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Characterizing sleep spindles in 11,630 individuals
from the National Sleep Research Resource
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Sleep spindles are characteristic electroencephalogram (EEG) signatures of stage 2 non-rapid

eye movement sleep. Implicated in sleep regulation and cognitive functioning, spindles may

represent heritable biomarkers of neuropsychiatric disease. Here we characterize spindles

in 11,630 individuals aged 4 to 97 years, as a prelude to future genetic studies. Spindle

properties are highly reliable but exhibit distinct developmental trajectories. Across the night,

we observe complex patterns of age- and frequency-dependent dynamics, including

signatures of circadian modulation. We identify previously unappreciated correlates of spindle

activity, including confounding by body mass index mediated by cardiac interference in the

EEG. After taking account of these confounds, genetic factors significantly contribute to

spindle and spectral sleep traits. Finally, we consider topographical differences and critical

measurement issues. Taken together, our findings will lead to an increased understanding

of the genetic architecture of sleep spindles and their relation to behavioural and health

outcomes, including neuropsychiatric disorders.
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S
leep spindles—bursts of 11–15 Hz (sigma frequency band)
activity, typically between 0.5 and 2 s in duration—are
characteristic transient features of the sleep electroence-

phalogram (EEG). Spindles are most prominent during N2
sleep and are in fact a defining feature of this stage. Although
their underlying neural circuitry has been relatively well
characterized—being generated in the thalamic reticular nucleus
and synchronized by thalamocortical interactions1—their
function is less clearly defined. Multiple lines of observational2

and experimental3,4 evidence point to an important role of sleep
spindles in normal memory and learning5, and they are believed
to be influenced by, or to partly mediate, dynamic alterations in
synaptic plasticity seen during sleep6,7.

Within individuals, spectral properties of the sleep EEG
including sigma power are highly stable (fingerprint-like) across
nights8–10, even under markedly different sleeping conditions11.
Between individuals, there is considerable variability in both the
typical quantity and quality of spindles, in part attributable to
demographic factors such as age12,13 or sex14,15. Genetic factors
also play a role, as evidenced by twin studies of EEG power16,17

and spindles18. However, previous studies have been limited by
sample sizes typically two or three orders of magnitude smaller
than the one described here.

Genetic studies are further motivated by suggestions that
spindle deficits are biomarkers for neuropsychiatric diseases,
including schizophrenia19–23. Spindle activity is modifiable24–27

and could represent an attractive therapeutic target if causally
implicated in disease risk. In light of recent progress in
schizophrenia genetics28,29, genetically characterizing variation
in spindle activity could help to elucidate pathways between
genetic risk and neuropsychiatric disease23. If spindles, or other
aspects of sleep, are causally related to disease, it could have both
diagnostic and therapeutic implications, as others have suggested
for Alzheimer’s disease, in which predictive sleep characteristics
may precede cognitive symptoms30.

Well-powered genetic studies of sleep are emerging, in
particular for self-reported traits including chronotype (morning
versus evening preference) and sleep duration31–33. As for any
complex trait, large sample sizes will be necessary to detect genes
of individually modest effects34. Genetic studies of spindles
will require fully automated processing and the use of large
convenience samples with potentially noisy data sources. With
this in mind, here we detect and characterize spindles in a large
sample, which allows us to identify factors associated with their
variation, to corroborate some previously reported phenomena
and to establish robust, heritable measures for subsequent
molecular genetic studies.

An immediate challenge is that spindle activity cannot
unambiguously be reduced to a single quantitative trait, as it
likely represents a complex and possibly genetically hetero-
geneous set of processes. What are the optimal and independent
aspects of spindle activity: density, duration, amplitude, frequency
or other features? Does it matter when spindles occur:
earlier versus later in the night, or in the life course? Where
should spindle activity be measured, given clear topographical
differences? Do inferences in healthy individuals generalize to
patients, or are there other latent group differences that may
impact genetic studies?

Here we investigate some of these questions as a
prelude to future molecular genetic studies, in an analysis
of over 10,000 individuals to characterize normative
distributions and epidemiological associations of spindle
activity. In particular, we demonstrate the considerable
heterogeneity that exists—both between and within
individuals—as well as establishing a heritable basis for individual
differences.

Results
Overview of studies. We combined polysomnography and
demographic, anthropometric and medical history data on 11,630
individuals aged 4 to 97 years (Table 1 and Supplementary Fig. 1)
from the National Sleep Research Resource (NSRR)35,36. After
filtering to include only epochs of N2 sleep without manually
annotated arousals, movements or artefacts, performing a series
of statistical filters (Supplementary Table 1 and Supplementary
Figs 2–7) and correcting for cardiac interference, the final spindle
data set was created based on a total of 16,499 h of N2 sleep, or
1.4 h per individual (see the Methods section for details).

Analysis of canonical spindles. In an initial analysis (denoted
below as the canonical analysis), we broadly targeted spindle
activity in the sigma range, centred on 13.5 Hz, and detected a
total of 3,846,408 spindles across C3 and C4 EEG channels. The
mean spindle density, averaged over both channels, was 1.88
spindles per minute of artefact-free N2 sleep, comparable to other
reports in healthy adults37–39. Figure 1a shows the distribution
of spindle properties including density (count per minute),
amplitude, duration and frequency (see also Supplementary
Table 2). These properties were highly intercorrelated
(Supplementary Table 3), which in part reflects the differential
detectability of spindles as a function of their true amplitude,
duration or frequency, as discussed below. We observed a
high positive correlation between spindle density and sigma
power (Pearson’s r¼ 0.52, Po10� 15, N¼ 11,148; Supplementary
Fig. 8), especially between an individual’s mean spindle amplitude
and sigma power (Pearson’s r¼ 0.95, Po10� 15, N¼ 11,146).

To assess stability over time, we calculated test–retest
correlations in 4,079 individuals for whom a second night
of polysomnography was available. Children in the Childhood
Adenotonsillectomy Trial (CHAT) study were retested
B6 months after their initial polysomnogram; adults in Sleep
Heart Health Study (SHHS) and Osteoporotic Fractures in Men
ancillary sleep study (MrOS) were retested after B6 years. For
spindle density, test–retest correlations were r¼ 0.74 (N¼ 245),
0.81 (N¼ 2,597) and 0.76 (N¼ 958) for CHAT, SHHS and MrOS,
respectively (Pearson’s correlations, all Po10� 15; see Fig. 1b)
and remained high after adjustment for age, sex and race. Other
spindle properties showed substantial test–retest correlations also
(Supplementary Table 4 and Supplementary Fig. 9), suggesting
that our measures are stable traits, reliably measured and
amenable to genetic analyses.

Sex differences. Females had 0.16 more spindles per minute than
males (Po10� 15, N¼ 10,387, linear regression of spindle density
on sex along with other covariates, see Methods section).
Although menstrual cycles may impact spindle activity40,
information on menstrual timing was not available (although
note that the majority of females were outside the reproductive
age range). Between ages 15 and 45 years, we observed a
significantly greater variance (F-test to compare variances,
P¼ 0.016) in spindle density estimates for females (s2¼ 0.69,
N¼ 650) than males (s2¼ 0.57, N¼ 587), consistent with a sex-
specific effect on spindle activity that introduces more variability
in females.

Sleep macroarchitecture and spindles. Older individuals and
males had less deep, N3 sleep (Supplementary Table 5). However,
males tended to have more N2 sleep (as measured by both the
absolute number of minutes and the proportion of total sleep
time). Older individuals had less sleep in total and that was also
less deep, with fewer minutes of N2, but even greater per cent
reductions in N3 and rapid eye movement (REM). Animal studies
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have suggested that spindles play a direct role in regulating
sleep architecture, as optogenetically induced spindles increased
the duration of non-rapid eye movement (NREM) sleep
in mice41. Consistent with this, we observed that higher spindle
density during N2 was associated with a greater duration of
N2 sleep (P¼ 1� 10� 11, 4.4 min per unit increase in spindle
density, N¼ 10,390), in a linear regression with N2 duration as
the dependent variable, controlling for age, sex, race, arousal
index, apnoea–hypopnoea index (AHI) and study membership
(Supplementary Table 6). Applying a similar analysis, higher
spindle density in N2 was also associated with a shorter duration
of N3 sleep (Po10� 15, 5.2 min decrease per unit spindle density,
N¼ 10,348) and a greater duration of REM sleep (P¼ 3� 10� 6,
1.5 min increase per unit spindle density, N¼ 10,399). The latter
effects were stronger in older individuals, with interactions in
predicting N3 (P¼ 1� 10� 6) and REM (P¼ 2� 10� 10) sleep
obtained by adding an age-by-spindle density term to each of the
above regression models. (Supplementary Table 7).

Life-course trajectories of spindle traits. Spindle activity changes
with age, which is believed to reflect the maturation and
later development or disruption of thalamocortical regulatory
mechanisms42. That spindles change with ageing is not
inconsistent with the presence of substantial and stable
individual differences: height, for example, is a highly heritable
trait that changes both dramatically and predictably with age. In
adults, most studies report a progressive decline in spindle density
or sigma power with increasing age39,43–47 and an increase
in spindle oscillatory frequency44–46. In contrast, most studies
in children and adolescents report an increase in sigma power
or spindle activity with increasing age12,48. Other studies

have reported an increase in peak sigma frequency from early
childhood into adolescence49,50.

We assessed age-related changes in three ways, each yielding
similar results: in a cross-sectional analysis across the entire
sample (Supplementary Fig. 10), in cross-sectional analyses
within each study (Supplementary Table 8) and longitudinally
(Supplementary Table 9). Spindle density increased with age
during childhood, peaked around adolescence and then declined
across adulthood (Supplementary Fig. 10). In contrast, spindle
duration progressively declined from young childhood to late
adulthood. Spindle amplitude was broadly stable across childhood
and adolescence, but declined in adulthood. Spindle frequency
increased during childhood and plateaued in adulthood.

Within-study statistical modelling produced consistent
results: spindle density significantly increased with age during
childhood (CHAT study) but declined in all the adult studies
(Supplementary Table 8). Other sleep parameters were correlated
with age, including sleep efficiency. Although sleep efficiency was
positively correlated with spindle density (Pearson’s r¼ 0.06,
P¼ 9� 10� 10, N¼ 8,216), there was, as others have found39,
no independent effect of sleep efficiency on spindles after
controlling for age.

As previous reports have suggested that the decline in spindle
density from middle to late adulthood is attenuated in females46,
we formally tested for age-by-sex interaction within the two adult
samples containing both males and females (Cleveland Family
Study (CFS) and SHHS). We observed nominally significant
interaction effects in both studies, consistent with relatively less
decline in females (72% and 90% of the decline in males for CFS
and SHHS, N¼ 719 and 5,572, respectively, both Po0.05 from a
linear regression on spindle density, controlling for standard
covariates).

Table 1 | Demographic and sleep summaries for National Sleep Research Resource studies.

CHAT
(childhood)

CCSHS
(adolescence)

CFS
(lifespan)

SHHS
(middle-age)

MrOS
(late adulthood)

SOF
(late adulthood)

Combined
(lifespan)

Sample size
First visit 1,232 515 730 5,793 2,907 453 11,630
Second visit 407 0 0 2,647 1,025 0 4,079

Sex
Female 52% 50% 55% 52% 0% 100% 41%

Age (years)
Mean 7.0 17.7 41.4 64.5 77.6 82.9 58.0

Race
White 39% 60% 41% 85% 91% 92% 9,055
Black 47% 36% 56% 9% 3% 8% 1,815
Other 14% 4% 3% 7% 6% 0% 760

Sleep architecture
Total sleep time (h) 7.53 7.76 6.22 6.00 6.02 5.79 6.25
N1 sleep 8.3% 4.2% 5.2% 5.3% 6.8% 5.3% 5.9%
N2 sleep 41.8% 52.0% 56.7% 57.6% 62.0% 55.9% 56.7%
N3 sleep 31.6% 23.2% 20.2% 17.7% 11.1% 20.6% 18.0%
REM sleep 18.3% 20.6% 17.9% 19.3% 18.8% 18.2% 19.0%
N2 sleep pre-QC (h) 3.15 4.04 3.50 3.45 3.72 3.24 3.51
N2 sleep post-QC (h) 1.65 1.97 1.50 1.53 1.21 1.07 1.46

CCSHS, Cleveland Children’s Sleep and Health Study; CFS, Cleveland Family Study; CHAT, Childhood Adenotonsillectomy Trial; MrOS, Osteoporotic Fractures in Men ancillary sleep study; QC, quality
control; SHHS, Sleep Heart Health Study; SOF, Study of Osteoporotic Fractures.
For 11,630 independent individuals (4,079 of whom had two nights of polysomnography, typically after more than a 5-year interval), summary statistics are tabulated from the first, baseline visit. The six
studies span a considerable range of ages and most studies have substantial within-study variability in age, with the exception of CCSHS. Four studies have approximately equal numbers of males and
females, except MrOS (males only) and SOF (females only). Race is based on self-report and is summarized as ‘white’ (American of European self-reported ancestry/ethnicity), ‘black’ (typically
American of African self-reported ancestry/ethnicity) and ‘other’ (typically American of self-reported Asian ancestry or Hispanic/Latino ethnicity). Sleep was staged manually by expert
polysomnographists. The average number of hours of N2 sleep is presented before any filtering/QC, as well as after QC; the final row indicates the average duration of N2 sleep used in subsequent
spectral and spindle analyses (1.4 h per individual on average).
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Longitudinal analyses. We observed similar patterns of results in
the longitudinal, within-individual analyses (Supplementary
Table 9 and Fig. 1b), which are statistically independent of the
cross-sectional analyses as no second-visit polysomnograms were
included in the primary analyses. Despite a relatively small
sample size and brief test–retest interval (B6 months), we
observed a nominally significant 3% increase in spindle density
between the two polysomnograms in the childhood CHAT study
(matched-pair t-test P¼ 0.023, N¼ 245). In contrast, both adult
studies showed highly significant (all Po10� 15, matched-pair
t-tests) reductions in spindle density (12% and 15% reductions in
SHHS and MrOS, N¼ 2,597 and 958, respectively), amplitude
(5 and 12%) and duration (2 and 2%) across the B5-year period,
consistent with the cross-sectional analyses.

Frequency-dependent spindle analyses. Up to this point,
we have only considered spindles from the canonical wavelet
analyses that targeted activity broadly centred around 13.5 Hz.
There is neither consensus nor objective data on what constitutes
the true range of frequencies for spindles; however, human
studies have used different criteria, with lower bounds as low as
9 Hz37–51 and upper bounds as high as 18 Hz52; animal studies
report spindle frequencies as low as 6 or 7 Hz53,54. Furthermore,
multiple studies have argued for two types of sleep spindles, with

qualitatively distinct topographical and functional associations:
fast spindles (above B13 Hz) occurring primarily over
centroparietal derivations, and slow spindles (below B13 Hz)
occurring more often at frontal derivations10,55–57. Functional
magnetic resonance imaging also suggests that fast and
slow spindles have different cortical sources58.

To target a greater range of spindle frequencies, we set the
wavelet’s FC¼ 8 to 18 Hz in 0.25 Hz increments, yielding a vector
of spindle density estimates per individual in a frequency-
dependent analysis. Across this entire range of frequencies,
the extent to which the transient features detected in the EEG as
spindles in fact represent the same underlying processes is an
open question. Similarly, signal-to-noise ratios may vary when
targeting spindles across this broad range of frequencies.
To address these problems empirically, we therefore explicitly
detected spindles at different frequencies and analysed them
separately.

Spindles from the frequency-dependent analysis appeared to be
reliably measured and relatively stable over time (Supplementary
Figs 11–13). Figure 2 recasts the analysis of life-course trajectories
in terms of vectors of frequency-dependent spindle densities.
The predominant trend was for spindles to increase in frequency
during childhood until early adulthood and thereafter decline
in density, with the modal spindle frequency remaining
stable. Slower spindles (for example, FC¼ 11 Hz) peak earlier in
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Figure 1 | Spindle trait distributions at baseline and across time. (a) Distribution of spindle density (spindles per min), duration (s), amplitude (mV),

frequency (Hz), number of oscillations and symmetry index for all 11,630 individuals at baseline. (b) Scatter plots of baseline versus follow-up estimates of

spindle density for individuals in the three studies (CHAT, SHHS and MrOS) with repeated polysomnography, showing standardized residuals from a linear

regression of spindle density on age, sex and race by linear regression. Spindle density and other spindle traits exhibited high test–retest correlations, with

or without adjustment for age, sex and race (Supplementary Table 4 and Supplementary Fig. 9).
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development than faster spindles (for example, FC¼ 15 Hz),
consistent with earlier studies documenting an upward shift in
the sigma peak during childhood and adolescence12,50. These
results suggest that it will be challenging to interpret variation in
spindle density if age and spindle frequency are not taken into
account. Slower spindles also did not exhibit sex differences in
density (P¼ 0.63, N¼ 10,182, linear regression of spindle density
on standard covariates; Supplementary Table 10), whereas faster
spindles were denser in females (0.3 spindles per minute more,
Po10� 15, N¼ 10,179), consistently observed across studies
(Supplementary Fig. 12).

Figure 2a also indicates activity in the alpha-range (8–9 Hz),
which appears as a separate cluster and is largely restricted to
young adulthood; the exact relationship of this slower spindle-like
activity to more commonly defined slow (for example, 11 Hz) and
fast (for example, 15 Hz) spindles is unclear. Below, when
referring to slow spindles generically, we imply spindles around
11 Hz, following most previous studies.

Spindles during slow-wave sleep. Spindles occurred less often in
N3 than in N2 sleep (1.45 versus 1.88 spindles per minute, paired
t-test Po10� 15, N¼ 7,716), especially so in younger individuals
(Supplementary Table 11). N2 and N3 spindle density estimates
were nonetheless strongly correlated (Pearson’s correlation
r¼ 0.77, Po10� 15, N¼ 7,716). Spindles during N2 and N3
sleep generally showed similar demographic associations
(Supplementary Table 11), with the qualification that the sex

effect was stronger, whereas the association with age was weaker.
However, whereas spindle density during N2 significantly
predicted the duration of N2, N3 and REM sleep, spindle
density during N3 was unrelated to sleep macroarchitecture
(Supplementary Table 6). In a subset of SHHS individuals for
whom staging distinguished NREM 3 and NREM 4 sleep, we
observed qualitatively similar results for spindles detected during
NREM 4 sleep (Supplementary Fig. 14), underscoring that spindle
activity is not specific to N2 sleep.

Changes in spindle activity between NREM sleep cycles. With
regard to the dynamics of spindles across the night, some studies
have reported a decrease in spindle density56, whereas others have
reported an increase. How spindle activity changes over the night
has been reported to be dependent on age43,47,59, with temporal
effects being attenuated with increasing age. Refocusing only
on N2 sleep, we estimated spindle density separately for each
NREM sleep cycle60, which pointed to qualitatively different,
age-dependent dynamics for fast and slow spindles (Fig. 3a).
Spindle activity during the first cycle seemed exceptional, in that
there were simple linear trends across cycles 2–5, whereby
younger individuals showed greater increases in fast spindle
activity across the night, but older individuals showed greater
decreases in slow spindle activity across the night. At least in
younger individuals, the greater increase in fast compared to slow
spindles is consistent with previous reports of increases in spindle
frequency over the course of the night10,61.
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trend is for spindles to increase in frequency during childhood until early adulthood and thereafter decline in density (with the modal spindle frequency
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changes in spindle frequency and density during childhood versus adulthood. (c) Age-dependent expectations for spindle densities for a core range of

targeted frequencies (11–15 Hz), derived from a linear model describing spindle density as a nonlinear function of age and other covariates, with each curve

normalized to have a maximum of 1.0. Slower spindles (for example, FC¼ 11 Hz) peak earlier in development than faster spindles (for example, FC¼ 15 Hz).
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Changes in spindle activity within NREM sleep cycles. Even
within N2 sleep, spindle activity was not uniform within a typical
sleep cycle, but dependent on local temporal context, namely the
relative position within the sleep cycle and the type of sleep or
wake that preceded or followed a particular N2 epoch. Dividing
the first 60 min of each cycle into six 10-min intervals, and fitting
an epoch-level linear mixed model with fixed effects of sleep
cycle number (as a five-level factor) and within-cycle position
(as a six-level factor), marked systematic within-cycle variation
was observed for both fast and slow spindles, although the two
types showed different profiles (Fig. 3a and Supplementary
Table 12).

Specific features of the hypnogram might account for part of
this within-cycle variability. Neural activity during the so-called
descending (transitioning from N1, REM or wake to N3 sleep)
versus ascending (transitioning from N3 sleep to N1, REM or
wake) N2 epochs (see Methods and Supplementary Fig. 15) may
systematically vary, reflecting the different direction of travel
along the sleep–wake continuum62. Indeed, both fast and slow
spindles were significantly enriched (Fig. 3b and Supplementary
Table 12) during descending N2 sleep (mean epoch-level spindle
densities were 2.61 and 2.44 for slow and fast spindles,
respectively) compared to ascending N2 sleep (2.15 and 2.14).
The remaining N2 epochs (neither clearly ascending nor
descending) showed intermediate densities (2.26 and 2.33).
Analyses controlled for sleep cycle number, as ascending/
descending epochs tended to occur earlier due to the higher
rate of N3 sleep during the first half of the night. This effect was
observed broadly, across sleep cycles, age groups and spindle
frequencies, in analyses of all N2 epochs as well as only during
persistent sleep (previous wake being more than 10 min prior).

We also focused on NREM–REM transitions, as studies in
rodents have pointed to increased spindle activity immediately
preceding REM sleep63. Controlling for sleep cycle and other
factors including relative position within the sleep cycle,
we observed an increase in fast spindle activity preceding a

transition from N2 to REM sleep, but a decrease in slow spindles
(Supplementary Fig. 16). These changes were relatively gradual,
particularly for fast spindles, happening over the course of 5 or
more minutes rather than immediately preceding the state
change. In contrast, we did not observe marked changes in
spindle activity before wake, after controlling for sleep cycle and
other factors.

These within-cycle associations were observed whether
considering all N2 epochs, or only those during persistent sleep.
In general, N2 spindles occurred less often during persistent sleep
compared to the 10 min following a wake epoch (Supplementary
Table 12), with the effect being particularly strong for fast
spindles. Stratifying analyses by sleep cycle, for fast spindles this
effect was observed for each cycle, whereas for slow spindles the
effect was concentrated in the first and second cycles. As shown
in Fig. 3a, spindle density (for fast and slow spindles, in both
younger and older individuals) was highest near the start of the
first cycle. This effect remained when considering only N2 epochs
during persistent sleep that were flanked by at least 4 other
epochs of N2 (before and after). Spindle activity following initial
sleep onset may be qualitatively different from spindle activity
during the rest of the night: we noted that per-epoch spindle
density at the start of the night (approximately within the first
5 min) tended to be less correlated with average spindle density
over the whole night (Supplementary Fig. 17). Early-night N2
spindles showed no corresponding drop in the test–retest
correlations, however (Supplementary Fig. 17), suggesting that
the first-cycle peaks in spindle activity evident in Fig. 3 do not
simply reflect artefact.

To summarize within-cycle variation in spindles: fast spindles
were increased following wake and preceding REM sleep, whereas
slow spindles were reduced preceding REM sleep. Both fast and
slow spindles showed their highest levels of activity around
the start of the first sleep cycle. All cycles show significant
within-cycle variability in N2 spindles that depended on age and
spindle frequency. Unpacking which of these and other highly
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Figure 3 | Spindle density across the night. Mean spindle density (spindles per min) during N2 by sleep cycle and position within the cycle, stratified by

age (years) and spindle frequency (Hz). (a) For slow (11 Hz, blue, left column) and fast (15 Hz, green, right column) spindles, mean density averaged over

epochs (rather than individuals) stratified by sleep cycle, separately for individuals under 40 (mostly children and adolescents, mean age B12 years)

versus over 40 (mean age B68 years). The first 60 min of each cycle was divided into six 10-min intervals of N2 sleep; an additional 460 min point is

included for each cycle also. (b) Spindle density in ascending (unfilled bars) versus descending (filled bars) N2 epochs, stratified by sleep cycle number,

age and spindle frequency.
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interrelated ultradian factors are causally related to spindle
activity remains a challenge, however.

Epoch-level models of circadian modulation. Sleep spindles are
known to show marked circadian effects64–66. Previous reports
have noted that fast and slow spindles have 180� phase-shifted
circadian rhythms64, in which slow spindles peak around the time
of maximum melatonin levels (typically around 3:00–4:00),
whereas fast spindles have their nadir at that point.
Furthermore, circadian modulation of spindles has also
been shown to be attenuated in older individuals65,66.
To unambiguously disentangle circadian from sleep homeostatic
and other ultradian factors requires forced desynchrony
or constant routine experimental paradigms. Nonetheless,
we attempted an approximate characterization of circadian
modulation, by leveraging the differences between local clock
time and elapsed time that arise from the variation in sleep onset
across NSRR individuals.

We annotated each epoch with respect to local clock time,
elapsed time since lights out, elapsed sleep, elapsed N2, elapsed
N3 and elapsed REM. Comparing a series of mixed models that
predicted per-epoch fast and slow spindle density from each of
these terms, the elapsed-sleep model yielded the best fit
(Supplementary Fig. 18a). All models controlled for sleep cycle
number and within-cycle effects as well as individual-level fixed
effects of age, sex, study and race. That is, minutes of elapsed
sleep (allowing for higher-order terms) significantly predicted
spindle dynamics over and above the variation captured by
between- and within-cycle effects (Supplementary Fig. 18b).
Model fit was further improved by adding local clock time in
addition to minutes of elapsed sleep, consistent with the
proposition that circadian factors (that is, as approximated by
variation in clock time that is independent of variation in elapsed
sleep) modulate spindle activity on top of sleep homeostatic and
ultradian factors. We did not observe any association between
sleep mid-point—typically a proxy for chronotype—and average
spindle density across the night.

Although clock time, circadian phase and chronotype have a
complex relationship, we assume that for sleep onset during the
polysomnography, individual differences in clock time at least
partially reflect variation in circadian phase at sleep onset, and are
not entirely explained by individual differences in chronotype.
To characterize the nature of the putative circadian modulation,
we therefore made the critical assumption that after accounting
for the effects of elapsed sleep on spindle density, any residual
covariation with local clock time indexed circadian modulation.
Plotting the residuals from the elapsed-sleep model against
local clock time (Supplementary Fig. 19), we indeed observed
systematic trends across the night that were consistent with the
two main features highlighted above: qualitatively different
circadian modulation of fast and slow spindles that was present
only in younger individuals.

Medication effects and sleep apnoea. Medications that affect
sleep can also affect spindles, most notably benzodiazepines and
certain non-benzodiazepine sedative hypnotics67. Information on
medication use was available for two studies. In SHHS,
benzodiazepines were the drugs most strongly associated with
increased spindle density (P¼ 4� 10� 5, 0.2 more spindles
per minute for the N¼ 305 of 5,793 individuals taking
benzodiazepines, linear regression of spindle density on
medication status and standard covariates; Supplementary
Table 13 and Supplementary Fig. 20). Based on a similar analysis
in MrOS, benzodiazepine use was also associated, with 0.27 more
spindles per minute in the 133 of 2,907 individuals taking this
medication (P¼ 0.0003; Supplementary Table 14). The most highly

associated medication in MrOS was zolpidem (P¼ 1� 10� 5,
0.58 more spindles per minute in N¼ 40 individuals),
a non-benzodiazepine sedative hypnotic that binds to GABA
(g-aminobutyric acid) receptors at the same location as
benzodiazepines.

A non-trivial proportion of NSRR individuals were recruited
for sleep apnoea symptoms (Supplementary Table 15). The 12%
of the sample with severe apnoea (AHI 430) had significantly
lower spindle densities, after controlling for age, sex, race and
study (P¼ 3� 10� 5, N¼ 10,023, with 0.12 fewer spindles per
minute compared to individuals without sleep apnoea/with low
AHI). Treated as continuous measures, AHI and also the arousal
index were both moderately associated with reduced spindle
density (Supplementary Table 16), although these associations
were weaker than those for other measures, including age.
Nevertheless, we elected to include arousal index and AHI as
covariates in all primary analyses.

Other demographic correlates. As previous studies have
reported racial differences in sleep architecture68, we
characterized group-level associations between race and spindle
activity. Across the six studies 2,575 individuals reported a
non-white racial identity, the majority of whom (N¼ 1,815)
identified as black (Table 1). Compared to whites, blacks spent
more time in N2 and less time in N3, and also tended to have
more fragmented sleep (Supplementary Tables 17 and 18).

Within N2 sleep, blacks tended to show lower absolute and
relative measures of spectral power, particularly in the sigma
range (Supplementary Fig. 21 and Supplementary Table 19), with
or without adjusting for age, sex and other potential confounders.
Statistically significant across the entire sample, this effect was
nonetheless concentrated in younger individuals, with the older
studies (MrOS and Study of Osteoporotic Fractures (SOF)) not
showing any group differences. This did not simply reflect lower
power due to the smaller proportion of black individuals in MrOS
and SOF (Table 1): a significant age-by-race interaction in the
entire sample implied a reduced effect of race in older individuals
(Po10� 15, N¼ 9,747, linear regression on sigma power).

Blacks had significantly lower estimates of spindle density
(0.3 per minute), with the effect also concentrated in younger
individuals (Supplementary Fig. 22 and Supplementary Table 20)
and a significant age-by-race interaction consistent with this
(P¼ 2� 10� 7, N¼ 9,820, linear regression on spindle density).
Blacks also showed lower spindle amplitudes and shorter
spindle durations, but no differences in spindle frequency
(Supplementary Table 21). In the frequency-dependent spindle
analysis, the association with race was observed across a range
of spindle frequencies. Supplementary Fig. 23 summarizes the
age-dependent racial differences in spindle density and duration
of N3 sleep. These two associations were independent of each
other, in that controlling for one variable did not diminish the
association between race and the other variable.

Although spindle activity is influenced by genetic factors, there
are clearly major non-heritable sources of variation including age,
sex and medication use. Similarly, although group differences
between races could in part be driven by genetic factors, they
could equally arise due to unmeasured environmental confound-
ing factors. Understanding the causes (and consequences) of
any racial differences remains an open empirical question.
Many factors that we were unable to capture comprehensively,
including socioeconomic status (SES) at both family and
neighbourhood levels, environmental noise and pollution, diet
and normal sleep habits, could be causal factors that mediate the
statistical association with race. For four studies, indices of family
SES were available, including a self-reported ladder measure,
household income, and parental education and employment. All
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SES measures were significantly lower in blacks compared to
whites, and some were modestly associated with spindle density
(Supplementary Table 22). However, in joint models predicting
spindle density as a function of race, SES and other covariates,
none of the SES indices remained significant, whereas race
continued to be a moderately strong predictor of spindle density.
Thus, the available individual or family-level indices of SES were
not better proxies to describe the causal nature of the observed
statistical association between race and spindle activity. Further
research to more fully characterize individual differences in brain
activity during sleep should strive to identify the proximal, causal
factors that underlie these apparent group-level racial differences.

Heritability of sleep spindles. We leveraged the family-based
CFS to test for genetic influences on spindle measures16–18, as
exemplified by two monozygotic twin pairs in that study. In
comparison with two other randomly selected unrelated pairs
(but matched for age, sex and race), the greater concordance
between MZ twins is evident for both spectral and spindle traits
(Fig. 4 and Supplementary Table 23).

We used available genome-wide microarray single-nucleotide
polymorphism (SNP) data to estimate additive trait heritabilities
(h2) and genetic correlations (rG), using variance components
models69. Separately for blacks and whites, and excluding the two
MZ twin pairs, we consistently observed evidence of genetic
influences on spindle density (h2¼ 0.45, P¼ 8� 10� 6 for
N¼ 186 whites; h2¼ 0.43, P¼ 3� 10� 6 for N¼ 229 blacks)
and other sleep architecture, spectral and spindle traits including
sigma power (Table 2). A different approach not based on SNP
data (intraclass correlations (ICCs) for full sibships) similarly
found sibling correlations (ICC B0.2–0.4, correcting for age, sex
and race effects) for all spectral and spindle traits, including sigma
power, spindle density and spindle amplitude, consistent with
substantial genetic contributions (Supplementary Table 24).

A genetic correlation reflects the extent to which two traits are
influenced by the same sets of genetic variants. Canonical spindle
density and amplitude were positively genetically correlated
(rG¼ 0.49 and 0.43 for whites and blacks, respectively, both
Po0.05, N as above; Supplementary Table 25). Spindle density

also had high genetic correlations with duration of N2 (rG¼ 0.62
and 0.93 for white and black individuals, respectively), and
negative genetic correlations (rG¼ � 0.45 and � 0.48) with
duration of N3, suggesting that the genes that affect spindle
density also influence NREM duration. Despite the modest
genetic correlations with absolute sigma power shown in
Supplementary Table 25, spindle density was highly genetically
correlated with relative sigma power (rG¼ 0.69 and 0.68 in whites
and blacks, respectively, both P¼ 0.0001, not shown in the table).
In contrast, we observed negative phenotypic and genetic
correlations between spindle density and delta power. There
were very high genetic correlations for estimates of spindle
density in N2 and N3 (rG¼ 0.89 and 0.88 in whites and blacks,
respectively), suggesting that similar genetic variation influences
density across both stages.

Despite significant univariate heritability for spindle frequency,
there was no evidence for genetic overlap with spindle density,
suggesting that genes that influence how often spindles occur
tend not to influence their frequency, and vice versa. Others have
speculated that different mechanisms may be responsible for
changes in spindle frequency versus spindle density, for example,
changes in thresholds for Ca2þ spikes versus impairments
in recruitment mechanisms or internal desynchronization of
neurons in the thalamic nucleus39. Considering fast and slow
spindle density separately, there was no evidence for genetic
overlap in densities (P¼ 0.31 and 0.18 for whites and blacks,
respectively) despite both showing significant heritability
(Supplementary Table 26). Figure 5 shows the univariate and
bivariate genetic parameters for the densities across the full range
of targeted frequencies (FC¼ 8 to 18 Hz). In general, faster
spindles (FC B15 Hz) appeared to have greater heritability, with a
second peak around slower spindles (FC B11 Hz), but with no
evidence for genetic overlap between these two types.

Topographical analyses. There was substantial spectral
coherence between C3 and C4, with differences in sigma-band
coherence in part driven by (or at least correlated with) differ-
ences in spindle activity (Supplementary Table 27). We observed
subtle but statistically significant (paired t-test, Po10� 15,
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Figure 4 | Spectral and spindle traits for two MZ twin pairs and two matched unrelated pairs. Data from two MZ twin pairs in the Cleveland Family

Study, and two randomly selected unrelated individuals (matched for age, sex and race to the corresponding MZ pair, see Supplementary Table 23).

(a) Spectral power for each pair; in each plot, different coloured lines represent the first and second members of each pair. (b) Similar results for spindle

density from the frequency-dependent spindle analysis (FC varied from 8 to 18Hz). In all cases, the MZ pairs showed greater concordance in spectral and

spindle traits.
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N¼ 11,035) mean differences between left (C3) and right (C4):
spindles at C3 tended to occur at a 1.5% higher rate and be 3.2%
stronger. Approximately half of all spindles were bilateral
(detected at both C3 and C4 within 0.5 s of each other), although
this rate decreased with increasing age (Supplementary Table 27).
These effects could be confounded with spindle density and
amplitude: having more spindles increases chance overlap and
higher amplitude spindles may be more likely to be detected
bilaterally due to increased volume conductance. Controlling
for spindle density, amplitude and other covariates, however,
the association with age remained, consistent with reports of
topographical changes in spindles over development13.

A subset of the CHAT study (N¼ 53 children) had EEG data
on 18 scalp electrodes. Consistent with previous reports70, slower
(FC¼ 11 Hz) spindles were significantly enriched at frontal
channels (F3 and F4) compared to C3, whereas faster
(FC¼ 15 Hz) spindles exhibited a more uniform topography
(Fig. 6a,b). Because future genetic studies on NSRR data will
typically only have EEG from central electrodes, we characterized
the relationship between within-channel variability in spindle
density at C3/C4 compared to that at other locations, which will
not be directly assayed. Considering the correlational structure of
individual mean spindle densities, spindle frequency was a larger
source of variability than topography (Supplementary Fig. 24).
That is, detecting slow spindles at C3 or C4 captured most of the
within-channel variance in slow spindles at other locations
(Fig. 6c and Supplementary Fig. 25). Similarly, with the exception
of temporal and occipital channels with very low mean spindle
densities, fast spindle density at C3 and C4 was highly predictive
of fast spindle density globally (Fig. 6d and Supplementary
Fig. 25). Although more nuanced topographical questions
(for example, of connectivity, relative topographic profiles or
spindle propagation) will be impossible in studies with only one
or two central electrodes, these results suggest that such studies

Table 2 | Univariate heritability estimates for sleep and
spindle traits.

Phenotype White CFS families Black CFS families

h2 P-value h2 P-value

Sleep stage duration (min)
N1 sleep 0.26 0.002 0.40 2� 10� 5

N2 sleep 0.21 0.03 0.06 0.27
N3 sleep 0.43 1� 10� 5 0.22 0.008
REM sleep 0.20 0.003 0.19 0.016
Total sleep time 0.21 0.01 0.24 0.009

Spectral band power
Slow 0.26 0.008 0.20 0.006
Delta 0.26 0.004 0.28 0.0001
Theta 0.29 0.009 0.30 3� 10� 5

Alpha 0.41 0.0002 0.34 2� 10�6

Sigma 0.74 3� 10� 10 0.49 2� 10�8

Beta 0.43 0.0005 0.43 4� 10� 8

Spindle traits (N2 sleep)
Density 0.45 8� 10� 6 0.43 3� 10�6

Amplitude 0.48 7� 10� 6 0.39 3� 10�6

Duration 0.39 0.0003 0.23 0.01
Frequency 0.39 0.0008 0.33 0.0003
Oscillations 0.41 0.0002 0.20 0.02
Symmetry 0.31 0.001 0.11 0.10

CFS, Cleveland Family Study; REM, rapid eye movement; SNP , single-nucleotide polymorphism.
Separately for black and white individuals from the CFS, heritability (h2) was estimated using
mixed models applied to SNP microarray data. Owing to the relatively small sample sizes for this
type of analysis, confidences intervals will be broad and so stochastic fluctuations in reported h2

values are to be expected, and should not be overinterpreted. Most aspects of sleep architecture
(minutes in N1, N3 and REM) showed significant heritability. Spectral band power for all
frequencies showed significant genetic influence, in particular sigma activity. (Similar results
were obtained using relative rather than absolute band power, data not shown.) Spindle traits
during N2, in particular density and amplitude, also showed highly significant (Po10� 5)
estimates for heritability, B0.4–0.5. Intraclass correlations based on first siblings were also
consistent with heritable influences on spindle traits (Supplementary Table 24).
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Figure 5 | Heritabilities and genetic correlations for spindle density across a range of frequencies. The plots show the estimated heritability for spindle

density at a range of FC (8–18 Hz) from the frequency-dependent spindle analyses. Heritabilities were estimated by applying mixed models to SNP data

available in the CFS, restricted to either (a) black or (b) white individuals. In each panel, the upper right plot gives the estimated heritability (h2) and the

lower left plot gives the corresponding significance value for the test of H0: h2¼0. Shaded points in the lower right quadrant represent genetic correlations

(rG) between spindle densities at different FC, only showing significant (po0.05) correlations. Grey bars highlight FC¼ 11 and 15 Hz, which correspond to

‘slow’ and ‘fast’ spindles. Although both types of spindle showed significant univariate heritability, there was little evidence for shared genetic factors

(significant rG).
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will nonetheless be able to capture most of the within-channel
variation in spindle activity between individuals. Fast and slow
spindle density estimates showed little or no correlation with each
other, either within the same channel or across different channels.

Spindle detectability and measurement of spindle parameters.
To detect spindles, we used a previously published wavelet
algorithm21 that has been comprehensively and independently
evaluated38. To establish the robustness of our findings we also
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Figure 6 | Topographical analyses of individual differences in spindle density in the CHAT study. (a) Mean slow (FC¼ 11 Hz) spindle densities for

the subset of individuals in the CHAT study with EEG at 18 electrodes. Electrodes with means significantly (Po0.05/17, that is, Bonferroni correction

for 17 tests) greater (or less) than C3 (grey circle) are shown as enlarged white (or black) circles. (b) As above, but for fast (FC¼ 15 Hz) spindles.

(c) Correlation in individual slow spindle densities at C3 and C4 across other locations, for both fast and slow spindles. For reference, dotted lines represent

r¼0.0 and .8. (d) As above, but for fast spindles. Supplementary Fig. 25 shows the underlying scatter plots for each correlation point here.
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adopted a second algorithm, based on thresholding the signal’s
root mean square value after band-pass filtering in the sigma
range20. We observed a high correlation (Pearson’s r¼ 0.83,
Po10� 15, N¼ 11,088) between estimates of spindle density
across the two methods (with a tendency for higher correlations
in the older samples, likely reflecting the shift in spindle
frequency that occurs with age), although the band-pass
method detected more spindles, with a mean of 2.97 spindles
per minute, compared to 1.88 (Supplementary Table 28).
The wavelet method yielded estimates of spindle density
that tended (1) to be more consistent over time within an
individual, (2) had stronger associations with the known
demographic factors of age and sex and (3) showed higher
sibling intraclass correlation (Supplementary Table 29). However,
our primary, substantive results did not depend on which method
was used.

To extract discrete events from the continuously varying EEG,
spindle detection methods typically set thresholds for duration,
frequency or amplitude, although these can be arbitrary and not
based on any biological ground truth, whether they are fixed
(for example, using the same mV amplitude threshold across all
individuals) or adaptive (for example, empirically determined
for each individual relative to background sigma activity).
Our primary analyses used the default, previously published
value (t¼ 4.5 times the mean21,38) for an adaptive amplitude
detection threshold. We assessed sensitivity by considering
putative spindles only detected at lower amplitude thresholds:
low-amplitude spindles (TL) detected at 1oxo2 and all spindles
(TA) detected at x41, compared to the standard (x44.5)
threshold, where x is the wavelet coefficient divided by that
individual’s mean for all N2.

Visual inspection underscores the necessarily subtle nature of
these more obscure spindles, which would be unlikely to be
flagged by human raters (Supplementary Fig. 26). Although lower
than the standard, estimates of spindle density based on TL and
TA nonetheless exhibited moderately high test–retest correlations
(Supplementary Table 30), suggesting that they measure more
than stochastic noise and pointing to an obvious tradeoff between
sensitivity and specificity. More importantly, we observed a
substantial but negative correlation (Pearson’s r¼ � 0.55,
Po10� 15, N¼ 9,944) between standard and TL estimates of
spindle density: individuals with more high-amplitude spindles
(satisfying the default threshold) tended to have fewer
low-amplitude ones, and vice versa. Consistent with this, TL

spindles showed highly significant associations that were in
opposite directions compared to the standard analysis,
for variables including benzodiazepine use (Supplementary
Table 31), as well as age, sex and race (Supplementary
Table 32). Similarly, the life-course trajectories for low-amplitude
TL spindles were near mirror images of those for higher
amplitude spindles (Supplementary Fig. 27).

One possible explanation for these results is that spindle
amplitude rather than density is more fundamentally related to
these factors. If the probability of detecting a spindle is not
independent of its amplitude, then, depending on the sensitivity
of the detector, true changes in amplitude will appear as changes
in estimated spindle density. Supplementary Fig. 28 posits an
illustrative model in which an increase in true spindle amplitude
leads to an increase in the estimated density of high-amplitude
spindles, but a decrease for low-amplitude spindles, in the
absence of any true changes in spindle density. Consistent with
this model, when revisiting the association between spindle
density and race, we found that spindle amplitude was the only
metric—over and above spindle density and background sigma
power—that showed significant and independent effects
(Supplementary Table 33).

Discussion
In summary, here we detect and characterize spindle activity in
11,630 individuals using an automated pipeline. The resulting
estimates of spindle density, amplitude, duration and frequency
are heritable, stable traits amenable to future genetic analysis. Our
findings point to phenotypic and genetic heterogeneity, as we find
qualitatively different profiles for fast and slow frequency spindles
with respect to age and sex, topography and dynamics across the
night. We further show that fast and slow spindles are effectively
independent at the population level and are not genetically
correlated, suggesting relatively distinct aetiologies and functions.
Although we use the terms fast and slow as a shorthand, our
results do not directly and unambiguously support the existence
of two discrete spindle types, however. It is still unclear whether
there are two or more types of spindles, or whether a continuous
spectrum of faster and slower spindles provides a better
characterization.

We identified potential confounding factors, underscoring the
importance of careful matching on race and appropriate
modelling of age, sex and other effects in studies that use spindle
activity as a biomarker of disease, or in molecular genetic studies.
Whether any one of these associations reflects true biological
variation in neural activity, versus confounding by other
latent factors, is unclear. For example, although not necessarily
a major determinant of individual differences in the EEG71,
morphological features such as skull thickness could in theory
influence spindle measurement.

Although we framed our primary analyses in terms of spindle
density, which is typically the focus of other studies, we showed
that differences in estimated spindle density between individuals
or conditions could reflect differences in spindle amplitude,
or other factors which influence detectability such as duration,
frequency or topography. Analysis of density alone could
conceivably mask important biological distinctions, as the
circuitry controlling the onset of spindles, versus their oscillatory
behaviour, versus their amplitude, could be largely distinct.
Whether or not spindle density and amplitude are truly
correlated across individuals (as opposed to this correlation
being artificially induced by the choice of amplitude threshold) is
also an open empirical question. Furthermore, learning-induced
state changes in spindle activity may reflect true changes in
density rather than amplitude. Moving forward, analyses focused
on the density of high-amplitude spindles (that is, our default
analysis) should be supplanted by more exact methods for parsing
spindle density and spindle amplitude as separable components.

A number of other caveats are warranted. Automated detectors
(see ref. 72 for an excellent review) are clearly not optimal,
although human scorers also exhibit less than perfect inter-rater
reliabilities38. Furthermore, the TL and stage N3 analyses point to
spindle activity that would be unlikely to be detected visually,
but nonetheless may be valid. Perhaps, the most pernicious
measurement issue (for both human and automated scores) is the
dependency between the true properties of a spindle and its
detectability.

A limitation of the present study is the under-representation of
young adults, as it precludes more fine-grained comparisons
between adolescents and young adults, as well as a higher-than-
average proportion of individuals with sleep apnoea symptoms.
The inability to fully characterize the topographic heterogeneity
in the full sample of adults is a further limitation. We are also
unable to consider comprehensively and directly other factors
that have been shown to influence spindles, including menstrual
cycle and circadian modulation65. We present an approach to
infer circadian modulation of spindles indirectly which, although
far from the gold standard, may have potential for scoring
individuals with respect to their magnitude or type of circadian

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15930 ARTICLE

NATURE COMMUNICATIONS | 8:15930 | DOI: 10.1038/ncomms15930 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


modulation. For example, the cross-covariance of elapsed-sleep
model residuals with a known or inferred circadian signature
could yield traits that could be associated with genotype
or disease state. An exact partitioning of circadian and non-
circadian dynamics is beyond the scope of this approach, which
makes the strong assumptions that (1) a sufficiently accurate
model of sleep homeostatic and ultradian factors can be deployed,
and (2) that local clock (or zeitgeber) time is a sufficient proxy for
circadian phase, despite the subtleties in the relationship between
circadian phase, clock time and chronotype73.

Finally, it is important to stress that in a large sample size,
highly significant associations do not necessarily equate to large,
interesting or direct, causal effects. We hope that, in the future,
molecular genetic studies will help to unravel the causal nature
of the associations between spindles, spectral measures, other
aspects of sleep and biomedically relevant traits and diseases.

Methods
Overview of National Sleep Research Resource data. All data were obtained
from the NSRR (http://sleepdata.org), including EEG and electrocardiogram (ECG)
signals on 11,630 individuals across six studies (Table 1, Supplementary Fig. 1,
Supplementary Methods and Supplementary Note 1). All data were collected as
part of research protocols that were approved by the local institutional review
board at each institution; written, informed consent was obtained from each
individual before participation. The majority of individuals were from community-
based samples, although two studies recruited participants for sleep apnoea.
A subset (N¼ 4,079) had a second polysomnogram, typically administered 5
or 6 years after the first. European Data Format (EDF) files and annotation files
(indicating manually scored sleep stages in 30-s epochs, and manual annotations
for arousals, limb movements and signal artefacts) were accessed on January 2016.
Electrode labels are from the International 10–20 system. All studies used
American Academy of Sleep Medicine staging, except the SHHS, which used R&K:
here NREM3 and NREM4 were collapsed to a single N3 stage, for consistency with
the other studies.

Description of studies. Individuals ranged in age from 4 to 97 years and were well
balanced between males and females. In tabulating results, studies are ordered by
average age: the CHAT (children), the Cleveland Children’s Sleep and Health Study
(CCSHS, adolescents), the CFS (predominantly adolescents and middle-aged
adults), the SHHS (middle-aged adults), the MrOS (elderly males) and the SOF
(elderly females). We stratified analyses by study to control for possible technical
and measurement differences as well as the effects of ageing.

Key covariates for all individuals included age (years), sex and racial/ethnic
status (coded black, white and other). Unless explicitly noted otherwise, the three
levels of the race factor are modelled as two dummy-coded binary variables
(typically when race is included as a covariate). Comparisons involving race but
that indicate only the levels ‘black’ or ‘white’ (typically where race is the focus of the
analysis) imply a comparison of that group against the other, that is, excluding
individuals coded as ‘other’ due to relatively low numbers. Individuals’ sleep was
scored for an arousal index (the total number of arousals per hour of sleep) and
AHI (the overall respiratory disturbance index at 3% oxygen desaturation).

Unless explicitly noted otherwise, all primary individual-level analyses control
for age, sex, race, study, arousal index and AHI (entered as covariates in linear
regression models). Unless noted otherwise, analyses are based only on the set of
independent observations from the first polysomnogram (N¼ 11,630). Table 1
gives N’s for individual studies; some specific tests will have slightly fewer
observations because of small amounts of missing data. All P values are two sided;
those smaller than 10� 15 are reported as Po10� 15. The total sample size means
we are well powered to replicate existing findings from studies two or three orders
of magnitude smaller, as well as considering heterogeneity between and within
studies.

Signal artefact detection. For all EDFs, we extracted signals for the two
central derivations (C3-A2, C4-A1) and, where available, a single ECG channel
(Supplementary Fig. 2). For the primary analyses, only epochs annotated as N2
were retained. Any epoch with an overlapping arousal, movement or signal artefact
annotation was removed from analysis. EEG and ECG signals were resampled at
12 8Hz (with a small number of exceptions, the original EEG sampling rates were
as follows: CHAT: 200, 256 or 512 Hz; CCSHS: 128 Hz; CFS: 128 Hz; SHHS:
125 Hz; MrOS: 256 Hz; SOF: 128 Hz; the initial ECG sampling rates were as
follows: CHAT: 200, 256 or 512 Hz; CCSHS: 256 Hz; CFS: 128, 256 or 512 Hz;
SHHS: 125 Hz; MrOS: 512 Hz; SOF: 256 Hz). EEG signals were filtered with a
zero-phase band-pass filter (0.3–35 Hz). Aberrant epochs were removed following
the procedure described in ref. 8. Briefly, for each 30-s epoch, we calculated spectral
band power for delta- (1–4 Hz) and beta- (15–30 Hz) bands, using fast Fourier

transformation and the Welch algorithm (4-s sliding window with 50% overlap).
Comparing each epoch to the moving average based on up to 15 contiguous epochs
(7 either side), an epoch was excluded if the delta power was 42.5 times the local
average, or if the beta power was 42.0 times the local average. Epochs flagged as
aberrant for either channel were removed from all analyses downstream, so for a
given individual, analyses were based on the same set of epochs for each signal.

The above Buckelmüeller et al.8 filtering procedure sometimes failed to remove
a significant number of clearly aberrant epochs. We therefore conservatively
applied an iterative series of statistical filters to four per-epoch summary metrics,
removing any epoch that was ±2 s.d. units from the mean value for that
individual, on either EEG channel. The four metrics used were the root mean
square and three Hjorth parameters (activity, mobility and complexity)74. Outlier
detection was iteratively performed three times because some signals contained a
large number of extreme outlying epochs, which inflated the total variance leading
to non-trivial numbers of less extreme but still aberrant epochs being retained after
a single round of filtering. We also removed any epoch for which more than 5% of
the sample points were tied at the minimum or maximum value (that is, clipped
signals).

Spindle detection. The primary method was based on the Morlet wavelet trans-
formation21, defined as

c xð Þ ¼ pFBð Þ� 0:5 exp 2piFCxð Þ exp � x2=FB
� �

where FB¼ 2s2 and s¼ n/2pFC, where n is the number of cycles of the complex
Morlet wavelet. FC is the centre frequency, the frequency targeted most strongly,
set to FC¼ 13.5 Hz in the canonical analyses. We secondarily varied FC from 8 to
18 Hz in 0.25 Hz increments (here labelled as the frequency-dependent analysis),
to target spindles across a broader range of frequencies. FB, the wavelet bandwidth,
is determined by the number of cycles (n) for a given FC. Varying n represents a
tradeoff between resolution in the frequency versus the time domain; for the
primary analysis, we set n¼ 7, a common default that provides a reasonable
balance of time and frequency domain resolution75. For the frequency-dependent
analyses, we set n¼ 12 to give better frequency resolution.

Wavelet coefficients were smoothed using a moving average (window duration
0.1 s). In the default analysis, sample points with coefficients greater than a
multiplicative threshold (t¼ 4.5 times greater than the baseline, which is the
average value across all artefact-free N2 sleep for that individual/channel) were
flagged. Intervals of consecutively flagged points with durations between 0.3 and
3.0 s were labelled as putative spindle cores. As a modification to the previously
published approach, to target the waxing and waning profile of a typical spindle, we
further required that all points extending out from each core were greater than a
lower threshold of t¼ 2 times the baseline, such that the extended core had a total
duration of at least 0.5 s. That is, all detected spindles were at least 0.5 s with the
signal above t¼ 2 times baseline, and contained a central core of at least 0.3 s with
the signal above t¼ 4.5 times baseline. Spindles within 1 s of each other were
merged into a single spindle (but only if the resultant merged spindle was o3.0 s).

As well as the duration (interval of flagged sample points), for each spindle we
calculated the frequency, amplitude, number of oscillations and an index of
symmetry. Based on a band-pass-filtered signal (11–15 Hz), spindle amplitude was
calculated as the largest peak-to-peak amplitude; spindle frequency was calculated
as the modal frequency from a fast Fourier transformation; number of oscillations
was based on counting peaks and troughs; symmetry was based on the location of
the maximum peak-to-peak change relative to the start (0.0) and end (1.0) of the
spindle interval.

Spindle dispersion index. Clearly spurious spindles were often temporally
clustered (Supplementary Fig. 3), reflecting periods of movement or faulty/
detached electrodes, leading to a high number of detected spindles in a handful
epochs, but with few or no spindles detected elsewhere (because the baseline for
detection has been raised by the artefact). We flagged recordings that exhibited
heterogeneous mixtures of N2 epochs with respect to spindle density, taken to
be indicative of unreliable detection. Assuming the per-epoch distribution of
spindle counts to be approximately Poisson-distributed, for each individual
and EEG channel, we calculated the dispersion index (ratio of variance to mean)
and tested for overdispersion based on w2 goodness of fit. True spindle density
fluctuates over the night, so mild overdispersion is expected (observed mean
dispersion index was 1.14, significantly greater than the expectation of 1.0 for
perfectly Poisson-distributed counts). The extreme tail (values up to 12) more likely
reflects artefactual, non-biological sources of variation, however. A threshold of 2.0
was set, which excluded B1% of signals. (In most cases, the second EEG channel
for that individual still provided good data.)

Detecting and correcting cardiac interference in the EEG. In preliminary
analyses, we noted an unexpected negative correlation (Pearson’s r¼ � 0.15,
Po10� 15, N¼ 11,142) between spindle density and body mass index (BMI).
Both height (positively) and weight (negatively) were independently associated
with spindle density; neck and hip circumference were also negatively associated.
Although AHI was also negatively associated with spindle density, the BMI
association remained after statistically controlling for age, sex, race, study, arousal
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index and AHI in a multiple linear regression of spindle density on BMI and these
covariates (b¼ � 0.0088 change in spindle density per unit BMI, P¼ 2� 10� 8,
N¼ 10,400). The effect, observed for both wavelet and band-pass detectors, in fact
represented greater cardiac interference in the EEG signal in higher BMI indivi-
duals, with greater levels of ECG artefact leading to higher thresholds for detecting
spindles, and so correspondingly lower rates of spindles.

Cardiac activity can differentially interfere with the EEG as a function of
body type, and is often exacerbated in infants and, as we presumed here, more
obese individuals. We hypothesized that the spindle–BMI association reflected
differential interference of cardiac activity in the EEG. Supplementary Fig. 6a shows
the marked differences in EEG/ECG coherence as a function of BMI, present across
a range of frequencies including the sigma band. The SHHS had the highest levels
of EEG/ECG sigma-band coherence (mean CS¼ 0.13), although individual CS

correlated with BMI in five of the six NSRR studies examined here (Supplementary
Table 1, with four studies in the range of r¼ 0.3–0.4). Importantly, this effect was
not driven by only a handful of individuals with obvious contamination effects in
the EEG.

Using available ECG signals, we effectively removed this cardiac interference
(Supplementary Figs 4 and 5), eliminating the marked association with BMI.
Cardiac interference in the EEG likely reduced the number of detected spindles
because the typical duration of a QRS complex in the ECG is 0.06–0.1 s,
approximately in the sigma range (that is, 1/0.06¼ 16.6 Hz). A greater baseline of
QRS activity will elevate baseline sigma levels, thereby artificially increasing the
threshold above which spindles are detected, leading to a reduced rate of detected
spindles. In an attempt to eliminate this effect, we sought to remove the cardiac
interference component of the EEG, before spindle detection, using an ensemble
average subtraction approach. Specifically, we adopted a modified Pan-Tompkins76

algorithm to detect R peaks in the ECG (following the implementation here: http://
www.robots.ox.ac.uk/Bgari/CODE/ECGtools/ecgBag/rpeakdetect.m). Based on
filtered N2 sleep, we averaged over intervals of the EEG synchronized by R peaks,
up to 2 s in duration, to create a characteristic signature per individual per EEG
channel. The signature shown at the top of the Supplementary Fig. 4 is normalized
such that each time-point is scaled by the number of data points contributing to
that mean, which reduces the stochastic noise at the rightmost end of the signature.
For each individual/channel, this average signature was aligned with each R peak
and subtracted from the EEG. Epochs with unlikely estimated values for the
sleeping heart rate (o40, 4100) were excluded. Fifty-one individuals were missing
ECG data: uncorrected values were retained for these individuals.

After the correction, estimates of spindle density were significantly higher
(all Po10� 15) in all studies (Supplementary Table 1). Across all studies within
the NSRR, pre- and postcorrection estimates of spindle density were very highly
correlated (Pearson’s r¼ 0.97, Po10� 15, N¼ 11,235). On average, spindle density
was significantly higher postcorrection (1.88 versus 1.72, paired t-test, Po10� 15,
N¼ 11,235). Importantly, however, after ECG correction the association between
spindle density and BMI was eliminated in the entire sample (from P¼ 2� 10� 8,
N¼ 10,400 before correction, to P¼ 0.25, N¼ 10,438 after correction, linear
regressions on spindle density with standard covariates). A similar pattern was
observed for the other anthropometric correlations noted above. Unless otherwise
noted, all subsequent analyses were based on the ECG-corrected signals.

Attenuated estimates of spindle activity arising from cardiac interference were
also observed in studies outside the NSRR, such as the publicly available DREAMS
(http://www.tcts.fpms.ac.be/Bdevuyst/Databases/DatabaseSpindles/) data set
(Supplementary Fig. 6b), suggesting that this is likely a general phenomenon that
can impact different studies and analytic approaches if uncorrected.

Creating the final spindle and spectral measures. After all filtering steps,
we required at least 10 epochs (5 min) of cleaned N2 sleep for an individual to be
included in downstream analyses, which removed only a handful of individuals.
For EEG measures and key quantitative measures such as BMI, we set to missing
outlier values defined as ±3 s.d. units from the mean. For EEG measures, we
merged the two channels by averaging the individual mean values estimated for C3
and C4. Across all measures considered here, the correlations between estimates
based on C3 versus C4 were typically very high. Therefore, we elected to set merged
values to missing if C3 and C4 estimates were highly discrepant for a given
individual. Specifically, if the difference between an individual’s value for C3
and C4 was more than three times the average of the s.d.’s for C3 and C4, the
merged value was set to missing. If only a single channel was available, we used
the single-channel estimate as the final, merged value.

After removing outlying individuals (as described above), we were left with
3,851,924 spindles (99.8% of the original spindles retained) in 11,293 individuals
(98% of individuals retained). The vast majority of individuals had 4 1 h of filtered
N2 sleep available for spindle and spectral analysis. Individuals had on average
B420 N2 epochs before any filtering. Filtering epochs based on any overlapping
arousals or movements removed 113.3 epochs per individual on average. Of the
remaining epochs, Buckelmüeller et al.8 filtering removed 11.7 epochs; the second
round of statistical filtering removed a further 107.6 epochs; the cardiac correction
removed 23.6 epochs. The high proportion of removed epochs reflects an
intentionally conservative approach rather than excessively noisy data, that is, an
entire 30-s epoch will be removed even if only a 1 or 2 s are marked as containing
an arousal. In the absence of outliers, iteratively applying a 2 s.d. filter three times

to an approximately normal trait would lead to B10% of observations being
dropped. Considering each measure individually, we indeed find that B10% of
otherwise unfiltered epochs are flagged; applied to eight measures (four metrics
each for two channels), in total B36% of otherwise unfiltered epochs are flagged
for at least one measure, and so dropped from analysis. Filtered-out epochs
occurred disproportionately near the beginning and end of the night
(Supplementary Fig. 7).

Our conservative approach does not imply that almost half of the epochs
exhibited gross artefact. To underscore this, we repeated the canonical analysis
without any epoch-level filtering or correction for cardiac interference. Based on
C3 (similar results obtained for C4), average spindle density was lower without
filtering (1.51 versus 1.90 spindles per minute, paired t-test Po10� 15, N¼ 11,165)
but highly correlated (Pearson’s r¼ 0.92, Po10� 15, N¼ 11,165) with results from
the filtered data set, and with broadly similar demographic associations (except
correlation with BMI, arousal index and AHI were higher without epoch-filtering).
The between-channel (C3/C4) correlation in spindle density was also slightly lower
without filtering (r¼ 0.86 versus 0.91 for N¼ 11,624 and 11,033 respectively). This
suggests that filtering enhanced spindle detection; at the same time, estimates of
individual mean spindle density appeared to be relatively robust with respect to
artefact, and rates of spindle activity for filtered and retained epochs were broadly
similar.

All signal-processing and spindle detection steps were performed using software
developed by the author (S.M.P.), as part of a C/Cþþ package for the large-scale
analysis of sleep data (available at https://zzz.bwh.harvard.edu). All other statistical
analyses were performed using R (https://www.r-project.org).

Alternate measures of spindle activity including sigma power. Based on fast
Fourier transform and the Welch algorithm (using 4-s windows, 2-s overlap and
Hanning window), we estimated spectral band power for the sigma range (defined
as 12 to 15 Hz), taking the natural log of the absolute power estimate. Relative
spectral power was calculated as the log transform of the absolute power per
band divided by the sum of the six bands considered here: slow (0.5–1 Hz), delta
(1–4 Hz), theta (4–8 Hz), alpha (8 12 Hz), sigma (12 15 Hz) and beta (15 30 Hz).

The second spindle detection method, following ref. 20, applied band-pass
filtering in the sigma frequency band (11–15 Hz) followed by calculating the signal
root mean square in 0.25-s windows, flagging windows with values in the 95%
percentile for that individual/channel. Spindles were detected and merged using a
0.3–3.0 s rule based on consecutively flagged windows, following ref. 38.

Test–retest correlations. For individuals with repeated polysomnography,
we calculated test–retest correlations as indices of reliability, based both on
raw scores and on scores adjusted for age, sex and race, using the residuals
from a within-study linear regression of the measure on these predictors
(in MrOS and SOF, sex was omitted). For the CHAT study, treatment arm
(early adenotonsillectomy versus watchful waiting plus supportive care) did not
correlate with baseline, follow-up or change in spindle density (data not shown).
We additionally removed 145 individuals from the CHAT follow-up study due to
inconsistent scaling of their EEG signals in the EDFs we obtained.

Spindles and sleep macroarchitecture. Based on manual staging from the NSRR,
we calculated the duration and percentage of sleep spent in N1, N2, N3 and REM,
based on all epochs (that is, irrespective of whether they were included in the
spindle and spectral analyses). When estimating spindle density during N3, we
applied the same pipeline as described above. Because the duration of N3 was
typically shorter than N2, especially for older individuals, a greater proportion of
individuals did not meet the criterion for a minimum duration of artefact-free N3
epochs. Therefore, for comparability, some analyses (for example, Supplementary
Table 6) are repeated for N2 spindle density using only the subset of individuals
included in the N3 analyses. Analyses of NREM 4 spindles were limited to the
SHHS, which used this older staging (for other studies, all slow-wave sleep was
labelled N3). Here we required at least 5 min of NREM 4 sleep, with NREM
4 epochs flanked by two other NREM 4 epochs on either side, yielding 315
individuals.

Life-course spindle trajectories. The association between age and spindle
density is clearly nonlinear in the entire sample, thus we considered models with
higher-order terms for age. Two of the six studies (those with the broadest age
ranges, CFS and SHHS) showed statistical evidence for a nonlinear effect of age
within that individual study (Supplementary Table 8). To simplify presentation,
most analyses reported below are based on models with only linear effects: the
choice of age correction did not substantively change results, as long as study
membership (which is highly correlated with age) was also included as a covariate.
Certain analyses (for example, the formal modelling of age effects in Fig. 2c)
included higher order terms (up to the fifth), as noted in the text.

For the life-course trajectories (for example, Supplementary Figs 10 and 26), the
smoothed lines were fit using the loess() function in R (with span parameter set to
1.0). The fitted curves in Fig. 2c were calculated as the expected values from five
regression models of spindle density (for FC¼ 11, 12, 13, 14 and 15 Hz) on age
(including higher order terms up to the fifth), sex, study, race, BMI, arousal index
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and AHI). The expectation as a function of age (from 5 to 95 years) was calculated
based on the estimated intercept and five age coefficients from each regression
model. Each line was scaled to have a minimum of 0 and a maximum of 1,
to highlight when each trajectory peaks with respect to age.

Frequency-dependent spindle analyses. We repeated the wavelet analysis with
different values of FC from 8 to 18 Hz in 0.25 Hz increments (referred to as the
frequency-dependent spindle sets). We selected the bounds of 8 and 18 Hz to
encompass the broadest range of spindle frequencies reported in the human
literature. For the majority of frequency-dependent analyses, however, we focused
on a more central range of frequencies, in which 11 Hz was chosen to target slow
spindles and 15 Hz to target fast spindles. Importantly, our broad conclusions
remained unaltered if slightly different spindle frequency values were selected from
within the core range.

In these analyses, the same true spindle will typically be detected at more than
one FC value. We calculated the total number of unique and discrete spindle events
for each channel, by merging temporally overlapping spindles within a core
frequency range (FC from 10 to 16 Hz in 0.25 Hz increments) (Supplementary
Fig. 13). Specifically, we merged spindles detected on same channel, if either (a)
their intersection was more than 50% of their union, or (b) more than 80% of any
one spindle was overlapped by the other. The counts of merged spindles were used
to estimate the total spindle density across the range of frequencies considered.
These frequency-independent estimates were highly correlated with the canonical
estimates (r¼ 0.69) and showed similar associations with age and sex, but had a
mean of 7.4 spindles per minute, compared to 1.88. This ‘total’ spindle density
estimate was naturally higher than the canonical estimate, which only targeted the
smaller, core range of spindle frequencies, because some slower spindles were not
detected with higher values of FC, and vice versa.

Aggregating spindles across frequencies may not be optimal; however, it may
mask important heterogeneity that is only evident when different types of spindles
are analysed separately. Indeed, although estimates at nearby frequencies (for
example, FC¼ 13.5 and 14 Hz) were obligatorily highly correlated because the
wavelets target overlapping ranges of frequencies, there was only very modest
correlation between individuals’ spindle density estimates for slow (for example,
FC¼ 11 Hz) versus fast (for example, FC¼ 15 Hz) spindles (rB0.1).

Defining sleep cycles and other features of the hypnogram. We segmented
each night’s sleep into cycles, following commonly adopted rules60. Briefly, a cycle
required a minimum of 15 min of NREM sleep (with episodes starting with the
onset of N2 or N3 sleep), followed by at least 5 min of REM sleep, with the
exception that the first cycle allowed any duration of REM. A cycle was terminated
if we observed more than 15 min of wake or N1, implying a skipped REM period
for that cycle. REM periods were allowed to contain up to 15 min of NREM or
wake and still be counted as a single episode. The mean number of cycles per
individual was 4.4 (median 4); the mean cycle duration was 93.3 min (median,
87.3 min). For spindle analyses, we collapsed cycles 5 and above into a single
category, as only 14% of individuals had more than five cycles. Supplementary
Fig. 15 shows one example hypnogram and inferred sleep cycles, with ascending
and descending N2 epochs62 flagged (see below). We further defined persistent
sleep as that which occurred after 10 or more minutes from previous wake.
Fifty-four per cent of N2 epochs were in persistent sleep and also fell within a
well-defined NREM cycle.

Epoch-level linear mixed models were performed using the lme4 R package77,
with the dependent variable set as per-epoch density (that is, two times the number
of spindles observed in a 30-s epoch), separately for fast (FC¼ 15 Hz) and slow
(FC¼ 11 Hz) spindles. Individual was included as a random effect, along with fixed
effects including age (including higher-order terms up to the fifth), sex, study and
race. All epoch-level analyses of within-night dynamics were based on the C3
channel only. Fixed-effect significance values were estimated from a normal
approximation of the corresponding t-statistic. Note that epoch-level means in
spindle density may differ from individual-level means, which do not weight by the
number of epochs for that individual (that is, a mean across all epochs versus the
mean of N per-individual means).

Within-cycle variation was characterized in terms of the N2 sleep within the
first six 10-min intervals of the NREM cycle, which was entered into epoch-level
models as a fixed six-level factor. Descending N2 epochs transition from wake,
N1 or REM sleep into N3 sleep; ascending N2 epochs are those transitioning
from N3 to N1/REM/wake. For each N2 epoch, we calculated a score (ranging from
� 1 to þ 1), considering up to 5 min of preceding non-N2 epochs, coding N3
epochs as þ 1 and N1/W/R epochs as � 1, and taking the average. A similar score
was generated from up to 5 min of subsequent non-N2 sleep, but with reversed
coding (that is, � 1 for N3, þ 1 for N1/W/R). Based on the average of these two
scores, N2 epochs scored above þ 0.5 were labelled as ascending, those below
� 0.5 as descending. Of 1,888,872 N2 epochs, 167,094 were labelled ascending,
and 538,760 were descending.

Chronotype and circadian effects. Analyses of chronotype used linear regression
to relate individual whole-night spindle density to sleep-midpoint controlling for

the standard covariates, allowing for both linear and nonlinear (up to fifth order)
effects for sleep midpoint.

After removing individuals with an unusually short (o30 min) duration of
N2 sleep, we fit a series of epoch-level linear mixed models, using full maximum
likelihood, with per-epoch spindle density as the dependent variable. We
considered only N2 epochs that occurred during persistent sleep and within a
defined NREM cycle. All models had a random effect of individual, and fixed
effects for age (up to fifth order), sex, study and race. Epoch-level fixed effects in
all models were cycle number (1–5) and relative position within the cycle (as a
six-level factor). Compared to a null model with only these terms, we fit a series
of models that included one additional temporal predictor of spindle dynamics:
(a) local clock time, (b) elapsed time since lights out, (c) elapsed sleep time,
(d) elapsed N2 sleep, (e) elapsed N3 sleep, (f) elapsed REM sleep and (g) local clock
time and elapsed sleep time. Each temporal predictor was a quantitative variable
(in min) including higher order terms (up to the fifth). Clock time was coded in
terms of minutes past 20:00 (with a small number of epochs occurring before this
time removed from analysis). Similar results were obtained if sleep cycle number
and relative position within the cycle were not included in the models. We used the
Bayesian information criterion to select the best fitting model, separately for fast
and slow spindles.

To infer latent circadian components, we analysed the residuals from a
model predicting spindle density as a function of elapsed sleep time and the
above-mentioned covariates. Specifically, we calculated their mean values in bins
of epochs defined by local clock time, separately for old and young individuals.
We tested whether the mean residual for each bin was significantly different
from the expected value of 0 using a single-sample t-test. The final elapsed-sleep
model used in these analyses included additional covariates to account for
ascending/descending status; additionally, epoch-level fixed effects were allowed to
vary as a linear function of age (similar results obtained if these additional
components were not included in the final model).

Mediation analyses for socioeconomic factors. In testing for possible mediating
effects of SES, we used the following indicators (Supplementary Table 22). In CHAT,
we used parental income (variable ‘par5’ from sleepdata.org), parental employment
status (as a binary variable, based on either mother or father indicating that they were
unemployed, ‘par8’ and ‘par9’ variables) and parental education (based on the average
of a rating of paternal and maternal educational attainment, variables ‘par6r’ and
‘par7r’). For CCSHS (‘ystatus’ variable) and CFS (‘ladder’ variable), the index of SES
was based on the ‘ladder’ self-report measure of SES (The MacArthur Scale of
Subjective Social Status). For MrOS, the index of SES was based on an eight-point
self-report of educational attainment (‘gieduc’ variable).

CFS genetic analyses. The CFS comprised a number of related individuals,
including 369 individuals from 160 full sibships. Intraclass correlations were
estimated using the ICCest() function from the ICC R package, based on the
ratio of the variance of the family means to the variance of all observations from a
one-way analysis of variance. Correlations are based on age- and sex-adjusted
values (that is, the residuals from a regression of the measure on age and sex).
For the CFS, genome-wide SNP array data were available. After imputation against
the 1,000 Genomes reference panel78, we filtered SNPs for minor allele frequency
(45%), Hardy–Weinberg equilibrium (P410� 3), and imputation quality
(R240.8). We retained only autosomal SNPs, further pruning these to be in
approximate linkage equilibrium using PLINK79. We used GCTA69 to estimate
heritabilities and genetic correlations. We excluded MZ twin pairs from the
analysis (--grm-cutoff 0.75). In comparison with the intraclass correlations, which
are based only on full sibships, this approach uses all individuals from different
types of relationships (parent–offspring, half-sibling) as well as distantly related
cousins. It also facilitates the estimation of genetic correlations (the proportion of
additive genetic effects shared between two traits). Just as an observed trait variance
can be partitioned into genetic and non-genetic components (that is, estimating
heritability), an observed (or phenotypic) correlation can be partitioned into
genetic and non-genetic components (that is, reflecting the genetic correlation).
A negative genetic correlation means that genetic variants associated with increases
in one trait tend to be associated with decreases in a second trait. Although GCTA
is applicable to samples containing closely related individuals, there is the potential
for estimates of the additive genetic variance to be confounded with shared
environmental, or higher-order genetic (dominance, epistasis) variance
components as is also the case for a typical sibling and twin studies. In these
analyses, we therefore controlled for the major non-genetic sources of variation
largely shared by siblings (age and race) as well as sex.

Topographical spindle analyses. A subset (N¼ 53) of the CHAT study had 18
EEG channels including frontal, central, temporal, parietal and occipital electrodes.
Because topographic analyses are particularly sensitive to artefact, we took
extra steps to remove spurious correlations between signals: (a) removing two
individuals exhibiting uniformly low spindle density estimates across all channels,
(b) removing seven individuals flagged as multivariate outliers with respect to the
2� 18¼ 36 (FC¼ 11/15 Hz� 18 channels) estimates of spindle density based on
the Mahalanobis distance (MVN R package), (c) removing three individuals with
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excessive leverage (DFBETAS41) in any of the regressions of C3/C4 spindle
density on spindle density at other sites and (d) regressing out the effects of age, sex
and race on spindle density measures before the correlational analyses. We used the
cluster (the agnes() function) and phylo packages in R to perform average-linkage
agglomerative clustering using default settings, based on a matrix of distance
measure calculated as 1� |r|, where r is the correlation between spindle densities.
Finally, we noted a trend whereby slow C3 spindles showed slightly greater
correlations with fast spindle densities across all other channels, compared to slow
C4 spindles. In contrast, fast C4 spindles showed greater correlations with fast
spindles across other channels, compared to fast C3 spindles (Fig. 6). This
observation (which is not driven by obvious sources of error, Supplementary
Fig. 24), may point to potentially interesting laterality effects for fast and slow
spindles, but requires fuller exploration in other samples.

Data availability. All polysomnography data are available from the National Sleep
Research Resource website http://sleepdata.org. The C/Cþþ software used for
EEG signal processing is available from http://zzz.bwh.harvard.edu.
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