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A variational eigenvalue solver on a photonic
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Quantum computers promise to efficiently solve important problems that are intractable on a

conventional computer. For quantum systems, where the physical dimension grows expo-

nentially, finding the eigenvalues of certain operators is one such intractable problem and

remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds

the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present

an alternative approach that greatly reduces the requirements for coherent evolution and

combine this method with a new approach to state preparation based on ansätze and

classical optimization. We implement the algorithm by combining a highly reconfigurable

photonic quantum processor with a conventional computer. We experimentally demonstrate

the feasibility of this approach with an example from quantum chemistry—calculating the

ground-state molecular energy for He–Hþ . The proposed approach drastically reduces the

coherence time requirements, enhancing the potential of quantum resources available today

and in the near future.
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I
n chemistry, the properties of atoms and molecules can be
determined by solving the Schrödinger equation. However,
because the dimension of the problem grows exponentially

with the size of the physical system under consideration, exact
treatment of these problems remains classically infeasible for
compounds with more than 2–3 atoms1. Many approximate
methods2 have been developed to treat these systems, but
efficient, exact methods for large chemical problems remain out
of reach for classical computers. Beyond chemistry, the solution
of large eigenvalue problems3 would have applications ranging
from determining the results of internet search engines4 to
designing new materials and drugs5.

Recent developments in the field of quantum computation
offer a way forward for determining efficient solutions of many
instances of large eigenvalue problems that are classically
intractable6–12. Quantum approaches to finding eigenvalues
have previously relied on the quantum phase estimation (QPE)
algorithm. The QPE algorithm offers an exponential speedup
over classical methods and requires a number of quantum opera-
tions O(p� 1) to obtain an estimate with precision p (refs 13–18).
In the standard formulation of QPE, one assumes the eigenvector
|cS of a Hermitian operator H is given as input and the problem
is to determine the corresponding eigenvalue l. The time the
quantum computer must remain coherent is determined by the
necessity of O(p� 1) successive applications of e� iHt, each of
which can require on the order of millions or billions of quantum
gates for practical applications17,19, as compared to the tens to
hundreds of gates achievable in the short term.

Here we introduce an alternative to QPE that significantly
reduces the requirements for coherent evolution. We have
developed a reconfigurable quantum processing unit (QPU),
which efficiently calculates the expectation value of a
Hamiltonian (H), providing an exponential speedup over
exact diagonalization, the only known exact solution to the
problem on a traditional computer. The QPU has been
experimentally implemented using integrated photonics technol-
ogy with a spontaneous parametric downconversion single-
photon source and combined with an optimization algorithm
run on a classical processing unit (CPU), which variationally
computes the eigenvalues and eigenvectors of H. By using a
variational algorithm, this approach reduces the requirement for
coherent evolution of the quantum state, making more efficient
use of quantum resources, and may offer an alternative route to
practical quantum-enhanced computation.

Results
Quantum expectation estimation. The quantum expectation
estimation (QEE) algorithm computes the expectation value of a
given Hamiltonian H for an input state |cS. Any Hamiltonian
may be written as

H ¼
X

ia

hias
i
a þ

X

ijab

hijabs
i
as

j
b þ . . . ð1Þ

for real h, where Roman indices identify the subsystem on which
the operator acts, and Greek indices identify the Pauli operator,
for example, a¼ x. Note that no assumption about the dimension
or structure of the hermitian Hamiltonian is needed for this
expansion to be valid. By exploiting the linearity of quantum
observables, it follows that

hHi ¼
X

ia

hiahsiaiþ
X

ijab

hijabhs
i
as

j
biþ . . . ð2Þ

We consider Hamiltonians that can be written as a polynomial
number of terms, with respect to the system size. This class of
Hamiltonians encompasses a wide range of physical systems,

including the electronic structure Hamiltonian of quantum
chemistry, the quantum Ising Model, the Heisenberg Model20,21,
matrices that are well approximated as a sum of n-fold tensor
products22,23, and more generally any k-sparse Hamiltonian
without evident tensor product structure (see Supplementary
Methods for details). Thus, the evaluation of /HS reduces to the
sum of a polynomial number of expectation values of simple Pauli
operators for a quantum state |cS, multiplied by some real
constants. A quantum device can efficiently evaluate the
expectation value of a tensor product of an arbitrary number of
simple Pauli operators23. Therefore, with an n-qubit state we can
efficiently evaluate the expectation value of this 2n� 2n

Hamiltonian.
One might attempt this using a classical computer by

separately optimizing all reduced states corresponding to the
desired terms in the Hamiltonian, but this would suffer from the
N-representability problem, which is known to be intractable for
both classical and quantum computers (it is in the quantum
complexity class QMA-Hard24). The power of our approach
derives from the fact that quantum hardware can store a global
quantum state with exponentially fewer resources than required
by classical hardware, and as a result the N-representability
problem does not arise.

The expectation value of a tensor product of an arbitrary
number of Pauli operators can be estimated by local measure-
ment of each qubit6. Such independent measurements can be
performed in parallel, incurring a constant cost in time.
Furthermore, since these operators are normalized and finite-
dimensional, their spectra are bounded. As a result, each
hHm

i i ¼ hij ...ab ... hsia � sjb . . . i can be estimated to a precision p of
an individual element with coefficient h, which is an arbitrary
element from the set of constants fhij:::ab:::g, at a cost of
O(|hmax|2Mp� 2) repetitions. Here M is the number of terms
in the decomposition of the Hamiltonian and hmax is the
coefficient with maximum norm in the decomposition of the
Hamiltonian. The advantage of this approach is that the
coherence time to make a single measurement after preparing
the state is O(1). Conversely, the disadvantage of this approach
with respect to QPE is the scaling in the total number of
operations, as a function of the desired precision is quadratically
worse (O(p� 2) versus O(p� 1)). Moreover, this scaling will also
reflect the number of state preparation repetitions required,
whereas in QPE the number of state preparation steps is
constant. In essence, we dramatically reduce the coherence time
requirement while maintaining an exponential advantage over
the classical case, by adding a polynomial number of repetitions
with respect to QPE.

Quantum variational eigensolver. The procedure outlined above
replaces the long coherent evolution required by QPE by many
short coherent evolutions. In both QPE and QEE we require a
good approximation to the ground-state wavefunction to com-
pute the ground-state eigenvalue, and we now consider this
problem. Previous approaches have proposed to prepare ground
states by adiabatic evolution15, or by the quantum Metropolis
algorithm25,26. Unfortunately both of these require long coherent
evolution. The quantum variational eigensolver (QVE) algorithm
is a variational method to prepare the eigenstate and, by
exploiting QEE, requires short coherent evolution. QEE and
QVE and their relationship are shown in Fig. 1 and detailed in the
Supplementary Methods.

It is well known that the eigenvalue problem for an observable
represented by an operator H can be restated as a variational
problem on the Rayleigh–Ritz quotient27,28, such that the
eigenvector |cS corresponding to the lowest eigenvalue is the
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT �Tw j Firef : ð4Þ
where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1 þT2 þT3 þ :::þTN ; ð5Þ
where

T1 ¼
X

pr

trpâ
w
pâr ð6Þ

T2 ¼
X

pqrs

trspqâ
w
pâ

w
qârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T�Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT �TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)�T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M�N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)�T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trspq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State
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Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum

modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the

quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are

then fed back to the QPU.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5213 ARTICLE

NATURE COMMUNICATIONS | 5:4213 | DOI: 10.1038/ncomms5213 |www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


preparation and measurement in the Pauli basis is achieved by
setting 8 voltage-driven phase shifters and counting photon
detection events with silicon single-photon detectors31.

The ability to prepare an arbitrary two-qubit separable or
entangled state enables us to investigate 4� 4 Hamiltonians. For
the experimental demonstration of our algorithm we choose a
problem from quantum chemistry—namely, determining the
bond dissociation curve of the molecule He–Hþ in a minimal
basis. The full configuration interaction Hamiltonian for this
system has dimension 4, and can be written compactly as

HðRÞ ¼
X

ia

hiaðRÞsia þ
X

ijab

hijabðRÞs
i
as

j
b: ð9Þ

The coefficients hiaðRÞ and hijabðRÞ were determined using the
PSI3 computational package32 and are tabulated in
Supplementary Table 2.

In order to compute the bond dissociation of the molecule, we
use QVE to compute its ground state for a range of values of the
nuclear separation R. In Fig. 3 we report a representative
optimization run for a particular nuclear separation, demonstrat-
ing the convergence of our algorithm to the ground state of H(R)
in the presence of experimental noise. Figure 3a demonstrates the
convergence of the average energy, while Fig. 3b demonstrates the
convergence of the overlap |/cj|cGS| of the current state |cjS

with the target state |cGS. The colour of each entry in Fig. 3a
represents the tangle (absolute concurrence squared) of the state
at that step of the algorithm. It is known that the volume of
separable states is doubly exponentially small with respect to the
rest of state space33. Thus, the ability to traverse non-separable
state space increases the number of paths by which the algorithm
can converge and will be a requirement for future large-scale
implementations. Moreover, it is clear that the ability to produce
entangled states is a necessity for the accurate description of
general quantum systems where eigenstates may be non-
separable—for example, the ground state of the He–Hþ

Hamiltonian has small but not negligible tangle.
Repeating this procedure for several values of R, we obtain the

bond dissociation curve, which is reported in Fig. 4. After the
computed energies have been corrected for experimental errors,
the determination of the equilibrium bond length of the molecule
was found to be R¼ 92.3±0.1 pm, with a corresponding ground-
state electronic energy of E¼ � 2.865±0.008MJmol� 1. Full
details of the correction for systematic errors and estimation of
the uncertainty on E are reported in the Supplementary Methods.
The corresponding theoretical curve shows the numerically exact
energy derived from a full configuration interaction calculation of
the molecular system in the same basis. More than 96% of the
experimental data are within chemical accuracy with respect to
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Figure 2 | Experimental implementation of our scheme. (a) Quantum-state preparation and measurement of the expectation values /c|si#sj|cS
are performed using a quantum photonic chip. Photon pairs, generated using spontaneous parametric downconversion, are injected into the waveguides
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photon detectors. dc{1–4,9–13} (dc5–7) are 50% (30%) reflectivity directional couplers. Coincidence count rates from the detectors D1–4 are passed

to the CPU running the optimization algorithm. This computes the set of parameters for the next state and writes them to the quantum device.

(b) A photograph of the QPU.
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the theoretical values. At the conclusion of the optimization, we
retain full knowledge of the experimental parameters, which can
be used for efficient reconstruction of the state |cS in the event
that additional physical or chemical properties are required.

Discussion
QEE uses relatively few quantum resources compared to QPE.
Broadly speaking, QPE requires a large number of n-qubit
quantum controlled operations to be performed in series—
placing considerable demands on the number of components and
coherence time—while the inherent parallelism of our scheme
enables a small number of n-qubit gates to be exploited many
times, drastically reducing these demands. Moreover, adding
control to arbitrary unitary operations in practice is difficult, if
not impossible, for current quantum architectures (although a
proposed scheme to add control to arbitrary unitary operations
has recently been demonstrated34). To give a numerical example,
the QPE circuit for a 4� 4 Hamiltonian such as that
demonstrated here would require at least 12 CNOT gates, while
our method only requires one. We note that the resource saving
provided by QEE incurs a cost of polynomial repetitions of the
state preparation, as compared to the single copy required by

QPE. In many cases (for example, our photonic implementation),
repeated preparation of a state is not significantly harder than
preparation of a single copy, requiring only a polynomial
overhead in time without any modification of the device.

In implementing QVE, the device prepares ansatz states that
are defined by a polynomial set of parameters. This ansatz might
be chosen based on knowledge of the physical system of interest
(as for the unitary coupled cluster and typical quantum chemistry
ansätze), thus determining the device design. However, our
architecture allows for an alternative and potentially more
promising approach, where the device is first constructed based
on the available resources and we define the set of states that the
device can prepare as the ‘device ansatz’. Due to the quantum
nature of the device, this ansatz can be very distinct from those
used in traditional quantum chemistry. With this alternative
approach the physical implementation is then given by a known
sequence of quantum operations with adjustable parameters—
determined at the construction of the device—with a maximum
depth fixed by the coherence time of the physical qubits. This
approach, while approximate, provides a variationally optimal
solution for the given quantum resources and may still be able to
provide qualitatively correct solutions, just as approximate
methods do in traditional quantum chemistry (for example,
Hartree Fock). The unitary coupled cluster ansatz (equation (4))
provides a concrete example where our approach provides an
exponential advantage over known classical techniques. For this
ansatz, with as few as 40–50 qubits, one expects to manipulate a
state that is not efficient to simulate classically, and can provide a
solution superior to the classical gold standard, non-unitary
coupled cluster.

We have developed and experimentally implemented a new
approach to solving the eigenvalue problem with quantum
hardware. QEE shares with QPE the need to prepare a good
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approximation to the ground state, but replaces a single long
coherent evolution by a number of shorter coherent calculations
proportional to the number of terms in the Hamiltonian. While
the effect of errors on each of these calculations is the same as in
QPE, the reliance on a number of separate calculations makes the
algorithm sensitive to variations in state preparation between the
separate quantum calculations. This effect requires further
investigation. The most general local Hamiltonian problem is
QMA-complete35. However, under the reasonable assumption
that a good approximation to the state can be prepared, our
method and QPE can both efficiently estimate the energy of the
state, and it is in this setting that we compare them. In QVE, we
experimentally implemented a ground-state preparation
procedure through a direct variational algorithm on the control
parameters of the quantum hardware. The prepared state could
be utilized in either QEE 1 or QPE if desired. Larger calculations
will require a choice of ansatz, for which there are two
possibilities. One could experimentally implement chemically
motivated ansatz such as the unitary coupled cluster method.
Alternatively, one could pursue those ansätze that are most easy
to implement experimentally—creating a new set of device ansatz
states that would require classification in terms of their overlap
with chemical ground states. Such a classification would be a good
way to determine the value of a given experimental advance—for
ground-state problems it is best to focus limited experimental
resources on those efforts that will most enhance the overlap of
preparable states with chemical ground states. In addition to the
above issues, which we leave to future work, an interesting avenue
of research is to ask whether the conceptual approach described
here could be used to address other intractable problems with
quantum-enhanced computation. Examples that can be mapped
to the ground-state problem, and where the N-representability
problem does not occur, include search engine optimization and
image recognition. It should be noted that the approach presented
here requires no control or auxiliary qubits, relying only on
measurement techniques that are already well established. For
example, in the two-qubit case, these measurements are identical
to those performed in Bell inequality experiments.

Quantum simulators with only a few tens of qubits are
expected to outperform the capabilities of conventional compu-
ters, not including open questions regarding fault tolerance and
errors/precision. Our scheme would allow such devices to be
implemented using dramatically less resources than the current
best known approach.

Methods
Classical optimization algorithm. For the classical optimization step of our
integrated processor we implemented the Nelder–Mead (NM) algorithm36, a
simplex-based direct search (DS) method for unconstrained minimization of
objective functions. Although in general NM can fail because of the deterioration of
the simplex geometry or lack of sufficient decrease, the convergence of this method
can be greatly improved by adopting a restarting strategy. Although other DS
methods, such as the gradient descent, can perform better for smooth functions,
these are not robust to the noise, which makes the objective function non-smooth
under experimental conditions. NM has the ability to explore neighbouring valleys
with better local optima, and likewise this exploring feature usually allows NM to
overcome non-smoothnesses. We verified that the gradient descent minimization
algorithm is not able to converge to the ground state of our Hamiltonian under the
experimental conditions, mainly due to the Poissonian noise associated with our
photon source and the accidental counts of the detection system, while NM
converged to the global minimum in most optimization runs.

Mapping from the state parameters to the chip phases. The set of phases {yi},
which uniquely identifies the state |cS, is not equivalent to the phases that are
written to the photonic circuit {fi}, since the chip phases are also used to imple-
ment the desired measurement operators sa#sb. Therefore, knowing the desired
state parameters and measurement operator we compute the appropriate values of
the chip phases on the CPU at each iteration of the optimization algorithm. The
algorithm for finding the state parameters {yi} for an arbitrary two-qubit state is

described in the Methods. These phases are then applied to the CNOT-MZ chip
using f1,2,3,4,7,8. Here f7,8 are modified to account for the choice of measurment
setting at the target qubit. (Any single-qubit projective measurement can be per-
formed using an MZI together with two phase shifters.) The measurement setting
for the control qubit is implemented using f5,6.

Estimation of the error on /HS. We performed measurements of the statistical
and systematic errors that affect our computation of /HS.

Statistical errors. Statistical errors due to the Poissonian noise associated with
single-photon statistics are intrinsic to the estimation of expectation values in
quantum mechanics.

These errors can be arbitrarily reduced at a sublinear cost of measurement time
(that is, efficiently) since the magnitude of error is proportional to the square root
of the count rate. We experimentally measured the standard deviation of an
expectation value /HiS for a particular state using 50 trials. The total average
coincidence rate was B1,500 s� 1. The standard deviation was found to be 37 kJ
mol� 1, which is comparable to the error observed in the measurement of the
ground-state energy shown in Fig. 4.

The minima of the potential energy curve was determined by a generalized least
squares procedure to fit a quadratic curve to the experimental data points in the
region R¼ (80, 100) pm, as is common in the use of trust region searches for
minima37, using the inverse experimentally measured variances as weights.
Covariances determined by the generalized least squares procedure were used as
input to a Monte Carlo sampling procedure to determine the minimum energy and
equilibrium bond distance as well as their uncertainties assuming Gaussian random
error. The uncertainties reported represent standard deviations. Sampling error in
the Monte Carlo procedure was 3� 10� 4 pm for the equilibrium bond distance
and 3� 10� 8MJmol� 1 for the energy.

In Fig. 4, the large deviations from the theoretical line result from the
coincidental impact of noise resulting in premature optimization termination.
These points could have been rerun or eliminated using the prior knowledge of
smoothness of the dissociation curve. However, to accurately portray the
performance of the algorithm exactly as described, with no expert interference,
these points are retained.

Systematic errors. In all the measurements described above we observed a con-
stant and reproducible small shift, E¼ 50 kJmol� 1, of the expectation value with
respect to the theoretical value of the energy. There are at least three effects that
contribute to this systematic error.

Firstly, the downconversion source that we use in our experiment does not
produce the pure two-photon state that is required for high-fidelity quantum
interference. In particular, higher-order photon number terms and, more
significantly, photon distinguishability both degrade the performance of our
entangling gate and thus the preparation of the state |cS. This results in a shift of
the measured energy /c|H|cS. Higher-order terms could be effectively
eliminated by use of true single-photon sources (such as quantum dots or nitrogen
vacancy centers in diamond), and there is no fundamental limit to the degree of
indistinguishability that can be achieved through improved state engineering.

Secondly, imperfections in the implementation of the photonic circuit also
reduce the fidelity with which |cS is prepared and measured. Small deviations
from designed beamsplitter reflectivities and interferometer path lengths, as well as
imperfections in the calibration of voltage-controlled phase shifters used to
manipulate the state, all contribute to this effect. However, these are technological
limitations that can be greatly improved in future realizations.

Finally, unbalanced input and output coupling efficiency also results in skewed
two-photon statistics, again shifting the measured expectation value of /HS.

Another systematic effect that can be noted in Fig. 4 is that the magnitude of the
error on the experimental estimation of the ground-state energy increases with
R. This is due to the fact that as R increases the first and second excited eigenstates
of this Hamiltonian become degenerate, resulting in increased difficulty for the
classical minimization, generating mixtures of states that increases the overall
variance of the estimation.

Quantum-state fidelity. In a previous work31, we measured the average state
fidelity of states generated by the CNOT gate, estimated by quantum process
tomography, to be 0.873±0.001. The average quantum-state fidelity over four Bell
states was 0.93. The average fidelity across 995 configurations (equivalent to many
truth tables in many bases) was 0.990±0.009, with 96% of configurations
producing photon statistics with f40.97.

Count rate. In our experiment the mean count rate, which directly determines the
statistical error, was B2,000–4,000 twofold events per measurement. The expec-
tation value of a given Hamiltonian was reconstructed at each point from four two-
qubit Pauli measurements. For the bond dissociation curve we measured about 100
points per optimization run. In the full dissociation curve we found the ground
states of 79 Hamiltonians. The full experiment was performed in about 158 h.
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State preparation is relatively fast, requiring a few milliseconds to set the phases
on the chip. However, 17 s is required for cooling the chip, resulting in a duty cycle
of B5%. The purpose of this is to overcome theinstability of the fibre-to-chip
coupling due to thermal expansion of the chip during operation. This will not be an
issue in future implementations, where fibres will be permanently fixed to the
chip’s facets. Moreover, the thermal phase shifters used here will also likely be
replaced by alternative technologies based on the electro-optic effect.

Brighter single-photon sources will considerably reduce the measurement time.
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