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Experimental implementation of bit commitment
in the noisy-storage model
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Fundamental primitives such as bit commitment and oblivious transfer serve as building
blocks for many other two-party protocols. Hence, the secure implementation of such pri-
mitives is important in modern cryptography. Here we present a bit commitment protocol
that is secure as long as the attacker's quantum memory device is imperfect. The latter
assumption is known as the noisy-storage model. We experimentally executed this protocol
by performing measurements on polarization-entangled photon pairs. Our work includes a
full security analysis, accounting for all experimental error rates and finite size effects. This
demonstrates the feasibility of two-party protocols in this model using real-world quantum
devices. Finally, we provide a general analysis of our bit commitment protocol for a range of
experimental parameters.

TSchool of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore. 2 Centre for Quantum
Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore. 3 Department of Physics, National University of Singapore,
2 Science Drive 3, 117542 Singapore, Singapore. 4 School of Computing, National University of Singapore, 13 Computing Drive, 117417 Singapore.
Correspondence and requests for materials should be addressed to S.W. (email: wehner@comp.nus.edu.sg).

NATURE COMMUNICATIONS |3:1326 | DOI: 10.1038/ncomms2268 | www.nature.com/naturecommunications 1
© 2012 Macmillan Publishers Limited. All rights reserved.


mailto:wehner@comp.nus.edu.sg
http://www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2268

protect communication from the prying eyes of an

eavesdropper. Yet, with the advent of modern communica-
tions new cryptographic challenges arose: we would like to enable
two parties, Alice and Bob, to solve joint problems even if they do
not trust each other. Examples of such tasks include secure
auctions or the problem of secure identification such as that of a
customer to an ATM. Although protocols for general two-party
cryptographic problems may be very involved, it is known that
they can in principle be built from basic cryptographic building
blocks known as oblivious transfer! and bit commitment.

The task of bit commitment is thereby particularly simple and
has received considerable attention in quantum information.
Intuitively, a bit commitment protocol consists of two phases. In
the commit phase, Alice provides Bob with some form of
evidence that she has chosen a particular bit Ce {0, 1}. Later on in
the open phase, Alice reveals C to Bob. A bit commitment
protocol is secure if Bob cannot gain any information about C
before the open phase, and yet, Alice cannot convince Bob to
accept an opening of any bit C # C.

Unfortunately, it has been shown that even using quantum
communication none of these tasks can be implemented
securely2'6. Note that in quantum key distribution (QKD), Alice
and Bob trust each other and want to defend themselves against an
outsider Eve. This allows Alice and Bob to perform checks on what
Eve may have done, ruling out many forms of attacks. This is in
sharp contrast to two-party cryptography where there is no Eve,
and Alice and Bob do not trust each other. Intuitively, it is this lack
of trust that makes the problem considerably harder. Nevertheless,
because two-party protocols form a central part of modern
cryptography, one is willing to make assumptions on how powerful
an attacker can be to implement them securely.

Here we consider physical assumptions that enable us to solve
such tasks. In particular, can the sole assumption of a limited
storage device lead to security?” This is indeed the case and it was
shown that security can be obtained if the attacker’s classical
storage is limited”:8. Yet, apart from the fact that classical storage
is cheap and plentiful, assuming a limited classical storage has one
rather crucial caveat: if the honest players need to store N classical
bits to execute the protocol in the first place, then any classical
protocol can be broken if the attacker can store more than
roughly N? bits’.

Motivated by this unsatisfactory gap, it was thus suggested to
assume that the attacker’s quantum storage was bounded'%~!4, or
more generally, noisy'®>~!7. The central assumption of the noisy-
storage model is that during waiting times Af introduced in the
protocol, the attacker can only keep quantum information in his
quantum storage device F. The exact amount of noise can
depend on the waiting time. Otherwise, the attacker may be all
powerful. In particular, he can store an unlimited amount of
classical ~information, and perform any computation
instantaneously without errors. Note that the latter implies that
the attacker could encode his quantum information into an
arbitrarily complicated error-correcting code, to protect it from
noise in his storage device F.

The assumption that storing a large amount of quantum
information is difficult, is indeed realistic today, as constructing
large-scale quantum memories that can store arbitrary information
successfully in the first attempt has proved rather challenging. We
emphasize that this model is not in contrast with our ability to
build quantum repeaters, where it is sufficient for the latter to store
quantum states while making many attempts. A review on
quantum memories can be found in Lvovsky et al,'® and
numerous recent work can also be found in Usmani et al,'”
Bonarota et al,?? and Dai et al?! While noting that perpetual
advances in building quantum memories fundamentally affect the

T raditionally, the main objective of cryptography has been to

feasibility of all protocols in the noisy-storage model, we will
explain below that given any upper bound on the size and noisiness
of a future quantum storage device, security is in fact possible—we
merely need to send more qubits during the protocol.

In this work, we have implemented a bit commitment protocol
that is secure under the noisy-storage assumption. We provide a
general security analysis of our protocol for a range of possible
experimental parameters. The parameters of our particular
experiment are shown to lie within the secure region. The storage
assumption in our work is such that a cheating party cannot store
2900 qubits, which is a reasonable physical constraint given
modern day technology of storing quantum information.

Results

The noisy-storage model. To state our result, let us first explain
what we mean by a quantum storage device, and how an
assumption regarding these devices translates to security condi-
tions in the noisy-storage model. A more detailed introduction to
the model can be found in Konig et al.”

Of particular interest to us are storage devices consisting of S
‘memory cells’, each of which may experience some noise N
itself. Mathematically, this means that the storage device is a
quantum channel (a completely positive trace preserving map) of
the form F =N "% where N: B(C%) — B(CY) is a noisy
channel acting on each memory cell, mapping input states to
some noisy output states. For example, a noise-free storage device
consisting of S qubits (that is, d=2) corresponding to the special
case of bounded storage!? is given by F =10;°5, where [, is the
identity channel with one qubit input and one qubit output.
Another example is a memory consisting of S qubits, each of
which experiences depolarizing noise according to the channel
N, (p)=rp+ (1—r)5. The larger r is, the less noise is present.
Yet, another example is the erasure channel, which models losses
in the storage device.

It is indeed intuitive that security should be related to ‘how
much’ information the attacker can squeeze through his storage
device. That is, one expects a relation between security and the
capacity of F to carry quantum information. Indeed, it was
shown that security can be linked to the classical capacity'’, the
entanglement cost®%, and finally the quantum capacity®® of the
adversary’s storage device F.

When evaluating security, we start with a basic assumption on
the maximum size and the minimum amount of noise in an
adversary’s storage device. Such an assumption can for example
be derived by a cautious estimate based on quantum memories
that are available today. Note that these assumptions are for
memories that can store arbitrary states on first attempt. Such
memories presently exist for a handful of qubits. Given such an
estimate, we then determine the number of qubits we need to
transmit during the protocol to effectively overflow the
adversary’s memory device and achieve security.

Protocol and its security. We consider the bit commitment
protocol from Konig et al.!” with several modifications to make it
suitable for an experimental implementation with time-correlated
photon pairs. Figure 1 provides a simplified version of this
modified protocol without explicit parameters—the explicit
version can be found in the Supplementary Methods. In the
Supplementary Methods, we also provide a general analysis that
can be used for any experimental setup (details on our particular
experiment are also provided in the same section).

To understand the security constraints, we first need to
establish some basic terminology. In our experiment, Alice holds
the source, and both Alice and Bob have four detectors, each one
corresponding to one of the four BB84 states!'?. If Alice or Bob
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Alice
Commit phase

f Bob

Alice and Bob agree on an error correcting code specified by the parity check matrix H.

— Observe one side of an entangled photon pair
source by masuring polarization of photons
in a ranomly chosen basis and for each
photon records the basis 0; and bit value X..

— Send timing t, of valid clicks to Bob.

— Observe the other side of the photon
Pair source by measuring photons in

— Check if rounds reported missing by Bob are
within acceptable range. if so, continue.

a randomly chosen basis (5, and
records result X;.
— Identify valid rounds by finding

— From the bit values recorded, alice obtains a
binary string X" of length n.

— Inform alice about missing rounds.

E matching valid clicks for timings t,.

| Both parties wait for time At.

| — Send basis information to Bob.

— Compute syndrome w.

— Choose a two-universal hash function r.
— Send wand rto Bob.

— Compute D = Ext(X", r) and send .
E=C ® DtoBob.

— Compare Alice’s basis against his.

— Compute: B
1. Set I={i€[n]16,=0,}
2.Substring X, ={ X1 i€}

Open phase

— Send X" to Bob.
— Send committed bit C to Bob.

— Store w, rand E.

— Compute:

1. Syndrome using X" and H.
2. Committed bit A= Ext(X", r) @ E.
— Check that:

1.Syn(X") =wand A= C.

2. X" and X agree except for
expected number of errors.

|

| Are the checks satisfied? |

Yes No

|Accept commitment. || Reject commitment. |

Figure 1 | Flowchart of the bit commitment protocol. This protocol allows Alice to commit a single bit Ce{0,1}. Alice holds the source that

creates the entangled photon pairs. The function Syn maps the binary string X" to its syndrome as specified by the error-correcting code. The function
Ext: {0,13"® R —{0,1} is a hash function indexed by r, performing privacy amplification. We refer to the Supplementary Methods for a more detailed
statement of the protocol including details on the acceptable range of losses and errors. Note that the protocol itself does not require any quantum storage

to execute.

observes a click of exactly one of their detectors (symmetrized
with the procedure outlined in Supplementary Methods), we refer
to it as a valid click. Cases where more than one detector clicks at
the same instant on the same side are ignored. A round is defined
by a valid click of Alice’s detectors. A valid round is where both
parties Alice and Bob registered a valid click in a corresponding
time window, that is, where a photon pair has been identified.
First, to deal with losses in the channel we introduce a new step
in which Bob reports a loss if he did not observe a valid click.
Second, to deal with bit flip errors on the channel, we employ a
different class of error-correcting codes, namely a random code.
Usage of random codes is sufficient for this protocol, as decoding
is not required for honest parties. The main challenge is then to

link the properties of random codes to the protocol security.
Before we can argue about the correctness and security of the
proposed protocol, let us introduce four crucial figures of interest
that need to be determined in any experimental setup. The first
two are the probabilities p°, . and pl ., that none or just a single
photon was sent to Bob, respectively, conditioned on the event
that Alice observed a round. The third is the probability Plﬁ,nochck
that honest Bob registers a round as missing, that is Bob does not
observe a valid click when Alice does. Again, this probability is
conditioned on the event that Alice observed a round. Note that
by no-signalling, Alice’s choice of better (or worse) detectors
should not influence the probability of Bob observing a round.
Finally, we will need the probability p.,, of a bit flip error, that is
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the probability that Bob outputs the wrong bit even though he
measured in the correct basis.

Naturally, as Alice and Bob do not trust each other, they
cannot rely on each other to perform said estimation process.
Note, however, that the scenario of interest in two-party
cryptography is that the honest parties essentially purchase off
the shelf devices with standard properties, for which either of
them could perform said estimate. It is only the dishonest parties
who may be using alternate equipment. Another way to look at
this is to say that there exists some set of parameters (that is,
maximum losses, maxmium amount of noise on the channel, and
so on) such that an honest party has to conform to these
requirements when executing the protocol.

Let us now sketch why the proposed protocol remains correct
and secure even in the presence of experimental errors. A detailed
analysis is provided in the Supplementary Methods. In our
analysis, we take the storage device F, as well as a fixed overall
security error ¢ as given. Let M be the number of rounds Alice
registers during the execution of the protocol. Let # be the number
of valid rounds. In the description of theoretical parameters found
in the Supplementary Methods, it is shown that M and n are
directly related to each other, given some fixed experimental
parameters. In particular, # is a function of M and P}é,nochck

n =

(1 7pl];,noclick)M (1)

We can now ask, how large does M (or equivalently 1) need to be
to achieve security. If n is very small, for example if n~ 100, it is
relatively easy to break the protocol, as a cheating party might be
able to store enough qubits. Also many terms from our finite n
analysis reach convergence only for sufficiently large n. As these
terms depend on experimental parameters, security can be
achieved for a larger range of experimental parameters if n is
large. By fixing the assumption on quantum storage size,
experimental parameters and security error values, our analysis
allows us to determine a value of n where security is achievable.

Correctness. First of all, we must show that if Alice and Bob are
both honest, then Bob will accept Alice’s honest opening of the bit
C. Note that the only way that honest Bob will reject Alice’s
opening is when too many errors occur on the channel, and hence
part 2 of Bob’s final check (see Fig. 1) will fail. A standard
Chernoff style bound using the Hoeffding inequality** shows the
probability of this event is small, that is, the deviation from the
expected number of p...n errors is not too large.

Security against Alice. Second, we must show that if Bob is
honest, then Alice cannot get him to accept an opening of a bit
C # C. In our protocol, Alice is allowed to be all powerful, and is
not restricted by any storage assumptions. If she is dishonest, we
furthermore assume that she can even have perfect devices and
can eliminate all errors and losses on the channel. The first part of
our analysis, that is, the analysis of the steps before the syndrome
is sent is thereby identical to Wehner et al.> (see Fig. 1). More
precisely, it is shown that up to this step in the protocol, a string
X"e{0,1}" is generated such that Bob knows the bits X7 for a
randomly chosen subset Z C {1, ... ,n}, where X7 corresponds
to the entries of the string X" indexed by the positions in 7. If
Alice is dishonest, we want to be sure at this stage that she cannot
learn Z, that is, she cannot learn which bits of X" are known
to Bob. In the original protocol without experimental
imperfections!” this was trivially guaranteed because Bob never
sent any information to Alice. In this practical protocol, however,
Bob does send some information to Bob, namely which rounds

are valid for him, that is, when he saw a click. In Wehner ef al.%

it was simply assumed that the probability of Bob observing a loss
is the same for all detectors, and hence in particular also
independent of Bob’s basis choice. This is generally never the case
in practise. However, by symmetrizing the losses as outlined in
the Supplementary Methods, one can ensure that the losses
become the same for all detectors. In essence, this procedure
probabilistically adds additional losses to the better detectors such
that in the end all detectors are as lossy as the worst one. As Bob’s
losses are then independent of his basis choice, that is, the
detectors, this is means that Alice cannot gain any information
about Z when Bob reports some rounds as being lost.

The second part of the protocol and its analysis uses the string X"
and Bob’s partial knowledge X7 to bind Alice to her commitment.
First, we have that properties of the error-correcting code ensure that
if the syndrome of the string (Syn(X") in Fig. 1) matches and Alice
passes the first test, then she must flip many bits in the string to
change her mind. In the original protocol of Kénig et al.!” sending
Bob the syndrome of X" ensured that she must change at least 4 bits
of X" where d is the distance of the error-correcting code, such that
Bob will accept the syndrome to be consistent. However, as Alice
does not know which bits X7 are known to Bob she will get caught
with high probability. This is because of the fact that with probability
1— (1/2)%2 Alice changed at least a bit known to Bob, and in the
perfect case Bob aborts whenever a single bit is wrong. As we have to
deal with experimental imperfections we cannot have that Bob
aborts whenever a single bit is wrong, as bit flip errors on the
channel likely lead errors even when Alice is honest. As such, the
difference to the analysis of Konig et al.!” is that Bob must accept
some incorrect bits in part two of his final check (see Fig. 1). Our
argument is nevertheless quite similar, but does require a careful
tradeoff involving all experimental parameters between the distance
of the code and the syndrome length (see below). We hence use a
different error-correcting code as compared with Konig et al!” In
particular, we use a random code, which has the property that with
overwhelming probability its distance is large (that is it is hard for
Alice to cheat), while nevertheless having a reasonably small
syndrome length (see Supplementary Discussion ). The latter will be
important in the security analysis below when Alice herself is honest.

Security against Bob. Finally, we must show that if Alice is
honest, then Bob cannot learn any information about her bit C
before the open phase. Again, dishonest Bob may have perfect
devices and eliminate all errors and losses on the channel. His
only restriction is that during the waiting time At he can store
quantum information only in the device F.

We first show that Bob’s information about the entire string X"
is limited. We know from Konig et al.!” that Bob’s min-entropy
about the string X" before Alice sends the syndrome, given all his
information including his quantum memory can be bounded by

Hmin(Xn | BOb) Z - 10gp£cc(R”) ) (2)

where PZ_(Rn) is the maximum probability of transmitting Rn
randomly chosen bits through the channel 7 where R is called
the rate. This rate is determined using a novel uncertainty relation
that we prove for BB84 measurements, and all experimental
parameters. The min-entropy itself can thereby be expressed as
Hpin (X" | Bob) = — 10g Pguess (X" | Bob), where Pyyeqs(X"|Bob) is
the probability that Bob guesses the string X", maximized over all
measurements that he can perform on his system?®.

As Alice sends the syndrome to Bob, Bob gains some
additional information which reduces his min-entropy. More
precisely, it could shrink at most by the length of the syndrome,
that is,

Humin (X" | Bob, Syn(X")) > Hupin (X" | Bob) — log | Syn(X")|. (3)
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Figure 2 | Security region for p.,, versus p';mdick. Plent is set to be 0.765.
Plots are for distinct values of pe,, whereas storage size is fixed S= 2,500,
and pgmcm =0. For small values of pg‘nodick (large amounts of losses),

there exists a threshold on pl,, for the protocol to be secure. This threshold
increases with pe, and for extremely small storage rates, it gives a maximal
tolerable pe,~0.046.

Note that this is the reason why we asked for the error-correcting
code to have a short syndrome length above.

Finally, we show that knowing little about all of X" implies
that Bob cannot learn anything about C itself. More precisely, when
Alice chooses a random two universal hash function Ext(X™R)
and performs privacy amplification?’, Bob knows essentially
nothing about the output Ext(X",R)=D whenever his min-
entropy about X" is sufficiently large. The bit D then acts as a key
to encrypt the bit C using a one-time pad. As Bob cannot know D,
he also cannot know C. Our analysis is thereby very similar to
Konig et al.'’, requiring only a very careful balance between the
distance of the error-correcting code above, and the syndrome
length.

We provide a detailed analysis in the Supplementary Methods,
where a general statement for arbitrary storage dev1ces is included.
Especially for the case of bounded storage F = [;’%, we can easily
evaluate how large M needs to be, to achieve securlty against both
Alice and Bob, when an error parameter ¢ is fixed. The total
execution error of the protocol is obtained by adding up all sources
of errors throughout the protocol analysis.

The case where Alice and Bob are both dishonest is not of
interest, because the aim of this protocol is to perform correctly
while both players are honest, and protect the honest players from
dishonest players.

Experiment. We have implemented a quantum protocol for bit
commitment that is secure in the noisy-storage model. For this,
n = 250,000 valid rounds (see below) were used at a bit error rate
of pery =4.1% (after symmetrization) to commit one bit with a
security error of less than ¢ =2 x 10 ~°. Note that ¢ is the final
correctness and security error for the execution of bit commit-
ment in our experiment. This protocol is secure under the
assumption that Bob’s storage size is no larger than 972 qubits,
where each qubit undergoes a low depolarizing noise with a noise
parameter r=0.9 (see Supplementary Methods). We stress that
our analysis is done for finite n, and all finite size effects and
errors are accounted for. The ¢ includes the error in the choice of

0.06 -
d
L p . =0.234
0.05 f S=2500 B,noclick
0 . 04 N T‘,_,>_ ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
& 003H = 5=10,000
0.02 H pcé,noclick =
001 1 Secure region
0 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

h
pB,nocIick

Figure 3 | Security region for some typical parameter ranges. pg‘nocnck and
Perr quantify the amount of erasures and errors in the protocol. For higher
summation values of pg | + Plen the less multi-photons Bob gets, and
erasures have less impact on the protocol security. This implies if the
source is ideal, the protocol remains secure for large values of erasures.
Dependences in the security region between erasures and errors also
become more obvious when p§ i, + Plen is low. Furthermore, large
assumptions on S directly decrease the amount of min-entropy, causing
tolerable pe,, to drop consistently for all amounts of erasures.

random code in the protocol, finite size effects that need to be
bounded, smoothing parameters from an uncertainty relation,
and so on. Our experimental implementation demonstrates for
the first time that two-party protocols proposed in the bounded
and noisy-storage models are well within today’s capabilities.

Discussion
We demonstrated, for the first time, that two-party protocols
proposed in the bounded and noisy-storage models can be
implemented today. We emphasize that whereas—similar to so
many experiments in quantum information—our experiment is
extremely similar to QKD the experimental parameter require-
ments and analysis is entirely different to QKD. Where there are
many experiments carrying out QKD, there are only a handful of
implementation results for two-party protocols®®?°.  Bit
commitment is one of the most fundamental protocols in
cryptography. For example, it is known that with bit
commitment, coin tossing can be built. Also using addmonal
quantum communication we can build oblivious transfer®®
which in turn enables us to solve any two-party cryptograph1c
problem!. In the Supplementary Methods, we provided a detailed
analysis of our modified bit commitment protocol including a
range of parameters for which security can be shown. Our
analysis could be used to implement the same protocol using a
different, technologically simpler setup, with potentially lower
error rates or losses. Our analysis can also address the case of
committing several bits at once.

It would be interesting to see implementations of other
protocols in the noisy-storage model.

Finally, note that our analysis rests on a fundamental assumption
made in in the analysis of all cryptographic protocols, namely that
Alice does not have access to Bob’s lab and vice versa. In particular,
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Figure 4 | Security region for different storage size S and error rate p.,,.
Here pl,. =0.765 and p¢ i, =0.234 are fixed. This plot shows a
monotonic decreasing trend for tolerable pe,, with respect to storage size S.
The sharp cutoff for S varies with pg‘noc“ck, as with lower detection
efficiency, dishonest Bob can report more missing rounds, hence the lower
his storage size has to be for security to hold. Also, the plot shows security
for mostly low values of storage rate. The result is non-optimal, as it has
been shown?? that security can be achieved with arbitrarily large storage
sizes, if the depolarizing noise parameter r <0.7. This is because we bound
the smooth min-entropy of an adversarial Bob by the classical capacity of a
quantum memory, whereas Berta et al.22 does so in terms of entanglement
cost. As the latter is generally smaller than the former, this poses a better
advantage for security, which is not shown in our analysis.

this means that Alice cannot tamper with the random choices made
by Bob, potentially forcing him to measure for exam}z)le only in one
basis, or by maniplating apparent detector losses>32.

Methods

Parameter ranges. Our theoretical analysis shows security for a general range of
parameters as illustrated in Figs 2, 3 and 4. A fully general theoretical statement can
be found in the Supplementary Methods. These plots demonstrate that security is
possible for a wide range of parameters, of which our particular implementation
forms a special case. The plots are done for fixed values of # = 250,000 and a total
execution error of ¢ =3 x 10 ~*, unless otherwise indicated. Finally, Bob’s storage
size is quantified by S, the number of qubits that Bob is able to store. The plots
assume a memory of § qubits, where each qubit undergoes depolarizing noise with
parameter r=0.9.

Experimental implementation. We implement this protocol with a series of
entangled photons, with the polarization degree of freedom forming our qubits. This
allows for reliable measurements in two complementary bases. Basis 1 corresponds to
horizontal/vertical (HV) polarization, and basis 2 to *45° linear polarization. The
polarization-entangled photon pairs are prepared via spontaneous parametric down
conversion (SPDC), collected into single-mode optical fibres, and guided to polar-
ization analyser (PA) located with Alice and Bob (see Fig. 5). Each PA consists of a
nonpolarizing beam splitter (BS) providing a random basis choice, followed by two
polarizing beam splitters (PBS) and a pair of silicon avalanche photodiodes as single
photon detectors in each of the BS outputs. A half-wave plate before one of the PBS
rotates the polarization by 45°. This detection setup was used in a number of QKD
demonstrations®3-3°.

The SPDC source is similar to Ling et al,”> with a continuous wave-free running
laser diode (398 nm, 10mW) pumping a 2 mm-thick Barium-betaborate crystal cut
for type-II non-collinear parametric down conversion and the usual walkoff
compensation to obtain polarization-entangled photon pairs®®. We collect photon
pairs into single mode optical fibres such that we observe an average pair rate
1, =2,997 £82s L.

Such a source generates photon pairs in a stochastic manner, but with a strong
correlation in time. Therefore, valid clicks are timestamped on both sides first. In a

135

PBS A/2BS| 1 FPC SF

et S
<1

BS A/2 PBS

ST
3oy

1 1
I I
] ]
=1 I .
PBS H| I oc ! |HyPBS
PA | A2 |PA
| BBO |
I I
] ]
] ]
| | 5!
] ]
Alice I LD !Bob

Figure 5 | Experimental setup. Polarization-entangled photon pairs are
generated via non-collinear type-Il SPDC of blue light from a laser diode
(LD) in a barium-betaborate crystal (BBO), and distributed to PA at Alice
and Bob via single-mode optical fibres (SF). The PA are based on a BS for a
random measurement base choice, a half wave plate (1/2) at one of the
outputs, and PBS in front of single-photon counting silicon avalanche
photodiodes. Detection events on both sides are timestamped (TU) and
recorded for further processing. A polarization controller ensures that
polarization anticorrelations are observed in all measurement bases.

classical communication step, detection times t,tp are compared, and valid rounds
are identified if valid clicks fall into a coincidence time window of t.= 3 ns, that is,
|t — ts] <7./2, similar to Marcikic et al.>* with the code in Kurtsiefer?”. The
visibility of the polarization correlations in the singlet state are 97.7 +0.6% and
94.7 £0.9% in the HV and 45° linear basis. Individual detection rates on both sides
are ry =23,758 £221s ~ ! and r5 =22,227 2475~ ! on Alice and Bob’s side,
respectively. In an initial alignment step, the fibre polarization controller was
adjusted such that we see polarization correlations corresponding to a singlet state
with a quantum bit error ratio of about pe,, = 4.1%. The quantum bit error ratio is
not to be confused with the failure probability of bit commitment protocol.
Calculations of the latter are explicitly stated in the Supplementary Methods. As
reported in the summarizing paragraph of our introduction, this quantity is much
smaller than the former.

For carrying out a successful bit commitment, we need to determine the parameters
Pl P> and pl . Depending on these probabilities and the desired error
parameter &, we choose a particular error-correcting code and number of rounds M
needed for a successful bit commitment. To estimate these probabilities out of the
experimental parameters of our source/detector combination, we model our setup by a
lossless SPDC source emitting only photon pairs at a rate r,, and assign all
imperfections (losses, limited detection efficiency and background events) to the
detectors at Alice and Bob. As the coherence time of the photons in our case is much
shorter than the coincidence detection time window 7, the distribution of photon
pairs in time can be well described by a Poisson process, which allows an assessment
of multiphoton events. A detailed derivation of bounds for the probabilities is given in
the Supplementary Methods, we just summarize the results necessary for evaluating
the security of the protocol:

Pl < (ra —1p)/ra=0.875 £ 0.009 , (4)
prt < (rarpryp)/Te =5.32 £ 0.17x107*, (5)
Prent =1 = Plent — Plhes | > 0.125 £ 0.009, (6)

Pl i =1 — Pl ' > 0.99947 £ 0.000017 , 7)

P odice = 1 — 1p/ra = 0.875 % 0.009. (8)

Owing to small differences in the detection efficiency of the avalanche photodiodes
and imperfections in polarization components in the actual experiment, there is an
asymmetry in the probability of detecting each bit in each basis. Furthermore, the
beam splitter for the random measurement basis choice are not completely balanced.
A summary of these imperfections over a number of bit commitment runs is shown in
Fig. 6. This can be corrected for by discarding rounds until the probabilities for both
bits are equal. Discarded bits can be modelled as losses without affecting the security
of the protocol. A detailed analysis of this can be found in the Supplementary
Methods.
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Figure 6 | Bias in measurements. Solid lines indicate the probabilities
P(HV) of a HV basis choice for both Alice and Bob for data sets of
250,000 events each. Dashed lines indicate the probability P(H) of a H in
the HV measurement basis, the dotted lines the probability P(+) of a

+ 45° detection in a £ 45° measurement basis. These asymmetries arise
form optical component imperfections and are corrected in a
symmetrization step.
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