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Metabolites produced by the intestinal microbiota are potentially important physiological

modulators. Here we present a metabolomics strategy that models microbiota metabolism as

a reaction network and utilizes pathway analysis to facilitate identification and character-

ization of microbiota metabolites. Of the 2,409 reactions in the model,B53% do not occur in

the host, and thus represent functions dependent on the microbiota. The largest group

of such reactions involves amino-acid metabolism. Focusing on aromatic amino acids, we

predict metabolic products that can be derived from these sources, while discriminating

between microbiota- and host-dependent derivatives. We confirm the presence of 26 out of

49 predicted metabolites, and quantify their levels in the caecum of control and germ-free

mice using two independent mass spectrometry methods. We further investigate the

bioactivity of the confirmed metabolites, and identify two microbiota-generated metabolites

(5-hydroxy-L-tryptophan and salicylate) as activators of the aryl hydrocarbon receptor.
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T
he human gastrointestinal (GI) tract is colonized byB1014

microorganisms that are collectively termed the micro-
biota. Disruptions in the microbiota composition (dysbio-

sis) are increasingly correlated to not only gut diseases1, but also
obesity, insulin resistance and type 2 diabetes2,3. There is
increasing evidence that the functional outputs of the
microbiota, that is, the metabolites they produce, are important
modulators of host physiology in the GI tract. Work from our
laboratory4 and another group5 demonstrated that the
tryptophan (Trp)-derived bacterial metabolite indole attenuates
indicators of inflammation and improves tight junction
properties in intestinal epithelial cells in vitro and in vivo.
Fukuda et al.6 reported that acetate produced by intestinal
bacteria inhibits translocation of E. coli O157:H7 Shiga toxin
from the gut lumen to systemic circulation. Other short-chain
fatty acids such as butyrate and propionate have been shown to
induce the differentiation of naive T cells into anti-inflammatory
regulatory T cells (Treg)7, and into Th1 and Th17 T cells that also
produce interleukin (IL)-10 (ref. 8).

Despite a high level of interest, only a handful of bioactive
microbiota metabolites in the GI tract have been identified. One
major challenge is that the spectrum of metabolites present in the
GI tract is extremely complex, as the microbiota can carry out a
diverse range of biotransformation reactions, including those that
are not present in the mammalian host9. Isolating and culturing
individual bacterial species to identify the metabolites produced
in these cultures remain challenging, as many intestinal bacteria
cannot be cultured under standard laboratory conditions.
Moreover, this approach does not account for community-level
interactions between the microorganisms as metabolites
produced by one microorganism can be utilized or modified by
other microorganisms. Another challenge lies in classifying a
metabolite as either microbiota- or host-derived, as many
metabolites are present in both microorganisms and mammals
because of the high degree of conservation of metabolic pathways
across organisms10.

Metabolomics of faecal or body fluid samples has been
increasingly used to explore the metabolite profiles of the GI
tract, and to compare these profiles under different physiological
or disease conditions. Mass spectrometry (MS)-based untargeted
approaches have been especially useful in analysing a broad
spectrum of metabolites in a high throughput manner11. While
this approach offers the benefit of potential for discovery, it also
has drawbacks. Owing to the complexity of the mass spectra
obtained from full-scan experiments, metabolite identification
can be difficult, especially if neither high purity standards nor
database entries are available for the metabolites of interest. High-
resolution time-of-flight (TOF) mass spectrometers can
somewhat alleviate this problem12, as chemical identities can be
established based on exact mass as well as isotope and MS/MS
fragmentation patterns. Alternatively, targeted analysis of an a
priori selected set of metabolites affords custom optimization of
MS parameters for individual metabolites to enable sensitive
detection using quantitative methods such as multiple reaction
monitoring (MRM). The obvious drawback is that the discovery
potential can be limited. Importantly, neither untargeted nor
targeted metabolomics can determine whether a gut metabolite is
the product of host or microbiota metabolism as a standalone
approach, as many metabolites can be produced in both
mammalian and bacterial cells.

In this work, we present a targeted approach that addresses the
discovery limitation by integrating an in silico prediction step into
the metabolomics workflow. To date, bioinformatics tools have
been utilized in metabolomics generally for post hoc analysis to
process data13 or perform statistical comparisons14. Recently,
Greenblum et al.15 presented an elegant metagenomic study that

places obesity- or inflammatory bowel disease (IBD)-associated
variations in human gut microbiota gene abundances in the
context of a microbial community-level metabolic network. The
present study similarly models microbiota metabolism as a
reaction network and uses this model to computationally explore
the products of microbiota metabolism from aromatic amino acids
(AAAs). We thus exploit efficient algorithms for network analysis
and the growing catalogue of annotated microbial genomes to
conduct in silico discovery experiments. Specifically, we utilize a
probabilistic pathway construction algorithm to identify potential
derivatives of AAAs while discriminating between microbiota and
host contributions to the formation of the derivatives.

To validate our methodology, we predict and experimentally
analyse both bacteria- and host-derived products of aromatic
amino acids (AAAs). We utilize two independent MS methods to
quantify the levels of the predicted metabolites in caecum contents
from conventionally raised specific pathogen-free (SPF) and germ-
free (GF) mice. On the basis of recent studies suggesting that
AAA-derived metabolites could be potent aryl hydrocarbon
receptor (AhR) ligands in the context of host immune system
function16, mucosal reactivity17 and oxidative stress defense18, we
use a Gaussia luciferase (GLuc) reporter system to monitor the
ability of the identified metabolites to activate the AhR. The
workflow described in this study maps the identified metabolites
to specific metabolic pathways, which can then be traced to the
corresponding genes and species harbouring the genes, thereby
facilitating the elucidation of functional contributions by the
microbiota to the complex metabolite profile of the gut.

Results
Diversity and uniqueness of microbiota metabolic functions. A
combined host–microbiota reaction network model of gut
microbiota metabolism was constructed based on genome
annotation information on select bacteria reported to be present
in the human GI tract19. The model comprises 3,449 distinct
reactions, of which 940 are unique to the host, 1,267 are unique to
the gut microbiota and 1,142 are present in both (Fig. 1)20.
Certain metabolic functions, for example, lipopolysaccharide
biosynthesis, are dominated by reactions only present in the
microbiota (Fig. 1, i). In contrast, other functions, such as steroid
biosynthesis, are performed by the host without the involvement
of bacterial species in the microbiota (Fig. 1, ii). Overall, this type
of exclusivity is the exception, rather than the rule, as the majority
of functions (61 out of 82 categories) include both host- and
microbiota-specific reactions.

To investigate the distribution of metabolic functions across
different subsets of the microbiota, a phylum score was computed
for each reaction characterizing its prevalence in different phyla.
Out of the 2,409 reactions in the microbiota model, only 286
reactions belong to a single phylum (Fig. 2a). The most conserved
function is translation, with 83% of the reactions present in all
five bacterial phyla comprising the microbiota model. Interest-
ingly, the least conserved function category is energy metabolism,
with only 13% of the reactions present in all five phyla. The
number of reactions in each function category also varied
substantially depending on the function. The largest number of
reactions (493 out of 2,409) belongs to a category designated as
‘unclassified’ by KEGG. The largest category with an assigned
function is amino-acid metabolism, accounting for 16% of all
reactions in the microbiota model. Proteobacteria possess the
broadest coverage of amino-acid reactions, expressing genes for
349 of the 392 amino-acid reactions in the microbiota model.
Approximately 9% of the amino-acid reactions are unique to this
phylum, which is greater than the number of amino-acid
reactions unique to the other four phyla combined.
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Biotransformation of aromatic amino acids. We focused on
aromatic amino acids (AAAs), as several previous studies, includ-
ing our own work4, suggested that these are putative precursors of
bioactive bacterial metabolites. Out of the 169 AAA reactions in the
combined host–microbiota model, the gut microbiota harbours 99

reactions, with 66 reactions not encoded by the host genome.
A majority of these reactions are contributed by Proteobacteria
(Fig. 2b), particularly Enterobacter and Escherichia.

The KEGG function categories, while useful for broad
assessment of metabolic capabilities, can be ambiguous. For
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Figure 1 | Function categories of reactions in the combined microbiota–host model. Colours indicate whether the reactions are host-specific,

microbiome-specific or are present in both. The length of each coloured segment is proportional to the fraction contributed by the corresponding system

(host, microbiota or both).
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example, tryptophan transaminase (EC no. 2.6.1.27) is assigned to
tryptophan (Trp) metabolism, whereas indole-2-monooxygenase
(EC no. 1.14.13.137) is assigned to benzoxazinoid biosynthesis,
even though both enzymes are two steps from Trp. Visual
inspection of the current KEGG map for Trp metabolism suggests
that indole can only be converted to either indoxyl or
2-formylamino-benzaldehyde. However, indole can also be
converted to indole-2-dione through the aforementioned mono-
oxygenase. This example illustrates the need for a more
systematic analysis. To this end, we searched for metabolites
that are biochemically related to AAAs by constructing possible
biotransformation pathways for Phe, Trp or Tyr, while dis-
criminating between microbiota and host reactions. Pathway
construction proceeded by selectively adding reactions only
present in the microbiota, and terminated when no such reaction
could be added. This ensured that none of the intermediates,
except the terminal metabolite in the pathway, could be formed
through a host reaction. Owing to the probabilistic nature of the
pathway construction algorithm, the results could vary with the
number of iterations. Therefore, we performed a series of
simulations where we varied the iteration numbers until we did
not observe any further increase in the number of unique
pathways (Supplementary Fig. 1).

For Trp, this probabilistic search returned three pathways
composed of strictly bacterial enzymes (Fig. 3). The remaining
single-step ‘pathways’ represent the termination steps enforced by
the algorithm’s stopping criterion. The total number of Trp
derivatives identified in this way is 10. Of these, the following
four compounds only participate in microbiota metabolism,
per KEGG’s annotation: indole, indoleglycerol phosphate,
1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate and

N-(5-phospho-D-ribosyl) anthranilate. The remaining metabo-
lites participate in both microbiota and host metabolism. For
phenylalanine (Phe), the search returned 12 distinct pathways
composed of strictly bacterial enzymes, and three pathways
composed of enzymes expressed in both the microbiota and host
(Supplementary Fig. 2). Of a total of 33 predicted derivatives, 21
participate only in microbiota metabolism, whereas 11 participate
in microbiota and host reactions (Supplementary Table 1).
Finally, the search on tyrosine (Tyr) returned only one bacterial
pathway (Supplementary Fig. 3), as all other reactions directly
connected to Tyr were present in the host.

Metabolite analysis. We used a targeted metabolomics approach
to measure the predicted panel of metabolites, including deriva-
tives that form through reactions present in the host. Of the
49 predicted derivatives, a subset of 19 metabolites was analysed
using MRM, taking into account availability of pure standards
and ease of ionization and fragmentation. To broaden the scope
of metabolic profiling, the predicted metabolites were also ana-
lysed using a second MS method, information-dependent acqui-
sition (IDA). This method allowed detection and identification of
additional metabolites based on accurate mass even when high-
purity standards were unavailable. On the other hand, we found
that the MRM method offered greater dynamic response and
detection sensitivity for some metabolites (Supplementary Fig. 4).
The final panel of metabolites targeted for MRM and IDA ana-
lyses is listed in Supplementary Table 1.

For MRM analysis, metabolite identification was performed
based on both chromatographic retention time and mass
signature, as we found that even an optimized MRM transition
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(precursor–product ion pair) did not always uniquely identify a
metabolite in a complex biological sample (Supplementary Fig. 5).
For IDA analysis, the identity of a detected metabolite was
determined based on accurate mass and isotope pattern, and,
whenever possible, confirmed based on measured MS/MS
fragmentation patterns. As pure chemical standards were not
used for the IDA experiments, the metabolite concentrations are
reported in terms of total ion counts normalized to mass of caecal
contents.

Combined, the two methods detected 26 of the 49 predicted
metabolites in the caecal contents of (conventionally raised) SPF
or GF mice (Supplementary Table 1). Of the detected metabolites,
16 metabolites only participate in microbiota-specific reactions
according to KEGG’s annotation, whereas the remaining
10 participate in reactions present in both the microbiota and
host (Fig. 4). We did not detect any metabolites that only
participate in host-specific reactions. In the subset of 23
metabolites that was not detected, the number of microbiota-
and host-specific metabolites was eight and four, respectively,
with the remaining eleven participating in reactions present in
both the microbiota and host. Taken together, these trends
suggest that a host-specific AAA derivative is less likely to be
present in the caecal contents than a derivative that could form
through reactions present in the microbiota. Furthermore, we
found that more than half (15/26) of the detected metabolites

were either significantly reduced or absent in GF mice (Fig. 5),
corroborating the contribution of intestinal microbes to the
presence of these metabolites.

Only a small fraction (3/25) of the detected metabolites—
shikimate, tryptamine and tyramine—could be analysed by both
MRM and IDA, with the latter method providing broader
coverage (24 versus 6 metabolites detected by IDA and MRM,
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respectively). For the three metabolites detected by both
methods, the results were consistent. Shikimate was dramatically
reduced, whereas tryptamine and tyramine were signi-
ficantly increased in SPF samples compared with GF samples
(Supplementary Fig. 6).

For metabolites detected in both SPF and GF samples and
significantly reduced in the GF condition, the fold-changes
ranged from ca. 2 to 300. For Trp, two of the four intermediates
comprising the longest microbiota pathway (Fig. 3) were reduced
or altogether absent in GF samples. Indole was reduced 2.2-fold,
whereas 1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose-5-phos-
phate was not detected in GF samples. For Phe, major branch
points of the microbiota pathways occur at chorismate and
isochorismate. The intermediates upstream of these branch points
are, in order, arogenate and prephenate (Supplementary Fig. 2).
All four microbiota metabolites were reduced (ca. 3.6-fold in the
case of arogenate) or not detected in GF samples. Downstream of
these two branch points, the trends were mixed, as some
intermediates, notably those of the shikimate branch, were only
detected in GF samples. For Tyr, all three detected metabolites
were significantly reduced in GF samples (Fig. 5).

Activation of AhR by microbiota metabolites. In order to link
the in vivo presence of the AAA-derived metabolites to the reg-
ulation of host function, we investigated whether the metabolites
detected in the caecal contents could activate an eukaryotic sig-
nalling pathway. As we were interested in establishing the
bioactivity of specific metabolites, we confined the analysis to
nine metabolites (5-hydroxy-L-tryptophan, indole, indolepyr-
uvate, salicylate, shikimate, tryptamine, chorismate, 3,4-dihy-
droxyl-L-phenylalanine and tyramine) that could be obtained as
high-purity chemicals from a commercial source. We focused on
the AhR as recent studies have highlighted the importance of this
receptor in regulating gut physiology21–23. Furthermore, previous
studies24 have shown that endogenous Trp-derived metabolites
such as kynurenine (host-derived) and 6-formylindolo[3,2-
b]carbazole (an ultraviolet-exposed Trp degradation product)
are potent ligands for AhR25. Therefore, we investigated whether
microbiota metabolites derived from AAAs are ligands for the
AhR. We used MCF-7 (Michigan Cancer Foundation-7) human
breast cancer cells as the model cell line, as prior work has shown
high levels of AhR responsiveness in these cells26. MCF-7 cells
with a stably integrated GLuc reporter plasmid for AhR-binding
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respectively. Isochorismate, chorismate and prephenate are all represented in the same plot as they have identical exact masses. An asterisk (*) indicates a

statistically significant difference between the GF and SPF groups (two-sided Mann–Whitney U-test, Po0.05). N/D: not detected.
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activity were exposed to microbiota metabolites or 20 nM 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD; xenobiotic-positive control
that is an AhR ligand) for 48 h, and luciferase activity in culture
supernatants was measured. Kynurenine, an endogenous AhR
ligand derived from Trp by host indoleamine 2,3-dioxygenase
activity27, was used as an additional positive control. Exposure to
20 nM TCDD and 100 mM kynurenine resulted in a 3.9- and 2-
fold increase in the rate of AhR-driven luciferase activity (relative
light unit (RLU)/h/relative fluorescence unit), respectively, as
compared with the solvent control (Fig. 6). Of the nine
metabolites tested, five metabolites (5-hydroxy-L-tryptophan,
indolepyruvate, tryptamine, salicylate and shikimate) induced
AhR activity in MCF-7 cells (Fig. 6). Depending on the
metabolite, the lowest concentration that could stimulate
significant AhR activity varied over several orders of
magnitude. For example, 5-hydroxy-L-tryptophan induced AhR
activity at 0.01 mM, whereas indolepyruvate required a
concentration greater than 100 mM to show significant activity.
The minimum concentration needed to activate the AhR for the
other metabolites fell within this range, with salicylate and
shikimate inducing activity at 10 mM and tryptamine at 100mM.

Discussion
We present here a methodology for the identification of gut
microbiota metabolites that integrates computational pathway
analysis into a targeted metabolomics workflow. We predicted
and profiled possible biotransformation products of AAAs (Trp,
Phe and Tyr), and detected a majority (26 out of 49) of the
predicted metabolites in caecal contents from mice. All of the
detected metabolites could be formed through bacterial reactions
from one of the source amino acids, none of these metabolites
were host-specific, and a majority (15 out of 26) of the
detected metabolites were significantly reduced in GF mice
relative to SPF mice.

The effects of physiological or pathological perturbations on
the intestinal microbiota have been investigated using metage-
nomic analyses characterizing the composition of the gut
microbial community, the enrichment (or depletion) of bacterial
genes or the expression levels of genes for specific metabolic
pathways28–30. A limitation of these analyses is that they do not
provide direct information on which molecules are formed from
which bacterial biotransformation reactions and which metabolic
products are increased or decreased under different conditions.
Thus, the ability to unambiguously identify and quantify bacterial
metabolites is expected to have a significant impact on the study
of human gut microbiome function.

One obvious qualification in interpreting the in silico analysis is
that the reliability of our model is predicated on the accuracy of
the annotation in the reaction database (in our case KEGG).
While the KEGG database is continually updated, it is certainly
possible that there are missing entries or incorrect annotations,
which could explain why the predictions were not 100% accurate.
For example, Wikoff et al.31 identified indole-3-propionate as a
Trp-derived metabolite that is produced by the gut microbiota.
However, at the time of completion of this work, this metabolite
was not listed in the KEGG Compound database, and thus could
not be identified by our algorithm. Similarly, the discrimination
of bacterial metabolites from metabolites that could also be
produced by host cells depends on an accurate model of host
metabolism. The most relevant host genomes, for example, mouse
and human, have been sequenced and largely annotated, and
several published genome-scale model reconstructions exist.
However, prior studies suggest that several iterations may be
required32 until a published model can be considered a stable,
consensus reconstruction33.

Currently, there is no consensus model of gut microbiota
metabolism. One approach has been to build species-specific
genome-scale models, and apply constrained optimization
methods such as flux balance analysis to characterize the
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Figure 6 | Dose-dependent activation of the AhR by AAA-derived metabolites. AhR activity is reported as the rate of luciferase activity normalized to red

fluorescence of constitutively expressed RFP (RLU/h/relative fluorescence unit (RFU)). Positive controls were 20 nM TCDD and 100mM kynurenine,
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metabolic capacities of the microbe. For example, Heinken
et al.34 utilized a genome-scale metabolic reconstruction of
Bacteroides thetaiotaomicron in conjunction with flux balance
analysis to explore the co-metabolism between a commensal
microbe and its murine host, reporting that the microbe
could rescue a potentially lethal loss of enzymatic function
in the host. More recently, Shoaie et al.35 assembled meta-
bolic reconstructions of three species, Eubacterium rectale,
Methanobrevibacter smithii and B. thetaiotaomicron, as
representatives of three main phyla in the human gut, which
were used to simulate the metabolic interactions between the
species under varying nutrient settings.

An alternative approach is to treat the microbiota as a single
‘super’ organism and model the metabolic capability of the
microbiota at the community level. This approach has the
drawback that interactions between particular species cannot be
examined in detail. However, such community-level models can
be directly applied to the growing volume of metagenomic data to
comprehensively analyse the diversity of metabolic functions
collectively encoded by the GI microbiome36,37. Recently,
Greenblum et al.15 assembled a community-level model of
human GI tract microbiota to find significant alterations in the
functional organization of the microbiota metabolic network in
obesity and IBD. We also modelled the microbiota as a unified
system, abstracting the union of all enzymes collectively encoded
by the different species as part of a single reaction network. As
one of our goals was to discriminate between microbiota and host
products of metabolism, we extended this community-level
analysis by also assembling a host metabolic model, and
utilizing this model to identify the metabolic functions that
depend on the microbiota.

Although our study uses the mouse as the model host
organism, the microbiota model was constructed from micro-
biome data on the human intestine because the list of
documented intestinal bacteria is more extensive for humans
than mice. However, a recent meta-analysis showed that mice and
human gut microbiota share a very strong similarity (90% and
89% of bacterial phyla and genera, respectively)38, and that the
most abundant bacterial species are common to human and
murine gut microbiota. Therefore, we assumed that a sampling of
the most common species found in the human GI tract should
reasonably approximate the biochemical diversity of the murine
gut microbiota.

We evaluated the pathway analysis results from the combined
microbiota–host model by performing targeted metabolomics
experiments, focusing on AAAs. These amino acids can be
endogenously transformed into a variety of bioactive derivatives
formed by commensal bacteria in the intestine (for example,
indole from Trp4). In the present study, we used a probabilistic
pathway construction algorithm to identify metabolic derivatives
that can be produced from Trp, Phe or Tyr via enzymatic
reactions, while also mapping the enzymes involved to the host or
microbiota metabolic network. An alternative approach would be
to exhaustively search through the combined microbiota–host
network to build a subnetwork comprising all reactions and
metabolites that connect to a source metabolite, similar to the
‘scope’ analysis described in ref. 39. This approach would confer a
speed advantage over pathway construction, if the goals were to
simply enumerate all possible metabolites that are connected to
the source metabolite via enzymatic reactions. However, this
approach does not provide information on the composition of
pathways that connect a particular biotransformation product to
a specific source metabolite. This information is necessary to
determine whether the formation of the biotransformation
product requires any microbial enzymes. Moreover, the set of
metabolites resulting from network expansion may not resemble

the starting metabolite in a meaningful way. For example, Trp can
be converted to glucose and ketone bodies, which in turn can be
further oxidized through the main pathways of central carbon
metabolism. Therefore, a pathway analysis-based approach that
avoids these issues is desirable.

The algorithm used in this study can efficiently sample
pathways connected to a source metabolite of interest, while
shaping pathway construction through the reaction selection
criteria. Directing the algorithm to only select reactions that are
absent in the host when constructing a biotransformation
pathway ensured that the intermediates would not be connected
to other metabolites in the host metabolic network, and thus can
be unambiguously designated as products of microbiota metabo-
lism. This search strategy also avoided the enumeration of
common hub metabolites that are the intermediates of central
carbon pathways such as TCA cycle and glycolysis, which are
found in all living cells. A potential drawback, however, is that
this type of pathway construction cannot fully reflect host–
microbiota co-metabolism; that is, certain biotransformation
products that require multiple reactions expressed in both
microbiota and host cannot be identified in this way. One way
to address this issue is to simply restart pathway construction at a
terminal metabolite node. For example, restarting the search at
indolepyruvate extends this branch by adding a bacterial reaction
producing indole-3-acetaldehyde, before terminating with a
reaction present in both host and microbiota that produces
indole-3-acetate (Supplementary Fig. 7a). Since formation of
indolepyruvate requires a host-specific enzyme, indole-3-acet-
aldehyde and indole-3-acetate can be considered products of
host–microbiota co-metabolism. Using MRM analysis, we found
that GF caecum samples contained 30-fold less indole-3-acetate
compared with SPF samples (Supplementary Fig. 7b), consistent
with our analysis that production of this metabolite depends on
the microbiota, and highlighting the utility of our approach for
determining host–microbiota co-metabolism.

A second way to explore host–microbiota co-metabolism is to
search exhaustively, where pathway construction can utilize all
reactions in the combined host–microbiota model, and then post
process the search results using annotation data to identify
metabolic products that are downstream of at least one
microbiota reaction. We explored this idea by limiting the
pathway length to four reactions from the source metabolite to
keep computational runtime to within hours. While we found
64,741 distinct paths for Trp, many of them do not describe a
meaningful biotransformation of the source metabolite. For
example, this analysis predicts chorismate as a Trp-derived
metabolite; however, this pathway involves serine and pyruvate as
intermediates, casting doubt that chorismate can be meaningfully
classified as a Trp-derived product. It should be possible to
circumvent this issue by pruning the results of the exhaustive
search by filtering for a functional group that is characteristic of
the source metabolite of interest. For example, imposing the
constraint that every intermediary metabolite along a pathway
must possess a six-carbon aromatic ring eliminates all but 87
paths. However, this type of filtering may not be generally
applicable, since other classes of metabolites, for example, organic
acids, may lack a distinctive characteristic functional group.
Moreover, exhaustive pathway enumeration has an exponential
runtime of kl, where k is the average number of reactions
connected to a metabolite and l scales with the maximal pathway
length. Increasing the length limit to more than four reactions
would lead to runtimes that are on the order of days using a
typical workstation. This demonstrates the value of a sampling-
based approach for constructing pathways of arbitrary length,
which involves a more manageable polynomial runtime with
respect to the number of iterations.
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We found that both MRM and IDA have advantages and
disadvantages for experimental evaluation of the computational
analysis. An important benefit of MRM is that when high-purity
standards are available, the selective detection of specific
precursor–product ion pairs can enhance sensitivity and improve
LOD. Instrument-specific parameters can be tailored and
optimized for each individual MRM transition, whereas full-scan
methods use a particular set of parameters for all analytes, which
may be suboptimal for a subset of the metabolites. In practice, we
found that even optimized MRM transitions may not represent a
unique mass signature for a metabolite, as there are cases where
multiple analytes present in a biological sample share the same
transition with the highest intensity. For example, indole 3-
acetamide shows a strong signal for the 175-130 transition, as
does arginine, a highly abundant amino acid. Similarly,
metabolites possessing thermally labile bonds can decompose at
the ion source. For example, a pure sample of Trp showed a
strong MRM signal for the indole transition (118-91) at the
expected retention time for Trp (Supplementary Fig. 5b), which
was presumably because of partial decomposition of Trp into
indole by the heated electrospray ionization. In this study, we
utilized high-resolution MS to identify metabolites based on
accurate mass as an alternative to MRM MS when high-purity
standards are not available. Specifically, we performed IDA
experiments to collect full-scan MS data with very high mass
accuracy, while monitoring the MS/MS spectra for all ions
meeting a specified count threshold whenever fragmentation
could be achieved.

Differences in instrument design also contributed to a
difference in sensitivity between the MRM and IDA experiments.
A comparison of the signal versus concentration plot for Trp
showed that IDA provides approximately one-tenth of the
sensitivity of MRM (Supplementary Fig. 4). In fact, certain
metabolites such as indole and salicylate could not be detected at
all in a biological sample using IDA, whereas they could be
quantified using MRM. These examples suggest that the choice
between MRM and IDA will have to balance a tradeoff between
sensitivity and resolving power.

To our knowledge, this is the first targeted metabolomics study
to quantitatively estimate the physiological concentration of
several microbiota-produced metabolites present in caecum
contents. While the literature on absolute concentrations of
microbiota metabolites is relatively sparse, we found good
agreement between our results and previously reported values.
In an early study, Whitt and Demoss40 used an enzymatic assay
to determine an indole concentration of B40 nmol g� 1 tissue in
murine caecum, which is comparable to our results (10–
40nmol g� 1 sample wet weight in SPF caecum). In addition, we
detected and identified a number of metabolites using IDA for
which pure standards were unavailable. While we could not obtain
absolute concentrations for these metabolites, it was possible to
determine fold-changes across GF and SPF samples (Fig. 5).

Our results on metabolite differences between SPF and GF
mice are comparable to other previous studies. Zheng et al.11

profiled urinary and faecal metabolites of Wistar rats exposed to
b-lactam antibiotics and detected tryptamine, indole-3-acetate,
indole, shikimate and phenol in urine, and tryptamine and
tyramine in faeces, which we detected in the caecum in the
present study (Supplementary Table 1). They also observed that
the levels of indole-3-acetate, indole and phenol were lower in the
antibiotic-treated mice, presumably because of the effect of the
antibiotic on the gut microbiota. These results are in agreement
with the reduction in these metabolites we observed in GF caecal
contents (Fig. 5). Interestingly, Zheng et al.11 reported that
antibiotic exposure increased the level of shikimate relative to the
control group, which is also consistent with our data.

The trends in our data are also similar to those reported by
Wikoff et al.31, who compared plasma metabolites from GF and
conventionally raised (CONV) mice. This comparison found that
indoxyl sulfate and indole-3-propionic acid were present in the
plasma of CONV mice, but were absent in GF mice, which is
consistent with our observations that indole is reduced in GF
samples (Fig. 5). Likewise, phenyl sulfate, a xenobiotic
transformation product of phenol, was only detected in CONV
mice, also in agreement with our results showing that phenol is
absent in GF mice. Similarly, our observation that tyramine levels
are reduced in GF caecal contents is consistent with the
differences in the colonic luminal contents from GF mice
relative to Ex-GF mice inoculated with a faecal suspension from
SPF mice41. However, unlike our study, this comparison of GF
and Ex-GF mice did not attempt to attribute changes in the
metabolites to specific bacterial pathways. Instead, metabolites
were grouped into host- or microbiota-contributed products
solely based on their relative amounts in GF and Ex-GF samples.

The AhR is a ligand-activated transcription factor that plays an
important role in the mucosal immune system42. Earlier work has
shown that the plant secondary metabolite indole-3-carbinol can
bind and activate the AhR43. In our study, we observed that four
of the Trp derivatives (5-hydroxy-L-tryptophan, indole-3-acetate,
tryptamine and indolepyruvate) and two of the Phe derivatives
(salicylate and shikimate) could activate the AhR in a dose-
dependent manner (Fig. 6 and Supplementary Fig. 7c). To our
knowledge, this is the first report identifying 5-hydroxy-L-
tryptophan, salicylate and shikimate as non-host-derived
activators for the AhR. Our results are also consistent with a
previous study by Heath-Pagliuso et al.24, who showed that
tryptamine and indole-3-acetate are AhR ligands.

We found that five metabolites predicted to be microbiota-
specific are significantly elevated in the GF samples, which is
somewhat counterintuitive (Fig. 5). Three of these metabolites,
shikimate, 3-dehydroquinate and O5(1-carboxyvinyl)-3-phos-
phoshikimate, are intermediates of the shikimate pathway
(Supplementary Fig. 2). In order to determine the source of
shikimate, we investigated whether it was present in the mice
chow. We found that the chow indeed contains shikimate, and
that the levels in the chow fed to SPF and GF mice are
comparable (46 and 48 mM in SPF and GF mice, respectively).
Further, IDA MS confirmed that the other metabolites of the
shikimate pathway were not present in the chow. This suggests
that the intestinal bacteria could be utilizing shikimate and
depleting it from the caecum. On the other hand, the presence of
O5(1-Carboxyvinyl)-3-phosphoshikimate in the GF samples
suggests that the host organism may also express enzymes that
can catalyse the conversion of shikimate, and that these enzymes
are missing in the present annotation of the mouse genome.
Similarly, we detected significant amounts of 4-amino-4-deox-
ychorismate in the GF samples, which could have been produced
from 4-aminobenzoate via a host enzyme that is missing from the
genome annotation. In contrast, chorismate, prephenate and
arogenate are depleted in the GF samples, consistent with the in
silico prediction, suggesting that any errors in the annotation
involve enzymes that are more distal from Phe than chorismate.
The physiological significance of shikimate in intestinal home-
ostasis warrants further investigation, since we observe shikimate
to also be an activator for AhR.

A logical extension of this work is to predict and identify
molecules generated by the intestinal microbiota from other
source metabolites under different physiologic conditions. For
example, the methodology described here can be applied to
identify metabolic products of emerging contaminants such as
bisphenol A and phthalates, which could give rise to derivatives
with either increased activity or potentially different spectrum of
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activity44. Another example is to identify metabolites derived
from nutrients thought to provide benefits for gut health, such as
complex carbohydrates in vegetables. In addition, predictive
biomarkers could be identified for disease states such as obesity,
IBD and cancer that are characterized by alterations in the GI
tract microbiota45. A second possible extension of this work is to
incorporate genomic data into the pathway analysis. In this study,
we did not differentiate reactions based on their gene abundance
or expression level. Consequently, each candidate reaction has an
equal likelihood of selection, which is unlikely to reflect the true
engagements of metabolic reactions in the gut microbiota.
Metabolites produced by highly abundant organisms and/or
highly expressed enzymes should more likely be present at
quantifiable levels compared with the products of depleted
organisms or minimally expressed enzymes. In this regard,
there is an exciting opportunity to further enhance the in silico
prediction step by incorporating metagenomic data, for example,
from RNA-seq experiments. Our pathway construction algorithm
already accepts user-specified selection weights and could be
extended in a straightforward manner to explore a microbiota
metabolic network weighted by relative gene abundances or
expression levels. Prospectively, this type of data integration could
address fundamental questions regarding not only who or what is
present in the gut microbiota but also who is contributing to what
function.

Methods
Materials. All chemicals including HPLC-grade solvents and high-purity
metabolite standards were purchased from Sigma-Aldrich (St Louis, MO) unless
noted otherwise. Cell culture reagents were purchased from Life Technologies
(Carlsbad, CA).

Microbiota metabolic network model. A reaction network model of gut micro-
biota metabolism was constructed based on genome annotation information on
select species reported to be present in the human GI tract19. The rationale for
using human, as opposed to murine, microbiome data was that the list of
documented species was more extensive. Moreover, a recent study showed that
human and murine gut microbiota share a very strong similarity (90% and 89% of
bacterial phyla and genera, respectively)38. The study by Qin et al.19 reported a
total of 194 strains with annotated genomes available in the HMP Data Analysis
and Coordination Center, MetaHIT or GenBank. An organism from this list was
included in the model if an exact or species-level match was found among the
annotated organisms listed in KEGG because we referenced this database to map
genes to enzymes to reactions. If multiple strains were listed in KEGG for a
matching species, all of the strains were included, with the exception of deadly
pathogens. In the case a species-level match could not be found, an organism from
Qin et al.19 was included in the microbiota model if a match was found at the genus
level. In this case, the organism from Qin et al.19 was substituted with all species
listed in KEGG that belong to the same genus, provided that the species is not a
deadly pathogen. Substituting for organisms with a member of the same genus
ensured that the composition of the model did not significantly deviate from the
current consensus on the most abundant phyla in the intestine46. Microbes that
were matched more than once (as a result of the substitutions) were eliminated to
prevent multiple entries in the final model. Out of the 194 annotated bacterial
genomes referenced by Qin et al.19, 176 could be matched to an entry in KEGG at
least at the level of genus it not species or strain. The final list of bacteria in the
microbiota model comprised a total of 149 organisms, including different strains of
the same species. The full list of organisms included in the microbiota model is
provided in Supplementary Data 1.

A schematic outlining the steps used to assemble the microbiota reaction
network model is shown in Supplementary Fig. 8. Using a script written in
MATLAB (MathWorks, Natick, MA), the KEGG enzyme database was searched
for entries encoded by the genomes of the strains in the microbiota model. Each of
the 6,043 enzymes in the data file was flagged as present or absent in the 149
microbiota model strains, resulting in a binary matrix E, where element eij denotes
the presence (‘1’) or absence (‘0’) of an enzyme i in species j. A similar search was
then conducted through the KEGG orthology data file to generate a matrix K,
where element kij denotes the presence (‘1’) or absence (‘0’) of an orthologue group
i in species j. This additional search was necessary because genome annotation in
KEGG sometimes associates a gene product with a reaction without assigning an
enzyme commission number (EC no.) for the reaction. On the basis of the enzyme
(E) and orthology (K) matrices, corresponding reaction matrices RE and RK were
generated using a text search through the KEGG reaction database. In these
matrices, element rEij or rKij was set to 1 if enzyme or ortholog group j catalyses

reaction i, and to 0 otherwise. Multiplying the enzyme or orthology matrix (E or K)
with the corresponding reaction matrix (RE or RK), followed by reconciling the two
matrix products (to remove duplicate entries) resulted in a matrix S specifying the
metabolic reaction set available to each organism, where element sij is a non-zero
value if reaction i is catalysed by an enzyme present in organism j, and 0 otherwise.
Supplementary Data 2 list the full set of microbiota model reactions and their
definitions. On the basis of the reaction definitions, a corresponding set of
metabolites was compiled from the KEGG compound database. The total number
of reactions and metabolites in the microbiota model was 2,409 and 2,274,
respectively.

Uniqueness and classification of microbiota reactions. The species in the
microbiota model were hierarchically clustered based on the metabolic reaction sets
encoded by their genomes as specified in the S matrix. For the purpose of clus-
tering, all non-zero entries were first set to 1 to indicate the presence of the
corresponding reaction in a given species. The dendrograms and heatmap (Fig. 7)
were generated using a built-in function (clustergram) of the Bioinformatics
toolbox in MATLAB. The similarity metric and linkage type were correlation
distance and average linkage, respectively. The resulting clusters of species indi-
cated that there were metabolic functions (groups of reactions) unique to the
species in a particular phylum. To determine which metabolic functions are unique
to a particular subset of species or common to all species, a ‘phylum score’ was
calculated as follows.

Pij¼
nij
nj

In the above equation, nj is the total number of species in phylum j, and nij is
the number of species expressing reaction i in the phylum. A score of 1 indicates
that every species in a given phylum catalyses the reaction, whereas a score of 0
indicates that no species in the phylum catalyses the reaction. On the basis of these
scores, each reaction in the microbiota model was classified as ‘unique’ or
‘common.’ A reaction was designated as common if the corresponding scores were
40 for more than one phylum group, otherwise designated as unique. Finally, to
associate the uniqueness of reactions with metabolic function, the reactions were
sorted into functional groups based on their KEGG pathway module assignments.
In the case where a reaction was associated with more than one KEGG pathway
modules, we used the primary assignment.

Pathway analysis. We used computational pathway analysis to identify possible
biotransformation products of AAAs that depend on microbiota metabolism. A
previously published genome-scale metabolic model of the mouse47 was used to
represent host metabolism, consistent with the experimental model used in this
study. The published mouse model was manually proofread to account for any
discrepancies with the most recent version of the KEGG Reaction database. After
proofreading and eliminating generic reactions, the final number of unique
reactions and metabolites in the mouse model were 2,182 and 2,119, respectively.
This mouse model was combined with the microbiota model described above. After
eliminating duplicate entries, the combined model consisted of 3,449 reactions and
3,076 metabolites, with 1,142 reactions and 1,317 metabolites present in both the
mouse and microbiota.

The pathway analysis used in this study built on a pathway construction
algorithm previously developed to explore novel synthesis pathways for both native
and non-native metabolites in a microbial metabolic engineering host48. For this
study, we modified this algorithm to define the search space in terms of reactions,
rather than metabolites. The algorithm recursively constructs a tree, starting from a
user-specified source metabolite as the root of the tree. A single reaction is
randomly selected from a list of candidate reactions that involve the source
metabolite as a main reactant. Candidate reactions for pathway construction were
drawn from the combined microbiota and host model, which represents the
universe of reactions that could be expressed in the murine gut, if the models are
assumed to be complete. The selected reaction is then added to the tree and
represented by an edge. This edge expands the tree by attaching new nodes
representing the product metabolites and cofactors of the selected reaction. The
construction thus proceeds in a depth-first manner. Each of these nodes is a new
root for the recursion, unless (a) the metabolite or cofactor was previously added to
the tree, or (b) all reactions consuming or producing the metabolite or cofactor are
present in the host (that is, mouse model).

To achieve reasonable runtimes (on the order of a few minutes for a run of
several thousand iterations), the size of the search space is further constrained by
placing an upper limit on the number of reactions that can be used to construct a
pathway. In this study, the upper limit was varied from 20 to 50, which had no
observable impact on the number of the unique pathways and metabolites
predicted by the algorithm. When the addition of a reaction to the tree violates the
upper limit, the algorithm backtracks and proceeds by adding to the tree another
reaction that has not been previously explored, effectively identifying an alternative
pathway. If none of these alternative routes satisfy the pathway length limit, the
algorithm further backtracks and continues from there. The algorithm finishes
when all permitted-length branches of the tree terminate in a metabolite that is
native to the host organism. Owing to the probabilistic nature of selecting the
reactions, the completed tree does not exhaustively enumerate all possible
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pathways. Rather, each tree represents a single pathway from the source metabolite
to one or more product metabolites that are native to the host organism. Therefore,
the search is iterated many times until no more unique trees can be constructed. In
our previous work, we found that the probabilistic search matches an exhaustive
search in terms of sampling diversity, and dramatically outperforms the exhaustive
search in terms of computational efficiency48.

Sample collection. Female C57BL/6 SPF and C57BL/6 GF mice at 6 weeks of age
were purchased from Taconic (Albany, NY). The sample size (n¼ 7) was selected
to achieve a power of at least 0.80. The power analysis was performed a priori and
assumed that the s.d. was 40% of the group mean. The GF mice were shipped in a
GF transport container. All mice were weighed and killed immediately upon arrival
at the animal facility at Texas A&M Health Science Center. Caecum contents were
collected, weighed, flash-frozen and stored at � 80 �C before metabolite extraction.
All animals were handled in accordance with the Texas A&M University Health
Sciences Center Institutional Animal Care and Use Committee guidelines under an
approved animal use protocol.

Metabolite extraction. Metabolites were extracted from caecum luminal contents
using a solvent-based method49 with minor modifications. Briefly, 1.5ml of ice-
cold methanol/chloroform (2:1, v/v) was added to a sample tube containing a pre-
weighed luminal content or faecal sample. After homogenization on ice, the sample
tube was centrifuged under refrigeration (4 �C) at 15,000 g for 10min. The
supernatant was then transferred to a new sample tube through a (70-mm) cell
strainer. After adding 0.6ml of ice-cold water, the sample tube was vortexed
vigorously and centrifuged under refrigeration (4 �C) at 15,000 g for 5min to obtain
phase separation. The upper and lower phases were separately collected into fresh
sample tubes with a syringe, taking care not to disturb the interface. To improve
signal intensity for MS, 400ml of the polar phase was concentrated by solvent
evaporation in an Eppendorf speedvac concentrator (Eppendorf, Hauppauge, NY),
and then reconstituted in 40 ml of methanol/water (1:1, v/v) for subsequent
analysis. Extracted metabolites were stored at � 80 �C until analysis.

Multiple reaction monitoring. In the case where pure chemical standards were
available for purchase, metabolites were analysed using MRM to obtain absolute
quantitation. We found that this MS method could provide greater sensitivity for
selected metabolites compared with information-dependent acquisition (IDA) as
assessed by the dynamic range of the standard curves (Supplementary Fig. 4).
Before sample analysis, MS parameters were optimized for each target metabolite
to identify the MRM transition (precursor/product fragment ion pair) with the
highest intensity under direct injection at 10 ml min� 1. The target metabolites in
samples were detected and quantified on a triple quadrupole linear ion trap mass

spectrometer (3200 QTRAP, AB SCIEX, Foster City, CA) coupled to a binary
pump HPLC (Prominence LC-20, Shimazu, Concord, Ontario, Canada). Samples
were maintained at 4 �C on an autosampler before injection. Chromatographic
separation was achieved on a hydrophilic interaction column (Luna 5 mm NH2

100Å 250� 2mm, Phenomenex, Torrance, CA) using a solvent gradient
method50. Solvent A was an ammonium acetate (20mM) solution in water with 5%
acetonitrile (v/v). The pH of solvent A was adjusted to 9.5 immediately before
analysis using ammonium hydroxide. Solvent B was pure acetonitrile. Injection
volume was 10ml. The gradient method is shown in Supplementary Table 2.

Peak identification and integration were performed using the Analyst software
(version 5, Agilent, Foster City, CA) to calculate the area under curve (AUC) for
each metabolite identified in the polar phase. The total moles of each metabolite
was calculated from standard curves and normalized to the mass of luminal
contents. This quantity was divided by the density of the caecal contents (assumed
to be the same as water) to determine the concentration (mM) of each metabolite in
caecal luminal contents based on the fraction partitioned into the polar phase. The
measured concentration is a conservative lower estimate as it does not account for
either the partition of the metabolite into the non-polar phase or matrix effects
resulting in ion suppression. As such, these concentration values should be
interpreted as an order of magnitude estimate and was used primarily for
semiquantitative comparisons between the two experimental groups.

Information-dependent acquisition. Pure standards could not be obtained for a
large number of the metabolic derivatives identified in the pathway analysis. These
metabolites were analysed using IDA experiments performed on a triple quadru-
pole TOF mass spectrometer (TripleTOF 5600þ , AB SCIEX) coupled to a binary
pump HPLC system (1260 Infinity, Agilent Technologies, Santa Clara, CA).
Chromatographic separation was performed as described for the MRM experi-
ments. Samples eluting from the column were injected into the mass analyser via a
DuoSpray ion source (TurboIonSpray probe, AB SCIEX). Each sample was run
twice, with the mass analyser operated in either positive or negative ion mode. The
IDA method for both polarities (cycle time 650ms) included a TOF MS (survey)
scan (accumulation time: 250ms; collision energy (CE): ±10V) and four depen-
dent (triggered), high-resolution MS/MS (product ion) scans (accumulation time:
100 ms each: CE, ±45V). The TOF MS and product ion scans all had mass ranges
of m/z 50 to 1,000 for both polarities. The IDA method included an automatic
calibration step performed after every five samples using a polypropylene glycol
solution. The identity of a detected metabolite was determined based on exact mass
and isotope pattern, and, whenever possible, confirmed by comparing the calcu-
lated and measured MS/MS fragmentation patterns using PeakView (version 1.2,
AB SCIEX). A difference of 30 p.p.m. was used as the tolerance threshold between
the measured exact mass and the corresponding theoretical value calculated from
the molecular formula. For each metabolite with a confirmed chemical identity, the

Figure 7 | Heat map and dendrograms show hierarchical clustering of organisms in the microbiota model based on the similarity of reaction sets

encoded by their genomes. Clustering was performed on the reaction-organism matrix (S, see Methods for details), with the data standardized

along the rows. Rows (reactions), and then columns (organisms), were clustered using the average linkage method based on correlation distance as the

similarity metric. Colours indicate standardized row values relative to the mean. Red, black and green indicate values above, at and below the mean.
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corresponding peak in the chromatogram was integrated using MultiQuant (ver-
sion 2.1, AB SCIEX) to determine the AUC. Fold changes in metabolite levels
between different samples were calculated based on the AUC values normalized to
the corresponding sample (wet caecum content) weights.

Cell culture. MCF-7 human breast cancer cells were obtained from ATCC
(Manassas, VA). Cells were cultured at 37 �C with 5% CO2 in RPMI 1640 medium
(MP Biomedicals, Solon, OH) supplemented with 10% (v/v) fetal bovine serum,
glucose (2.5 g l� 1), HEPES (10mM), sodium pyruvate (1mM), sodium bicarbo-
nate (2 g l� 1), penicillin (100Uml� 1) and streptomycin (100 mgml� 1).

Construction of GLuc reporter plasmid for AhR activation. A lentiviral reporter
plasmid for monitoring activation of AhR was constructed as described below. AhR
response elements in target promoter were identified using the TRANSFAC
database 7.0 Public. An oligonucleotide containing three repeats of the binding
sequence (CTGAGGCTAGCGTGCGT) separated by four to six bases (spacer
sequence) was chemically synthesized with two restriction enzyme (EcoRI and
AfeI) cleavage sites at the ends. The RE oligonucleotide was cloned into a lentiviral
vector51 in which expression of the GLuc gene is under the control of a minimal
cytomegalovirus promoter and red fluorescent protein (RFP) is constitutively
expressed. Expression of GLuc is induced when ligand-activated AhR binds to its
RE. Clones containing the correct RE were identified by multiple restriction
enzyme digests and verified by sequencing.

Generation of a stable MCF-7 AhR reporter cell line. A stable MCF-7 AhR
reporter cell line (MCF-7/AhR-GLuc) was generated by lentiviral transduction. To
produce lentiviral particles, AhR reporter plasmid and packaging plasmids psPAX
(plasmid 12260, Addgene, MA) and pMD2.G (plasmid 12259, Addgene) were co-
transfected into 293T/17 cells using the calcium phosphate transfection method52.
After 24 h following the transfection, the medium was replenished and 5mM of
sodium butyrate was added. After an additional 24 h of incubation, culture
supernatants containing viral particles were collected, pooled, filtered with 0.45 mm
filters and centrifuged for 2 h at 4 �C at 48,000� g. The viral titre was measured
using a Lenti-X qRT-PCR titration kit (Clontech, Palo Alto, CA). To transduce
MCF-7 cells, a concentrated aliquot of virus particles (B1� 108 IFU) was added to
the cells in presence of Polybrene (hexadimethrine bromide). After 4 h of
incubation with the virus particles, the medium was replenished.

AhR activation studies. MCF-7/AhR-GLuc reporter cells were seeded in 24-well
tissue culture plates and grown to 70% confluence. Cells were treated with indi-
cated concentrations of target metabolites (5-hydroxy-L-tryptophan, indole, indo-
lepyruvate, salicylate, shikimate, tryptamine, chorismate, tyramine, 3, 4-dihydroxy-
L-phenylalanine and indole-3-acetate). The negative control was 0.1% (v/v) N, N-
dimethylformamide and the positive controls were 20 nM TCDD and 100 mM
kynurenine. For assays using the MCF-7 reporter cells, 20 ml of culture supernatant
was collected at 48 h post treatment. The MCF-7 supernatant samples were stored
at � 20 �C until the secreted luciferase activity was measured. The luciferase
activity (RLUs) was used to calculate the rate of GLuc production (RLU divided by
the time over which GLuc was secreted). To account for differences in cell density
between different experiments, the GLuc production rate was normalized by the
intensity (relative fluorescence units) of the constitutively expressed RFP measured
at 550/600 nm excitation/emission.

Statistical analysis. Comparisons of the medians between the metabolite levels of
SPF and GF mice were performed with the non-parametric two-sided Mann–
Whitney U-test. The null hypothesis that the two medians are the same was
rejected for Po0.05. Comparisons of the means for the reporter experiments were
performed using the Student’s t-test. The null hypothesis that the two means are
the same was rejected for Po0.05.
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