2 kj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 1�Rð Þ

p
Vh jrð2ÞP Vj i; ð15Þ

where we assume the dynamics are path preserving, that is,
EQð j0ih0 j Þ ¼ j0ih0 j and EQð j1ih1 j Þ ¼ j1ih1 j , where EQ ¼
TrF � E is the reduced channel on Q, which implies that
EQð j0ih1 j Þ ¼ k j0ih1 j , that is, off-diagonal elements get scaled

BS2

BS1

Prediction

F

BS1

BS2

Retrodiction

F

Removed

Which will
click?

Blocker
Which was
blocked?

Figure 4 | Path prediction versus path retrodiction, in the MZI. (a) In the

predictive scenario, the second beam splitter is removed and Alice tries to

guess which detector will click. (b) In the retrodictive scenario, a blocker is

randomly inserted into one of the interferometer arms and Alice tries to

guess which arm was blocked (given the knowledge of which detector

clicked).

P

BS
F QBS

PBS

PBS

QBS =

�(2)
P

�(2)
Q

UPQ

U (R)

D0, P +

D0, P –

D1, P –

D1, P +

|0〉Q

|1〉Q

Figure 5 | Quantum beam splitter in the MZI. In this scenario, the

second beam splitter is in a superposition of ‘absent’ and ‘present’, as

determined by the polarization state rð2ÞP at time t2. The quantum

beam splitter (QBS) can be modelled as a controlled unitary,

UPQ¼ |HihH|P#1Qþ |VihV|P#U(R), where U(R) is the unitary on Q

associated with an asymmetric beam splitter with reflection probability R.

Polarization-resolving detectors (PBS¼ polarizing beam splitter) on the

output modes help to reveal the ‘quantumness’ of the QBS.
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by a complex number k with |k|r1. In equation (15),
V is evaluated for any pure state input rð1ÞQ from the XY
plane of the Bloch sphere (for example, |þi). Now we apply
equation (14) to this scenario and use equation (15) to obtain:

D2
i þV2 � 1; ð16Þ

which extends a recent result in ref. 13 to the case where F is non-
trivial. This general treatment includes the special case where
rð2ÞP ¼ jVihV j , corresponding to a closed interferometer with an
asymmetric BS2. Ref. 37 experimentally tested this special case.
However, ref. 37 did not remark that their experiment actually
tested a relation different from equation (1), namely, they tested a
special case of equation (16).

Similarly, ref. 34 tested equation (16) rather than equation (1),
but they allowed rð2ÞP to be in a superposition. At first sight, this
seems to test the WPDR in the case of a quantum beam splitter
(QBS), but it turns out that neither the visibility V nor the
distinguishability Di depends on the phase coherence in rð2ÞP and
hence the data could be simulated by a classical mixture of BS2
being absent or present. Nevertheless, our framework provides a
WPDR that captures the coherence in rð2ÞP , by conditioning on
the polarization P at the interferometer output (see Methods). For
example, defining the polarization-enhanced distinguishability,
DP

i ¼ 2pguess Zi jFPð ÞD0
� 1, which corresponds to choosing

E1¼ FP, we obtain the novel WPDR:

ðDP
i Þ

2 þV2 � 1; ð17Þ

which captures the beam splitter’s coherence (see
Supplementary Note 4 for elaboration) and could be tested with
the set-up in ref. 34.

The above examples use the environment solely to enhance the
particle behaviour. To give a corresponding example for wave
behaviour, that is, where system E2 in equation (5) is non-trivial,
the main result in ref. 11 is a WPDR for the case when the
environment F is measured (after it has interacted with
the quanton) and the resulting information is used to enhance
the fringe visibility. This scenario is called quantum erasure, since
the goal is to erase the which-path information stored in the
environment to recover full visibility. This falls under our
framework by taking E2 to be the classical output of the
measurement on the environment. For elaboration, see
Supplementary Note 3, where we also cast the main results of
ref. 10 (Supplementary Note 2) and ref. 12 (Supplementary
Note 3) within our framework.

In summary, we have unified the wave–particle duality
principle and the entropic uncertainty principle, showing that
WPDRs are EURs in disguise. We leave it for future work to
extend this connection to multiple interference pathways6. The
framework presented here can be applied universally to binary
interferometers. Our framework makes it clear how to formulate
novel WPDRs by simply applying known EURs to novel
interferometer models, and these new WPDRs will likely inspire
new interferometry experiments. We note that all of our relations
also hold if one replaces both min- and max-entropies with the
well-known von Neumann entropy. Alternatively, one can use
smooth entropies29,39, and the resulting smooth WPDRs may
find application in the security analysis of interferometric
quantum key distribution43, which often exploits the Franson
set-up (Fig. 2).

Methods
Outline. We emphasize that our treatment, in what follows, will be for a generic
binary interferometer. We will first discuss our general treatment, then we will
specialize to the predictive and retrodictive scenarios (see Fig. 4).

Origin of general WPDR. It is known that the min- and max-entropies satisfy
the UR29:

HminðZ jE1ÞþHmaxðW jE2Þ � 1; ð18Þ
for any tripartite state rAE1E2 ; where A is a qubit and Z and W are mutually
unbiased bases on A. Noting that the which-path and which-path observables in
equations (2) and (3) are mutually unbiased (for all f0 in equation (3), that is, for
all W in the XY plane) gives our general WPDR in equation (5).

Complementary guessing game. The operational interpretation of equation (5)
in terms of the complementary guessing game described, for example, in Figs 1–3
can be seen clearly as follows. While the min-entropy is related to the guessing
probability via the first of equations (6), we establish a similar relation for the max-
entropy. First, we prove (see Supplementary Note 1) that for a general classical-
quantum state rXB ¼

P
j

j jihj j � sjB; where X is binary,

Hmax X jBð Þ ¼ log 1þ 2
ffiffiffiffiffi
s0B

q ffiffiffiffiffi
s1B

q����
����
1

� 	
; ð19Þ

where the 1-norm is Mk k1¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffi
MyM

p
. Next we show (in Supplementary Note 1),

for any positive semi-definite operators M and N,

M�Nk k21 þ 4
ffiffiffiffiffi
M

p ffiffiffiffi
N

p��� ���2
1
� ðTrMþTrNÞ2: ð20Þ

Combining equation 20 with equation (19), and using the well-known formula
s0B �s1B

�� ��
1
¼ 2pguess X Bjð Þ� 1, gives

HmaxðX jBÞ � log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð2pguessðX jBÞ� 1Þ2

q� 	
: ð21Þ

Now one can define generic measures of particle and wave behaviour directly in
terms of the guessing probabilities:

Dg ¼ 2pguess Z jE1ð Þ� 1; ð22Þ

Vg ¼ max
W2XY

2pguess W jE2ð Þ� 1

 �

ð23Þ

for some arbitrary quantum systems E1 and E2, and rearrange equation (5) into the
traditional form for WPDRs:

D2
g þV2

g � 1: ð24Þ

This operationally motivated relation, which follows directly from equation (5),
clearly imposes a restriction on Alice’s ability to win the complementary guessing
game, since Dg and Vg are defined in terms of the winning probabilities. Below we
show that Vg becomes the fringe visibility when E2 is discarded.

Predictive WPDRs. We now elaborate on our framework for deriving predictive
WPDRs. Let us denote the quanton’s spatial degree of freedom as S, which includes
the previously mentioned Q as a subspace. At time t2 (see, for example, Fig. 1)—the
time just before a phase f is applied and the interferometer is closed—S and its
environment E are in some state rð2ÞSE , where again E¼ E1E2 is a generic bipartite
system. The preparation is arbitrary, that is, we need not specify what happened at
earlier times, such as what the system’s state was at time t1 (before the interaction
between S and E). While in general a binary interferometer may have more than
two paths, all but two of these are non-interfering (by definition), hence we only
consider the 2D subspace associated with the two which-path states of interest,
denoted |0i and |1i. This subspace, defined by the projector P¼ |0ih0|þ |1ih1|,
can be thought of as an effective qubit system Q. (Note that Q¼ S in the MZI.)
Without loss of generality, we project the state rð2ÞSE onto this subspace and denote
the resulting (renormalized) state as

rð2ÞQE ¼ � � 1ð Þrð2ÞSE � � 1ð Þ
.
Tr �rð2ÞS

� �
: ð25Þ

Experimentally, this corresponds to post-selecting on the interfering portion of the
data. To derive predictive WPDRs, we apply equation (5) to the state rð2ÞQE in
equation (25), where we associate the subsystems E1 and E2 of E with the particle
and wave terms, respectively.

For example, this approach gives the WPDRs discussed in ref. 2, equations (1)
and (8). To show this, we must prove equation (10), which relates our entropic
measure of wave behaviour in the second of equations (4) to fringe visibility, and
we now do this for generic binary interferometers. We remark that one can take
equation (7) as a generic definition for fringe visibility, where the label D0 is
arbitrary, that is, it corresponds to some arbitrary detector. For generic binary
interferometers, there is a phase shift f applied just after time t2, as depicted in
Fig. 1. Let Uf¼ |0ih0|þ eif|1ih1| denote the unitary associated with this phase
shift, and note that we only need to specify the action of Uf on the Q subspace
since the state rð2ÞQE lives in this subspace.

Finally, the quanton is detected somewhere, that is, system S is measured and a
detector D0 clicks. This measurement is a positive operator-valued measure
(POVM) C¼ {C0, C1,y} on the larger space, system S rather than the subspace Q
(for example, think of the double-slit case, where the detection screen performs a
position measurement on S). We associate the POVM element C0 with the event of
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detector D0 clicking. To prove equation (10), we need to restrict the form of C0. We
show that equation (10) holds so long as C0 is unbiased with respect to the which-
path basis Z on the subspace Q. Fortunately, this condition is satisfied for all three
types of interferometers in Figs 1, 2 and 3. More precisely, it is satisfied for the MZI
provided BS2 is 50/50, for the Franson case provided both BS2 (the second beam
splitters in Fig. 2) are 50/50 and for the double slit for some limiting choice of
experimental parameters such as large L in Fig. 3. We now state a general lemma
that applies to all of these interferometers.

Lemma 1: Consider a binary interferometer where ~C0 ¼ �C0� denotes the
projection of POVM element C0 onto the interfering subspace (Q). Suppose ~C0 is
proportional to a projector projecting onto a state from the XY plane of the Bloch
sphere of Q, that is,

~C0 ¼ q wþj i wþh j ð26Þ
for some 0oqr1, where |wþi is given by equation (3) for some arbitrary phase
f0, then it follows that

min
W2XY

Hmax Wð Þ ¼ log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

p� �
; ð27Þ

where V is given by equation (7) and Hmax(W) is evaluated for the state

rð2ÞQ ¼ TrE rð2ÞQE

� �
.

Proof: In what follows, it should be understood that probabilities and
expectation values are evaluated for the state rð2ÞQ . Suppose that ~W is optimal in the
sense that maxW2XYPr wþð Þ ¼ Pr ~wþð Þ; where Pr w�ð Þ ¼ w�h jrð2ÞQ w�j i, then we
have

min
W2XY

Hmax Wð Þ ¼ log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s ~W

� 
2q� 	
; ð28Þ

where we denote Pauli operators by sW¼ |wþihwþ |� |w�ihw� | and
hs ~Wi ¼ Prð~wþ Þ�Prð~w� Þ.

The probability for D0 to click is

pD0 ¼ Tr C0Ufr
ð2Þ
Q Uy

f

� �
¼ Tr Uy

f
~C0Ufr

ð2Þ
Q

� �
ð29Þ

and maximizing this over f gives

pD0
max ¼ q max

W2XY
Pr wþð Þ ¼ qPr ~wþð Þ: ð30Þ

Now, due to the geometry of the Bloch sphere, we have pD0
min ¼ Prð~w� Þ. Thus,

pD0
max þ pD0

min ¼ q and pD0
max � pD0

min ¼ qhs ~Wi. This gives V ¼ hs ~Wi, completing the
proof.

Retrodictive WPDRs. While we saw that the predictive approach allowed for any
preparation but required complementary output measurements, the opposite is
true in the retrodictive case, that is, the form of the output measurement is arbi-
trary while we require complementary preparations. The input ensembles Zi¼ {|0i,
|1i} and Wi¼ {|wþi, |w�i} can be generated by performing the relevant mea-
surements on a reference qubit Q0 that is initially entangled to the quanton S.
Associating state ensembles with measurements on a reference system is a useful
trick, for example, for deriving equation (14). Thus, at time t1 (just after the
quanton enters the interferometer; see Fig. 1) we introduce a qubit Q0 that is
maximally entangled to the interfering subspace (Q) of S, denoted by the state
rð1ÞQ0S ¼ jFihF j with jFi ¼ j00iþ j11ið Þ

� ffiffiffi
2

p
. The dynamics after time t1 is

modelled as a quantum operation A, defined in ref. 44 as a completely positive,
trace non-increasing map that maps S-E1E2. The output of A does not contain S
because the quanton is eventually detected by a detector, at which point we no
longer need a quantum description of the quanton’s spatial degree of freedom; we
only care where it was detected. The map A corresponds to a particular detection
event; for concreteness say that detector D0 clicking is the associated event. The
probability for this event is the trace of the state after the action of A, and
renormalizing gives the final state

rD0
Q0E1E2

¼
I � Að Þ rð1ÞQ0S

� �

Tr I � Að Þ rð1ÞQ0S

� �h i : ð31Þ

Our framework applies the UR equation (5) to the state rD0
Q0E1E2

to derive retro-
dictive WPDRs.

For example, this covers the scenario from the Discussion where A involves two
sequential steps. First, S interacts with an environment F inside the interferometer
between times t1 and t2, which corresponds to a channel E mapping S to SF.
Second, the quanton is detected at the interferometer output, say at detector D0,
modelled as a map B( � )¼TrS[C0( � )] acting on S, where C0 is the POVM element
associated with detector D0 clicking. Hence, we choose A ¼ B � E. Applying
equation (5) to this case while choosing E1¼ F and E2 to be trivial gives

HminðZ jFÞ�r þ min
W2XY

HmaxðWÞ�r � 1; ð32Þ

where the subscript �r means evaluating on the state in equation (31). Note that
measuring Z on system Q0 corresponds to sending the states {|0i, |1i} with equal
probability through the interferometer, and similarly for W (with an inconsequential
complication of taking the transpose of the W basis states). Realizing this, the first

and second terms in equation (32) map onto Di and V i , respectively:

Hmin Z jFð Þ�r¼ 1� log 1þDið Þ; ð33Þ

min
W2XY

Hmax Wð Þ�r¼ log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

i

q� 	
: ð34Þ

Hence, equation (32) becomes equation (14).
It remains to show that V i appearing in equation (14) can be replaced by V for

many cases of interest, such as the QBS case. We do this in the following lemma,
where the proof is given in Supplementary Note 2 and is similar to the proof of
Lemma 1.

Lemma 2: Consider any binary interferometer with an unbiased input, that is,
where the state at time t1 is unbiased with respect to the which-path basis (of the
form jcð1Þ

Q i ¼ ð j0iþ eif j1iÞ
� ffiffiffi

2
p

). Let ES ¼ TrF � E be the channel describing
the quanton’s interaction with F inside the interferometer and let Gð�Þ ¼ �ð�Þ� be
the map that projects onto the subspace �. Suppose ES is path preserving, that is,
ESð j0ih0 j Þ ¼ j0ih0 j and ESð j1ih1 j Þ ¼ j1ih1 j ; and furthermore suppose ES

commutes with G, then

min
W2XY

Hmax Wð Þ�r¼ log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

p� �
; ð35Þ

where Hmax(W) is evaluated for the state �rD0
Q0 .

QBS example. Finally, we treat the QBS shown in Fig. 5. (Note that S¼Q in the
MZI.) This set-up involves first a quantum channel E that describes the interaction
of S with an environment F between times t1 and t2, followed by another channel
associated with the QBS that allows interaction of S with the polarization P, fol-
lowed by a post-selected detection at D0. Together, these three steps form a
quantum operation A that maps S-FP, and hence this falls under our retrodictive
framework.

To prove equation (17), we apply equation (5) to the state in equation (31)
while choosing E1¼ FP and E2 to be trivial, giving

HminðZ jF PÞ�r þ min
W2X Y

HmaxðWÞ�r � 1: ð36Þ

We then use relations analogous to those in equations (33) and (34), where the
former relation now involves conditioning also on the polarization P. Finally, we
note that Lemma 2 applies to the QBS case.
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