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Large near-term projected snowpack loss over
the western United States
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Peak runoff in streams and rivers of the western United States is strongly influenced by
melting of accumulated mountain snowpack. A significant decline in this resource has a direct
connection to streamflow, with substantial economic and societal impacts. Observations and
reanalyses indicate that between the 1980s and 2000s, there was a 10-20% loss in the
annual maximum amount of water contained in the region's snowpack. Here we show that
this loss is consistent with results from a large ensemble of climate simulations forced with
natural and anthropogenic changes, but is inconsistent with simulations forced by natural
changes alone. A further loss of up to 60% is projected within the next 30 vyears.
Uncertainties in loss estimates depend on the size and the rate of response to continued
anthropogenic forcing and the magnitude and phasing of internal decadal variability. The
projected losses have serious implications for the hydropower, municipal and agricultural
sectors in the region.
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t is well established that the North American continent is

warming!, partly due to increasing emissions of well-mixed

greenhouse gases’. In the winter season, this warmin
contributed to snowpack loss over the western United States®®.
It is also well known that the region’s climate is substantially
influenced by decadal variability originating in the adjacent
Pacific Ocean’. In this study we employ observations, land
surface reanalyses and climate model simulations to characterize
the combined influences of decadal variability and external
forcing on recently observed and near-term projected changes in
snowpack over the western United States.

Recognition of the pronounced influence of decadal variability
on regional trends in climate is motivating efforts to generate
large initial condition ensembles of global climate model
simulations. These ensembles provide estimates of the relative
contributions of internal variability and external forcing to
regional-scale climate changes®~!!. An initial condition ensemble
consists of many individual simulations performed with a given
coupled climate model; each simulation uses the same external
forcing, but is initiated from slightly different conditions of the
atmosphere and/or ocean state. Each ensemble member has a
different realization of internal variability superimposed on the
underlying externally forced response.

Because of their high computational cost, large (> 10-member)
ensembles are rare. It is also rare for groups to perform multiple
large ensembles, one consisting of simulations with anthropo-
genic forcing only, and one with simulations incorporating solar
and volcanic forcing alone. Here, we generate and analyse
50-member anthropogenic and naturally forced ensembles.
We also rely on a large ensemble of higher-resolution regional
climate model simulations driven with the output from the global
climate model.

Although several studies have found an anthropogenic
contribution to snowpack loss over the western United States,
the combined influences of decadal variability and external
forcing remain poorly quantified in observations and near-term
projections. In this study, we show that losses in regional
snowpack over the past few decades are consistent with natural
and anthropogenic changes, but are inconsistent with natural
changes alone. We predict an additional loss of snowpack
water storage of up to 60% within the next three decades due
to combined influences from anthropogenic forcing and internal
decadal variability.

Results

Observed snowpack loss. Observations of snow water equivalent
(SWE) were acquired from the United States Natural Resource
Conservation Service Snow Telemetry (SnoTel) network of
automated snow pillow measurements across alpine sites. These
measurements were taken from a quality-controlled data set
discussed in ref. 12. We restrict our analysis to the post-1981
period since the number of observations before this time is too
low to allow calculation of reliable regional averages. Monthly-
mean (January-May) SnoTel observations are continuously
available from 1982 to 2016 at 354 stations with elevations
greater than 1,500m. A threshold of 1,500 m provides good
regional coverage; use of continuous observations avoids
introducing temporal changes in spatial coverage. Figure 1
shows that 307 of the 354 stations (or about 87% of all
stations) show a negative trend in annual maximum SWE
(SWE1ax). The maximum loss typically occurs in April. Here
and subsequently, SWE,,x is computed over 1982-2010 to
facilitate comparison with reanalysis-based estimates for the
maximum period of overlap between the reanalyses and the
SnoTel data (see below).
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We first compute the climatology and trend in SWE,,,,.
Results are area-averaged over the 354 selected SnoTel stations.
Figure 2 shows that the climatology and trend are 4.6 cm and
—0.33 cm per decade, respectively. The trend has a P value less
than 0.15. This decrease in SWE,,, represents about a 9.5% loss;
this is expressed as the per cent difference between the decadal
averages of SWE, ., in 1982-1992 and 2000-2010 (the first and
last decades of the period of maximum overlap). This multi-
decade decline in regional snowpack is consistent with results
from refs 13-15, despite the fact that these studies used different
time periods, data sets and metrics. (The sensitivity to the metric
used, for example, 1 April SWE or SWE,,,.;, has been discussed in
ref. 16.) Finally, we note that the accumulated SWE over the
winter months is primarily controlled by snowfall. Significant
losses in SWE are observed throughout the snowfall season
(Supplementary Fig. 1) and are not restricted to April, the month
typically associated with SWE, ..

We also consider a group of four gridded SWE data sets
obtained from reanalysis products (hereafter referred to as
REANAL4). These four data sets have been assessed in ref. 17
over the common period of availability from 1982 to 2010.
Whereas the SnoTel measurements provide a purely
observational perspective, the REANAL4 group has been
produced using snow schemes of varying complexity embedded
in land surface models forced by meteorological reanalyses. The
following data sets were used: (1) the Global Land Data
Assimilation System Version 2 (ref. 18); (2) the European
Centre for Medium-Range Forecasts Interim Land Reanalysis'®;
(3) the Modern Era Retrospective Analysis for Research
and Applications?’; and (4) the Crocus snow scheme driven by
ERA-Interim meteorology?!. Differences between these data
sets have been discussed at length in ref. 17. The SWE fields
were re-gridded to a 1° longitude by 1° latitude grid; monthly
mean SWE results were averaged across the four reanalyses.

Area averaging SWE,,,, at elevations greater than 1,500 m
(north of 30°N and south of 50°N) yields a reanalysis-mean
climatology and trend of 39cm and —0.56cm per decade,
respectively. The trend has a P value less than 0.01. This decrease
in SWE, .« represents an ~21.8% loss between 1982-1992 and
2000-2010. The correlation between the SWE,,, time series from
REANAL4 and SnoTel is 0.73. The range of climatology and
trend estimates from the four reanalysis products encompasses
the corresponding SnoTel estimates (Fig. 2). While this is
encouraging, there are significant scale challenges in relating
local SWE measurements to coarsely gridded snow reanalyses,
and direct comparisons between the two must be approached
cautiously??. The green bars in Fig. 2 show the uncertainties
associated with the SnoTel values. Here, uncertainties are
computed as +1 s.d. across 10,000 random samples of the
SnoTel stations. In each case, a station is randomly selected and
the average climatology and trend is computed across a random
selection of no more than 10 of its neighbouring stations within
1° longitude and 1° latitude (the spatial resolution of the
reanalyses). In short, the SnoTel and REANAL4 results are
consistent within the uncertainties in each data source; this holds
for both climatologies and trends.

Historical simulated snowpack loss. Our ensemble of model
simulations was generated with the Canadian Earth System
Model version 2 (CanESM2; see Methods and ref. 23).
Simulations include historical forcings from 1950 to 2005 and
RCP8.5 forcing extensions after 2005. The RCP8.5 pathway is
a high-emission scenario leading to an 8.5W m ~?2 increase in
radiative forcing by 2,100. Over the early part of the twenty-first
century, forcing differences between RCP8.5 and other commonly
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Figure 1 | Topography and measurement network. The circles are the snow telemetry (SnoTel) network of stations utilized in this study. The red circles
denote stations with negative trends in annual maximum snow water equivalent (SWE..,). The blue circles indicate stations with positive trends. Linear
trends are computed from 1982 to 2010 to facilitate comparison with reanalysis-based estimates (for the period of maximum overlap between SnoTel and
the four reanalysis products). All the stations plotted here are at elevations greater than 1,500 m.

analysed RCPs are relatively small’®, Two 50-member
ensembles were run with CanESM2, one with natural
and anthropogenic forcings (ALL) and one with only natural
forcings (NAT). Anthropogenic forcings include changes in
well-mixed  greenhouse gases, anthropogenic  aerosols,
tropospheric and stratospheric ozone, and land use. Natural
forcings consist of changes in solar irradiance and volcanic
aerosol loadings.

For the ALL ensemble, area-averaging the simulated SWE,,,, at
elevations greater than 1,500m (north of 30°N and south of
50°N) yields an ensemble-mean climatology and trend of 6.1 cm
and —0.57cm per decade. The trend has a P value less than
0.001. The simulated trend is in good agreement with the average
of the four reanalyses; the simulated climatology is at the high end
of the reanalysis estimates (Fig. 2). The latter suggests greater
climatological snowfall in the model than in reality, although
this is difficult to assess given the absence of a reliable long-term
observational record of winter precipitation. The simulated
pattern of climatological SWE,,,; is in reasonable agreement
with the comparable field in reanalyses (see Fig. 3), albeit
with spatial detail given the coarser resolution of the
global coupled model (which is nominally 2.8° longitude by
2.8° latitude).

Figure 4a shows 5-year mean anomalies of area-averaged
SWE..x at elevations greater than 1,500 m. Results are from
SnoTel (green), REANAL4 (pink) and the ALL simulations
(black). We also show results obtained by dynamical downscaling
of 35 members of the CanESM2 ALL ensemble and RCP8.5
continuation (dashed curve). Downscaling relied on the Canadian
Regional Climate Model version 4 (CanRCM4), which has a
nominal resolution of 50km (see Methods and ref. 25).
Downscaling was performed over the North American domain
defined in the Coordinated Regional Climate Downscaling
Experiment®®. The similarity between the CanESM2 and
CanRCM4 ensemble-mean time series (r=0.99) is evidence
that the temporal variability of area-average SWE,,, from
CanESM2 is relatively insensitive to an increase in spatial
resolution.
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Figure 2 | Climatology and trend in area-average annual maximum snow
water equivalent. The green bars show snow telemetry (SnoTel) ranges
(%1 s.d.) computed from random samples of stations from the SnoTel
network (see main text). The pink bars show ranges (1 s.d.) from four
land surface reanalyses (REANAL4). The black ellipse encompasses 95% of
the climatology and trend values across 50 simulations of a global climate
model. The circles represent the average climatology and trend for SnoTel,
REANAL4 and the CanESM2 ALL simulations. All values in this figure are
area averages of annual maximum snow water equivalent (SWE,,,) at
elevations greater than 1,500 m and north of 30°N and south of 50°N. The
period considered is the maximally overlapping period from 1982 to 2010.

Because there is only one realization of internal variability
in the real world, we do not expect the CanESM2 ensemble-
mean SWE, . (which is averaged over many different model
realizations of internal variability) to closely follow the time
evolution of SWE, ., in the SnoTel data and REANAL4. The
key point here is that the multi-decadal changes in SWE, .«
are reasonably similar in SnoTel, REANAL4, and the
CanESM2 and CanRCM4 ensembles under ALL forcing.
Under NAT forcing, however, the CanESM2 ensemble mean
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Figure 3 | Climatology of annual maximum snow water equivalent.

(a) Average of four land surface reanalyses. (b) Average of 50 global
climate model simulations from the ALL ensemble. The period considered is
that of maximal overlap between the reanalysis products (1982-2010). The
orange contours are topographic height in kilometers. The outer contour is
1,500 m and the inner contours are in increments of 500 m.

does not replicate the observed decline in SWE,,,, since
the 1980s.

Detection and attribution analysis. We use a standard optimal
fingerprinting method to address the causes of these SWE, .
changes. This involves regressing the observations onto the
simulated ALL and NAT responses. The resulting values of the
scaling factor f provide information on the extent to which
the model SWE,,,, responses must be scaled to best reproduce
the observed SWE,,,, changes. The method also yields the
90% confidence intervals on f§ estimates (see Methods).

Figure 4b shows that with combined anthropogenic and
natural forcings, CanESM2 reproduces the reanalysis and SnoTel
SWE,..x changes, albeit with smaller magnitude—that is, the
scaling factors are significantly larger than 0 and less than
(but still consistent with) 1. With natural forcings alone, however,
the model does not reproduce the reanalysis and SnoTel changes.
A similar result was obtained in ref. 13 using snow course data,
observationally based precipitation, two earlier-generation
climate models, two statistical downscaling approaches, and
a late-twentieth-century analysis period (1950-1999).

Since we do not have a CanESM2 ensemble with anthropo-
genic forcing only, we compute the anthropogenic scaling factor
by linear regression of the reanalyses or observations onto the
difference between the ALL and NAT responses (denoted by
ANT). We assume additivity of the ANT and NAT SWE, .«
responses. Figure 4b shows that the estimated ANT SWE,
changes: (1) are consistent with the reanalyses; (2) are detectable
in the SnoTel observations but with significantly smaller
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Figure 4 | Anomaly of annual maximum snow water equivalent and
scaling factor f. (a) Anomaly in non-overlapping 5-year averages of annual
maximum snow water equivalent (SWE,.,). Solid black is ALL ensemble-
mean and grey is 10-90% range (based on 50 ALL realizations). Solid blue
line is NAT ensemble mean and dashed blue lines indicate the 10 and
90% values. The ALL and NAT curves are from CanESM2. The dashed black
curve is from the 35-member set of CanRCM4 simulations with ALL
forcing. Pink denotes the average of four reanalyses and green is the
SnoTel observations. Anomalies are defined in Methods. (b) Scaling factor
and 5-95% uncertainty range estimated from application of an optimal
fingerprint method to SnoTel observations, reanalyses and CanESM2
simulation output (see Methods). Scaling factors greater than O and
consistent with 1 indicate that a model-predicted SWE, .., signal has been
detected in observations and attributed to the imposed forcing changes in
the ALL or NAT simulations.

magnitude; and (3) yield very similar f# values to the ALL case.
Regarding (2), when average SWE,,,x is computed over the larger
region encompassing elevations greater than 1km (in order to
reduce the noise contribution inherent in point measurements)
anthropogenic forcing more successfully reproduces the
magnitude of the SnoTel changes (Supplementary Fig. 2). While
the results from this analysis provide clear evidence of an
anthropogenic influence on snowpack water storage, it is difficult
to more reliably quantify the magnitude of this influence given
the relatively short observational SWE,,,; record, the effects of
underlying variability and the uncertainties inherent in our
indirect estimate of the ANT SWE,,, response.

Near-term projected snowpack loss. Figure 5a shows 5-year
mean SWE,,., from the ALL ensemble, averaged at elevations
greater than 1,500 m. The first 5-year period is centred on
1988 and the last 5-year period is centred on 2038. The ALL
ensemble uses the RCP8.5 forcing extension after 2005. The
ensemble-mean response (black curve) shows a small increase in
the rate of SWE .« decline from the first half of the analysis
period shown in Fig. 5a to the second half of the analysis period.
More specifically, the externally forced trend in SWE,,, is about
—0.50cm per decade from 1988 to 2013 and about —0.62cm
per decade from 2013 to 2038. This increase in the rate of
SWE, .« decline is significant at P<0.05, where significance
is assessed using a standard difference of means test on the
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Figure 5 | Annual maximum snow water equivalent and per cent change.
(a) The black curve is for the CanESM2 ALL ensemble mean and shading is
the 5-95% range. The ALL ensemble uses RCP8.5 forcing extensions after
2005. The red curve is the simulation with the greatest loss in annual
maximum snow water equivalent (SWE.,) between 2013 and 2038. The
blue curve is the simulation with the largest gain over the same 2013 to
2038 period. All values are 5-year averages plotted on the central year.
(b) Per cent change in SWE,,.x between the periods centred on 2013 and
2038 under different radiative forcing scenarios. Results in orange are from
the CMIP5 multi-model ensemble (Supplementary Table 1). CMIP5 results
are based on the analysis of one ensemble member (r1ilp1) from each
CMIP5 model for which there exists a historical simulation with ALL forcing
and a corresponding RCP2.6, RCP4.5 and/or RCP8.5 extension. The
box-and-whiskers plots show ensemble-mean SWE,,., values, the

95% uncertainty ranges on the ensemble-mean values, and the minimum-
to-maximum ranges. All values in this figure are for area averages of
SWE,..x at elevations greater than 1,500 m and north of 30°N and south of
50°N.

50 simulated trends in the earlier period and the 50 simulated
trends in the later period. As noted in ref. 15, distinguishing
rates of change in externally forced response over small regions
and short timescales, such as these, requires large ensembles of
simulations (as shown here).

Our focus is on quantifying the combined contribution of
internal variability and external forcing to near-term projected
SWE ..x- The largest near-term loss in accumulated snowpack
over the western United States is ~60%; this was calculated as
the per cent change between averages over the 5-year periods
centred on 2013 and 2038. The largest near-term gain is about
3%. The substantial difference between these two percentage
changes—obtained with the same physical climate model, driven
by the same external forcings—underscores the potentially
large contribution of decadal variability to regional-scale changes
in SWE,,.,, particularly on shorter (ca. 30-year) timescales.
The range in projected snowpack reductions reflects the interplay
between temperature and precipitation trends on the end of
season SWE!>?7-28  Averaging over realizations reduces this
variability, and provides a better estimate of the underlying
response to external forcing, yielding about a 30% loss of regional
snowpack in the ALL ensemble mean.

We note that CanESM2 generally reproduces the large-scale
wintertime patterns of decadal variability observed in Pacific
sea surface temperature, precipitation, sea level pressure and
North American surface temperature!!. This enhances our
confidence in the credibility of the simulated decadal variations
in snowpack loss. In comparison with other climate models
participating in phase 5 of the Coupled Model Intercomparison
Project phase 5 (CMIP5; Supplementary Table 1), the magnitude
of unforced decadal variability in SWE,,, in CanESM2 is in the
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Figure 6 | Climate anomaly associated with large projected decease in
regional snowpack. Difference in winter (January, February and March)
mean sea level pressure (contours in hPa) and surface air temperature
anomalies (shading) between the five CanESM2 ensemble members with
the lowest winter SWE,,., averaged over 2030-2040 and the five
ensemble members with the highest winter SWE,,.., averaged over the
same period.

bottom half of the multi-model ensemble (Supplementary Fig. 3).
This suggests that the CanESM2 estimate of the influence of
decadal variability on regional snowpack is conservative.
Alternately, smaller decadal variability also has implications for
the detection results in Fig. 4, and may yield more liberal
estimates of anthropogenic signal detectability.

We also compare the projections of regional SWE,,,,, changes in
CMIP5 models and CanESM2 (Fig. 4b). Results are for changes in
ensemble-mean simulated SWE,,,, between the 5-year periods
centred on 2013 and 2038; the minimum-to-maximum ranges are
also indicated. The CMIP5 set consists of one ensemble member
(rlilpl) from each CMIP5 model with an ALL forcing historical
simulation and corresponding RCP2.6, RCP4.5 and RCP8.5
extension (Supplementary Table 1). The range associated with the
CanESM2 initial condition ensemble (for ALL forcing and the
RCP8.5 extension) solely reflects the influence of decadal variability.
The ranges associated with the CMIP5 multi-model ensemble are
indicative of both decadal variability and model uncertainty.

Although the ‘spread’ in these ensembles arises from different
reasons, the message from this comparison is that the potential
for large snowpack loss in the CanESM2 initial-condition
ensemble is also evident in the CMIP5 multi-model ensemble,
and is manifest across all three emissions scenarios.

Large-scale patterns associated with extreme snowpack loss.
Figure 6 shows the sea level pressure and surface air temperature
patterns associated with a large negative contribution to regional
snowpack from decadal variability in the period from 2030 to
2040 as obtained from the CanESM2 ensemble. These patterns
are indicative of a stronger than normal Aleutian Low. The
Aleutian Low is a semi-permanent low pressure centre located
near the Aleutian Islands during the winter. It is one of the
main centres of action in the atmospheric circulation of the
Northern Hemisphere. The circulation anomalies associated with
the stronger than normal Aleutian Low are responsible for
transporting anomalously warm and moist air over the western
United States. The impact of warm air on regional snowpack is
obvious (especially where temperatures are above or about the
freezing point). The impact of increased precipitation on snow-
pack is generally more complex?’, but our model shows that the
anomalous precipitation falls as rain rather than snow, therefore
yielding a reduction in snowpack.
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Discussion

Our analysis makes innovative use of a large ensemble of
simulations. This ensemble was generated with the same climate
model and external forcings, but with each ensemble member
commencing from slightly different initial conditions. The
ensemble provides estimates of the relative contributions of
internal variability and external forcing to near-term loss of
regional snowpack over the western United States. Over this
region, and over a relatively short (ca. 30-year) time horizon,
decadal variability may offset some of the anthropogenically
forced loss in snowpack. Of greater concern, however, is that
decadal variability has the potential to substantially enhance
the near-term decline in snowpack expected in response to
anthropogenic forcing. These reductions in snowpack water
storage have broad implications for future forest productivity and
carbon storage®®, forest vulnerability to fire’!, as well as
streamflow and water supply®>33. Such sensitivities should be
carefully considered in mitigating climate risks, particularly in
the context of water resource and land management in the
western United States.

Methods

Global climate model simulations. The simulations analysed here were
performed with the CanESM2 (ref. 23), a climate model with interactive
atmosphere, ocean, sea ice, land and carbon cycle components, run at

T63 resolution. Two large initial-condition ensembles, each consisting of

50 simulations, were randomly initiated from the conditions on 1 January 1950.
The random perturbation to the initial atmospheric state is introduced via a
parameterization of one aspect of model cloud properties. This parameterization
employs a random number generator with a pre-set seed; the 50 individual
simulations in each ensemble were based on different seeds. In this way, different
climate change realizations were produced without any change to the model
dynamics, physics or structure. The NAT simulations used observed estimates

of historical changes in solar irradiance and volcanic aerosol loadings. The

ALL simulations incorporate (in addition to solar and volcanic forcing) estimated
historical changes in greenhouse gases, aerosols, ozone and land use. Both

ALL and NAT simulations end in December 2004. The RCP8.5 scenario was used
to extend the ALL simulations from January 2005 onwards.

Regional climate model simulations. These simulations were performed with
the CanRCM4; (this has a nominal resolution of 50 km; ref. 25). An ensemble

of 35 CanRCM4 simulations was driven (at the horizontal and lower boundaries of
the regional model’s domain) by daily output from the large initial-condition
ensemble of global climate model simulations. Observed natural and anthropogenic
forcings are identical to those employed in the global coupled climate model
simulations. Downscaling was performed over the North American domain
defined in the Coordinated Regional Climate Downscaling Experiment®.

Detection and attribution analysis. We use total least-squares linear regression
to conduct a detection and attribution analysis®*. The regression is expressed as
y=y"+&, x=x;+¢& and y*=3 " Bix}, where y is the observed time
series, and each x; represents the model simulated response (or ‘signal’) to one of
the m forcings. The quantity &, represents internal variability in the observations.
The quantity ¢; is noise in the signal x; arising from model internal variability that
is not averaged out with the finite number of model simulations that are available.

The observational data include REANAL4 for 1982-2010 and SnoTel for
1982-2014. The anomalies relative to 1951-1980 climatology are used as y. For
the REANAL4 or SnoTel series, the anomalies are obtained by removing the
1951-1980 climatology of the Global Land Data Assimilation System data set and
the difference between REANAL4 or SnoTel over the common period 1982-2010,
respectively, assuming time-invariant systematic biases among the data sets.

The ensemble averages of the 50 ALL simulations and the 50 NAT simulations
provide estimates of the SWE,,« responses to combined anthropogenic and natural
forcing and natural forcing only (respectively). Ensemble averages are expressed as
anomalies relative to the model climatology for 1951-1980. These anomalies are
our estimates of the signals x; in response to ALL and NAT forcings.

We assume that the model-simulated variability on the space and time scales used
in the detection analysis is representative of the internal variability in the observations,
£o. The validity of this assumption is examined through a residual consistency test>>.
Model internal variability estimates are from multiple sources: (1) the inter-ensemble
variability of CanESM2 simulations under ALL, NAT and AER forcing; and (2) the
pre-industrial control simulations listed in Supplementary Table 1. The AER
ensemble consists of 50 members with anthropogenic aerosol forcing only. The
components considered include sulfate aerosols, organic aerosols and black carbon.
Half of the noise data are used for the estimation of internal variability, while the
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remaining half is used for testing the estimation of the scaling factors. The estimation
of the covariance matrix for & is based on a regularized covariance matrix>.

The analyses are conducted on non-overlapping 5-year average time series of
annual SWE,,,,x anomalies. We use 5-year mean time series to remove the influence
of high-frequency natural variability, particularly variability related to the
El Nino-Southern Oscillation. For REANAL4 and SnoTel, the first average is
computed over the 4-year period 1982-1985.

Data availability. The CanESM2, reanalysis and SnoTel data associated with this
paper are available on request from J.C.F., LM. and N.P.M., respectively. The
CMIP5 data are available at http://cmip-pcmdillnl.gov/cmip5/availability.html.

Code availability. The code associated with this paper is available on request
from J.C.F.
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