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Light and gibberellins (GAs) mediate many essential and partially
overlapping plant developmental processes. DELLA proteins are
GA-signalling repressors that block GA-induced development1.
GA induces degradation of DELLA proteins via the ubiquitin/
proteasome pathway2, but light promotes accumulation of
DELLA proteins by reducing GA levels3. It was proposed that
DELLA proteins restrain plant growth largely through their effect
on gene expression4,5. However, the precise mechanism of their
function in coordinating GA signalling and gene expression
remains unknown. Here we characterize a nuclear protein inter-
action cascade mediating transduction of GA signals to the activity
regulation of a light-responsive transcription factor. In the
absence of GA, nuclear-localized DELLA proteins accumulate to
higher levels, interact with phytochrome-interacting factor 3
(PIF3, a bHLH-type transcription factor) and prevent PIF3 from
binding to its target gene promoters and regulating gene expres-
sion, and therefore abrogate PIF3-mediated light control of
hypocotyl elongation. In the presence of GA, GID1 proteins (GA
receptors) elevate their direct interaction with DELLA proteins
in the nucleus, trigger DELLA protein’s ubiquitination and
proteasome-mediated degradation, and thus release PIF3 from
the negative effect of DELLA proteins.

Light and GA interact during Arabidopsis thaliana seedling
development, regulating hypocotyl elongation, cotyledon opening
and light-responsive gene expression; their pathways seem to con-
verge at regulation of the abundance of DELLA proteins (GA path-
way repressors)3,6. Arabidopsis has five DELLA proteins—RGA, GAI,
RGL1, RGL2 and RGL3—defined by their unique DELLA domain
and a conserved GRAS domain4. To analyse them in vivo, we raised
antibodies against endogenous RGA and generated transgenic
Arabidopsis expressing each of the five DELLA proteins with tandem
affinity purification (TAP) tags (Supplementary Fig. 1). The response
of DELLA protein levels to exogenously applied GA3 (an active form
of GA) or PAC (paclobutrazol, a GA biosynthesis inhibitor) was
examined. We found that one-hour-long GA treatment eliminates
the majority of DELLA proteins, and this GA effect can be largely
prevented by 100 mM MG132 (a 26S proteasome-specific inhibitor).
PAC, on the other hand, promotes over-accumulation of DELLA
proteins (Fig. 1). These results show for the first time in
Arabidopsis that all the DELLA proteins are under negative control
by GA and the proteasome. Next, we generated lines expressing TAP-
tagged RGAD17 and GAID17, which lack a 17 amino acid motif

within the DELLA domain that is required for GA-induced degrada-
tion7,8. As expected, TAP–RGAD17 and TAP–GAID17 are completely
resistant to GA and accumulate at higher levels than wild-type
proteins, which cannot be further increased by PAC (Fig. 1, and
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Figure 1 | Effect of GA3, MG132 and PAC on DELLA protein abundance.
Immunoblot analysis of RGA (by anti-RGA antibody) and TAP-DELLA
proteins (by anti-MYC antibody) in various light-grown Arabidopsis
seedlings (genotypes labelled to the left of each panel) treated with different
combinations of GA3, MG132 and PAC. Panels on the left (four lanes) and
panels on the right (two lanes) are from two independent experiments using
different protein gel systems. RPN6 immunoblotting (by anti-RPN6
antibody) is used as a loading control. WT, wild type.
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Supplementary Fig. 1b). Arabidopsis plants that overexpress these
proteins show a dominant dwarf phenotype, reflecting enhanced
DELLA activity (Supplementary Fig. 2), which also suggests that
TAP–DELLA proteins retain normal DELLA function.

Inhibition of hypocotyl elongation, an important characteristic of
photomorphogenesis, is shown to be repressed by GA in the dark and

promoted by DELLA proteins in the light3,6. We further examined
the possible mechanism of DELLA proteins in regulating photo-
morphogenesis. Arabidopsis seedlings have longer hypocotyls on
GA-containing medium, whereas PAC dramatically inhibits the
elongation of hypocotyls (Fig. 2a, b). Furthermore, the GA effect is
more drastic in red light than in dark (Fig. 2b), consistent with the
notion that the endogenous GA level is higher in dark-grown seed-
lings. In addition, 35S-TAP–RGAD17 and 35S-TAP-GAID17 plants
have much shorter hypocotyls than wild type, which cannot be res-
cued by GA. On the contrary, the hypocotyl of rga-24 gai-t6 double
mutants is longer than that of wild type, and is only partially inhibited
by PAC. In a pentuple mutant (della) of all five DELLA genes, the
hypocotyl length is comparable to that of GA-treated wild type, and
PAC has no significant effect (Fig. 2a, b). Therefore, we reasoned that
GA controls hypocotyl growth and affects photomorphogenesis
status, mainly by regulating DELLA protein abundance.

DELLA proteins are proposed to be transcription factors4, and are
required to localize to the nucleus for their function9,10. Genomic
studies have revealed a number of GA-responsive genes that are
regulated by DELLA genes5. However, using the chromatin immuno-
precipitation (ChIP) technique in 35S-TAP–DELLA lines, we were
unable to observe specific binding of DELLA proteins to any of the
38 GA-responsive gene promoters tested (Supplementary Table 1).
Thus, we hypothesize that DELLA proteins might regulate gene
expression indirectly by controlling transcription factors. Because
light and DELLA proteins both regulate hypocotyl growth, it seems
possible that one, or more, of the well-known photomorphogenesis-
related transcription factors might be a target of DELLA proteins.
Among them, PIF3 is a good candidate, because it promotes hypo-
cotyl elongation in red light11—the opposite of DELLA’s function
(Fig. 2a). Moreover, PIF3 has DNA-binding activity12, interacts with
the active form of phytochrome B (phyB)13,14, and is negatively regu-
lated by phytochrome through the ubiquitin/proteasome path-
way15–17, indicating it mediates signalling between light and gene
expression. We observed that the pif3-1 mutant has a short hypo-
cotyl, and is partially resistant to GA and hypersensitive to PAC,
mimicking 35S-TAP–RGAD17 and 35S-TAP–GAID17 plants,
whereas the PIF3 overexpression line shows a long hypocotyl and is
hyposensitive to PAC, in a similar manner to GA-treated plants and
rga-24 gai-t6 and della mutants (Fig. 2c). These results imply that
DELLA proteins may negatively regulate PIF3 in the control of hypo-
cotyl elongation, representing a convergent point of light and GA
pathways (Fig. 2d).

This regulation is probably mediated through physical interaction
between PIF3 and DELLA proteins, as suggested by yeast two-hybrid
and in vitro pull-down assays (Fig. 3a, d, and Supplementary Fig. 3).
Moreover, bimolecular fluorescence complementation (BiFC)
analysis detects direct RGA–PIF3 interaction in the nuclei of living
plant cells (Fig. 3b). We further investigated this interaction using an
immunoprecipitation approach. As shown in Fig. 3c, interaction
between RGA and PIF3 is observed in dark-grown seedlings, in which
PIF3 protein accumulates to reasonable abundance15–17. The inter-
action is also detectable in red light, when light-induced proteasomal
degradation of PIF3 (refs 15–17) is blocked. The interaction is
dependent on RGA abundance, such that PAC increases RGA–PIF3
interaction, whereas GA abolishes RGA accumulation and thus PIF3
is released. Importantly, under the condition that RGA–PIF3 inter-
action is enhanced, PIF3’s effect on hypocotyl growth is largely
impaired, and vice versa (Figs 2c, 3c), indicating that RGA-bound
PIF3 has reduced activity. We tested whether DELLA proteins influ-
ence the previously reported interaction between phytochrome and
PIF3 (refs 13, 14) by analysing the formation of nuclear speckles
containing both phyB and PIF3 (ref. 15). Evidently, phyB–PIF3 inter-
action is essentially not affected by altering DELLA protein abun-
dance (Supplementary Fig. 4). Therefore, DELLA protein binding
most probably affects PIF3’s transcription-regulation activity
towards its target genes.
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Figure 2 | DELLA proteins and PIF3 have opposite roles in regulating
Arabidopsis hypocotyl elongation. a, Images of red-light-grown seedlings.
b, Hypocotyl length measurement (mean 6 s.d.) of untreated seedlings (red),
or seedlings treated with 10mM GA3 (blue) or 1mM PAC (yellow).
c, Hypocotyl length measurement (mean 6 s.d.) of red-light-grown seedlings
treated with increasing amounts of GA3 or PAC (see Methods). The
concentrations of GA3 used are 0, 0.5mM, 1mM, 2mM and 5mM (from left to
right). The concentrations of PAC were 0, 0.01mM, 0.02mM, 0.05mM, 0.1mM,
0.2mM and 0.5mM (from left to right). In b and c, hypocotyl length of
untreated wild-type seedlings is set to 100%. d, Simplified diagram depicting
the genetic interaction of light and GA in the control of hypocotyl elongation
by PIF3 and DELLA proteins. della, rga-t2 gai-t6 rgl1-1 rgl2-1 rgl3-1.
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This notion is supported by the observation that the RGA–PIF3
interaction in vitro is specifically inhibited by pre-incubating PIF3
with its cognate binding site, a G-box-containing DNA probe12

(LHY; Fig. 3d, and Supplementary Fig. 3), which provides evidence
that RGA–PIF3 and PIF3–DNA bindings are antagonistic. To test
this in vivo, we selected five putative PIF3 target genes by analysing
the published literature as well as taking into account results we
obtained from a ChIP microarray analysis focused on PIF3, using a
recently reported method18. By ChIP–PCR, we confirmed that these
five promoters are bound by PIF3 as expected. In addition, we found
that when DELLA protein level is increased by PAC, PIF3–promoter
binding is severely reduced. On the other hand, removing DELLA
proteins by GA treatment generally leads to enhanced occupancy of
PIF3 on the promoters (Fig. 3e). We also noticed that, whereas GA
and PAC do not significantly affect nuclear PIF3–MYC protein levels,
they have slightly opposite effects on PIF3–MYC immunoprecipita-
tion (Supplementary Fig. 5), which might be due to higher affinity of
MYC antibody towards free PIF3–MYC than RGA-bound PIF3–
MYC. Among the PIF3 target genes, At5g2120, At4g19030,
At2g47890 and At1g34670 show light-responsive expression19.
Interestingly, differential expression of At5g24120, At4g19030 and
At2g47890 have also been reported in genomic studies focused on
gene expression regulation by GA, PIF3 or DELLA genes5,20,21.
Subsequently, we used PCR with reverse transcription (RT–PCR)
to check whether PIF3–promoter binding indeed affects gene
expression. As shown in Fig. 3f, overexpressing PIF3 and reducing
DELLA protein abundance (della mutant or GA treatment) have
similar effect on the expression of two representative PIF3 target
genes, whereas increasing DELLA protein abundance (overexpres-
sing RGAD17 or PAC treatment) has the opposite effect. Overall,
we demonstrate that DELLA proteins antagonize PIF3 function by
protein–protein interaction and sequestration, which at least partly
explains their effect on gene expression and the coordinated control
of hypocotyl growth by light and GA.

We next examined how the GA signal is relayed to affect DELLA
protein abundance and thus DELLA–PIF3 interaction. Recently,
GID1 proteins have been shown to act as nuclear GA receptors22–25.
Through isolating and analysing Arabidopsis gid1 mutants, we
obtained results that are consistent with those reports24,25, suggesting
that GID1s are required for normal GA signalling and participate in
light-induced development, possibly by inducing DELLA protein
degradation (Supplementary Note 1 and Supplementary Fig. 6).
We also confirmed the reported GA-dependent GID1–DELLA inter-
action22–25, which requires the 17 amino acid motif within the DELLA
domain, in yeast two-hybrid assays (Fig. 4a, b, and Supplementary
Fig. 7). In addition, BiFC analysis of GID1c and RGA demonstrates
their direct interaction in the nuclei of living plant cells (Fig. 4c). To
test the effect of GA on GID1–DELLA interaction in planta, we used
transgenic Arabidopsis expressing each of the three GID1 proteins
with YFP or epitope tags for immunoprecipitation analyses. As
shown in Fig. 4d, interaction of GID1a with each of the five
DELLA proteins is detectable, and is greatly enhanced by GA.
Furthermore, with MG132 treatment, immunoprecipitated DELLA
proteins contain high-molecular-weight protein species, which react
specifically with anti-ubiquitin antibody. Increasing amounts of
these DELLA proteins that are predicted to be multi-ubiquitinated
can be detected after GA treatment (Fig. 4d, e). On the other hand,
GAID17 shows no detectable interaction with GID1a and a nearly
complete loss of multi-ubiquitination (Fig. 4d), suggesting that inter-
action with GID1s is essential for the multi-ubiquitination of DELLA
proteins. We extended the interaction study to all three GID1 pro-
teins, and the co-immunoprecipitation of each GID1 with endogen-
ous RGA was detected (Fig. 4f–h). In these experiments, we lowered
MG132 concentration (40 mM) and lengthened GA treatment time
(two hours) to only partially inhibit the proteasome and allow a
significant portion of RGA to be degraded. Nevertheless, GA-treated
seedlings still have more GID1-bound RGA (Fig. 4f–h), implying that
GID1–DELLA may be recognized by the ubiquitin/proteasome sys-
tem as a heteromeric complex, and somehow DELLA proteins are
preferentially ubiquitinated and degraded. This is supported by the
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Figure 3 | DELLA proteins bind PIF3 and inhibit PIF3 activity towards its
target genes. a, b-galactosidase activities from yeast two-hybrid assays
(mean 6 s.d.). b, BiFC analysis of RGA and PIF3. The positions of nuclei are
indicated by arrows. c, Co-immunoprecipitation of RGA with PIF3 in 35S-
PIF3–His–MYC seedlings. ‘RGA’ and ‘Pre’ indicate immunoprecipitation by
anti-RGA antibody and pre-immune sera, respectively. d, Pull-down assays
between His–PIF3 and MBP–RGA. The precipitated His–PIF3 was detected
by anti-His antibody. MBP–RGA and MBP inputs were stained by
Coomassie blue. e, ChIP–PCR analyses in dark-grown seedlings. f, Semi-
quantitative RT–PCR analyses in dark-grown seedlings. Total, total protein
extracts; IP, immunoprecipitation.
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observation that GID1a enhances RGA–SLY1 (E3 ubiquitin ligase
subunit) interaction in the presence of GA24. Consistent with pre-
vious results in yeast22, GID1b binds more RGA in untreated
seedlings, and even with PAC treatment a small amount of GID1b-
bound RGA can be detected (Fig. 4f-h). This implies a possible GA-
independent pathway for GID1b to target DELLA proteins, which
might be critical to keep DELLA proteins in check when the GA level
is low.

The results reported here support a conclusion that GA signalling
is initiated when GA molecules, the biosynthesis of which is induced
by light3, are sensed and bound by nuclear GID1 proteins. Then, GA-
charged GID1s interact with DELLA proteins in the nucleus and
target them for proteasomal degradation. When DELLA protein
abundance is reduced, their interactive partners, for example,

light-responsive and phytochrome-interacting transcription factors
such as PIF3, are released from sequestration, and bind to their target
promoters and regulate gene expression (Fig. 4i). PIF3 belongs to a
transcription factor family defined by a conserved bHLH (basic-
helix–loop–helix) domain, which has implicated function in DNA
binding and dimerization26. In a similar way to PIF3, PIF4 (another
phytochrome-interacting bHLH transcription factor) is also nega-
tively regulated by DELLA proteins27. Moreover, DELLA proteins are
shown to interact with the DNA-binding bHLH domain27, consistent
with our observation that RGA–PIF3 and PIF3–promoter interac-
tions are mutually exclusive (Fig. 3). Two other bHLH proteins, PIL5
and SPT, are also involved in light and GA signalling, and have PIF3-
like roles in hypocotyl growth28,29, making them potential targets of
DELLA proteins as well. Collectively, it is highly plausible that,
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Figure 4 | GA-dependent interaction between GID1s and DELLA proteins.
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through modulating multiple phytochrome-interacting transcrip-
tion factors, DELLA proteins play a key part in integrating the reg-
ulatory effect of light and GA on gene expression and plant
development.

METHODS SUMMARY
The procedures for Arabidopsis plant growth, yeast two-hybrid analyses, protein

and chromatin immunoprecipitations, and subcellular localization studies are

described previously15,18,30. CAND1 is used as a negative control in protein

immunoprecipitation experiments. Histone H1 is used as an internal control

in RT–PCR. Primers used in ChIP–PCR and RT–PCR are listed in Supple-

mentary Tables 1 and 2. MG132 treatment is carried out by vacuum infiltration.

GA and PAC treatments are carried out by either applying GA3 to the seedlings or

supplementing plant growth medium with GA3 or PAC. BiFC experiments are

carried out between transiently expressed Arabidopsis proteins in tobacco leaves.

In vitro pull-down assays are performed using recombinant proteins purified

from bacteria, in the presence of either a canonical G-box containing DNA probe

(LHY) or a mutant G-box-containing DNA probe (G-mut).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Plant materials and growth conditions. The wild-type Arabidopsis ecotypes

used in this study are Landsberg erecta and Columbia-0. The T-DNA insertion

alleles, gid1a-2 and gid1c-1, were verified by PCR-based genotyping. They turn

out to be identical to the alleles published in a recent report24. The point muta-

tion alleles, gid1b-2 and gid1b-3, were isolated from the Arabidopsis TILLING

collection (http://tilling.fhcrc.org/). To grow gid1a-2 gid1b-3 gid1c-1 triple

mutant, embryos are mechanically removed from seed coat and allowed to

germinate on MS medium plates. For hypocotyl elongation, ChIP–PCR, RT–

PCR and subcellular localization experiments, Arabidopsis seeds are sown on

filter papers in MS medium plates and placed under continuous white light.

After 24 h, filter papers with seeds are transferred onto new MS plates, or MS

plates containing various concentrations of GA3 or PAC, and then placed in the

dark or red light for six days.

Generation of transgenic Arabidopsis lines. DNA fragments containing full-

length open reading frames of five DELLA genes (RGA, GAI, RGL1, RGL2 and

RGL3) and two deletion mutants (RGAD17 and GAID17) are cloned via Gateway

reactions into the binary N-terminal TAP-tag vector31. DNA fragments con-

taining full-length open reading frames of GID1 genes (GID1a, GID1b, and

GID1c) are cloned into YFP-, Flag-, MYC- and HA-tag vectors, respectively.

Subsequently, the fragments that contain the gene-coding sequence plus the

tag are subcloned into the binary pJIM19 vector18. The binary constructs are

introduced into Arabidopsis by Agrobacterium-mediated transformation.

GA, MG132 and PAC treatments. For protein immunoprecipitation and immu-

noblotting experiments, 10-day-old seedlings are vacuum-infiltrated with 40 mM

or 100mM MG132 (dissolved in DMSO) or DMSO alone for ten minutes and

kept immersed in the same solution for two hours. Then GA3 is added in the

solution to a final concentration of 100mM, and after one- or two-hour incuba-

tion, plant tissues are harvested. For PAC treatment, Arabidopsis seeds are sown

on MS medium, and after 24 h they are transferred to MS medium containing

1 mM PAC. Ten-day-old seedlings are harvested.

Yeast two-hybrid and immunoprecipitation assays. Yeast two-hybrid analyses

and protein immunoprecipitation using antibody- and IgG-conjugated beads

are performed as described previously30. A complementary DNA fragment cor-

responding to amino acids 1 to 201 of RGA is cloned into Escherichia coli

expression vector pET32a, and purified recombinant protein is used to immu-

nize rabbits for generating polyclonal antibodies. The anti-CAND1 and anti-

CSN5 antibodies are described previously30,32. For immunoprecipitation with

anti-RGA antibodies, 10 ml affinity-purified anti-RGA antibodies are incubated

with protein extracts for four hours. Then, 50 ml protein A agarose beads are used

to precipitate the immune complex. CAND1 is used as a negative control in

protein immunoprecipitation experiments. Chromatin immunoprecipitations

(ChIP) are performed as described previously18. For each ChIP, 40 ml anti-MYC
antibody-conjugated beads are used.

Bimolecular fluorescence complementation analysis. Full-length open reading

frames of RGA, PIF3 and GID1c are cloned via Gateway reactions into the binary

pBiFC vectors containing either amino- or carboxy-terminal yellow fluorescence

protein (YFP) fragments (YFPN and YFPC)27. Each of the three proteins is fused

with both YFP fragment vectors, as either an N-terminal or C-terminal fusion,

thus resulting in four constructs per protein. For example, we have four fusion

configurations for RGA, RGA–YFPC, RGA–YFPN, YFPC–RGA, and YFPN–RGA.

To test the interactions between RGA and PIF3, and between GID1c and RGA,

we examined all eight possible pair-wise combinations via an adapted transient

BiFC assay. Leaves of 2–4-week-old tobacco (Nicotiana benthamiana) plants are

infiltrated with Agrobacterium (GV3101) strains containing individual BiFC

construct pairs, as well as a binary plasmid expressing the p19 protein of tomato

bushy stunt virus to suppress gene silencing27. Epidermal cell layers are examined

under the microscope for fluorescence using the green fluorescent (GFP) filter

3–4 days after infiltration. For RGA and PIF3, we detected positive nuclear BiFC

interaction signals in four combinations (YFPN–RGA with YFPC–PIF3, YFPN–

RGA with PIF3–YFPC, RGA–YFPN with YFPC–PIF3 and RGA–YFPN with PIF3–
YFPC). For GID1c and RGA, we detected positive nuclear BiFC interaction

signals in six of the eight pair-wise combinations, except two (YFPC–GID1c with

YFPN–RGA and YFPC–GID1c with RGA–YFPN).

In vitro pull-down assays. A DNA fragment encoding full-length RGA protein is

cloned into pMal-C2X vector, obtaining a fusion with the maltose-binding

protein (MBP). MBP–RGA and MBP proteins are purified from bacteria by

amylose resin beads. His–PIF3 protein is purified from bacteria containing

pPIF3–RSETb plasmid by Ni-NTA agarose. The canonical G-box containing

LHY probe and G-box mutant (G-mut) probe are described previously12.

Before pull down, His–PIF3 (1mg) is pre-incubated with 10 pM, 20 pM and

40 pM LHY probe or G-mut probe for 20 min. Then, MBP–RGA (1mg) or

MBP (0.3mg) together with amylose resin beads is added and the mixture is

incubated for 30 min. After washing five times with buffer supplemented with

DNA probes (the same concentrations as used in the pre-incubation), the pre-

cipitated PIF3 is analysed by immunoblotting with anti-His antibody.

Subcellular localization study of phyB–YFP and PIF3–CFP(cyan fluorescent
protein) fusion proteins. Hypocotyl cells of dark-grown seedlings and dark-

grown seedlings exposed to 2 min, 1 h or 18 h of red-light irradiation are analysed
under microscope. Epifluorescent, light and confocal laser scanning microscopy

are performed as previously described15.

31. Rubio, V. et al. An alternative tandem affinity purification strategy applied to
Arabidopsis protein complex isolation. Plant J. 41, 767–778 (2005).

32. Feng, S. et al. The COP9 signalosome interacts physically with SCFCOI1 and
modulates jasmonate responses. Plant Cell 15, 1083–1094 (2003).
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