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Tumor-suppressive microRNAs (miR-26a/b,
miR-29a/b/c and miR-218) concertedly suppressed
metastasis-promoting LOXL2 in head and neck
squamous cell carcinoma

Ichiro Fukumoto1,2, Naoko Kikkawa2, Ryosuke Matsushita3, Mayuko Kato1, Akira Kurozumi1,
Rika Nishikawa1, Yusuke Goto1, Keiichi Koshizuka1,2, Toyoyuki Hanazawa2, Hideki Enokida3,
Masayuki Nakagawa3, Yoshitaka Okamoto2 and Naohiko Seki1

In spite of considerable advances in multimodality therapy, including surgery, radiotherapy and chemotherapy, the overall

survival rate for patients with head and neck squamous cell carcinoma (HNSCC) is very poor (only 15–45%). Understanding the

molecular mechanisms of metastatic pathways underlying HNSCC using currently available genomic approaches might improve

therapies for and prevention of the disease. Our previous studies showed that three tumor-suppressive microRNAs (miRNAs),

miR-26a/b, miR-29a/b/c and miR-218, significantly inhibited cancer cell migration and invasion. Therefore, we hypothesized

that these miRNAs-regulated target genes deeply contributed to cancer metastasis. These tumor-suppressive miRNAs directly

regulate LOXL2 expression in HNSCC cells by using in silico analysis and luciferase reporter assays. Overexpressed LOXL2 was

confirmed in HNSCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in HNSCC cell

lines. Our present data showed that tumor-suppressive miRNAs regulation of LOXL2 will provide new insights into the novel

molecular mechanisms of HNSCC metastasis.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most
common cancer in the world, and 650 000 new cases are diagnosed
every year.1 Despite considerable advances in multimodality therapy,
including surgery, radiotherapy and chemotherapy, the overall survival
rate for patients with HNSCC is only 15–45%.2,3 Patients with
HNSCC are usually diagnosed at a late stage, and local tumor
recurrence and distant metastasis often occur after conventional
therapies.2,3 Metastatic disease is responsible for about 90% of deaths
within 12 months of diagnosis in patients with HNSCC.1 Therefore,
understanding the molecular mechanisms of the metastatic pathways
underlying HNSCC using currently available genomic approaches may
improve therapies for and prevention of the disease.
MicroRNAs (miRNAs) are endogenous small noncoding RNA

molecules (19–22 bases in length) that function to regulate protein-
coding gene expression by repressing translation or cleaving RNA
transcripts in a sequence-specific manner.4 To date, a substantial
amount of evidence has suggested that miRNAs are aberrantly
expressed in many human cancers and have significant roles in
human oncogenesis and metastasis.5–7 We sequentially identified

tumor-suppressive miRNAs that contribute to cancer cell migration
and invasion based on the miRNA expression signatures of
HNSCC.8–11 Among these tumor-suppressive miRNAs, microRNA
(miR)-26a/b, miR-29a/b/c and miR-218 significantly inhibit cancer
cell migration and invasion through targeting of genes encoding
extracellular matrix (ECM) components and integrins.11–13

The ECM is composed of secreted molecules that constitute the
cell microenvironment, including a dynamic and complex array of
glycoproteins, collagens, glycosaminoglycans and proteoglycans.14 The
ECM imparts spatial context for signaling events through various cell
surface growth factor receptors and adhesion molecules, such as
integrins.14 Recent studies have shown that ECM components and
ECM-related receptor proteins are aberrantly expressed in cancer
tissues and that such dysregulation of the composition and organiza-
tion of the ECM can induce activation of specific signaling pathways.15

Integrins are a large family of cell surface receptors composed of two
subunits (α and β), which bind to ECM components. Most types of
cells require integrin-mediated signal pathways for proliferation,
migration, invasion and survival.16 Several studies have shown that
overexpression or activation of integrin-mediated cancer signals
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promotes cancer cell progression and metastasis.17–19 For example, the
interaction between laminin-332 and α6β4 integrin triggers a number
of signaling cascades in cancer cells, promoting both cell migration
and cancer cell survival in HNSCC.12,13 We also showed that
tumor-suppressive function of miR-218 and miR-29a/b/c in prostate
cancer and renal cell carcinoma through targeting ECM component
genes.20,21

In cancer cells, aberrant expression of miRNAs disrupts tightly
controlled miRNA/protein-coding RNA networks. Therefore, identi-
fication of tumor-suppressive miRNAs that act together to regulate
oncogenic genes is the first step in elucidating the mechanisms of
human oncogenesis and metastasis. The aim of the current study was
to identify miRNAs (miR-26a/b, miR-29a/b/c and miR-218) that
function in concert to downregulate metastasis-promoting genes in
HNSCC. Genome-wide gene expression data and in silico analysis
revealed that several putative candidate genes were regulated by these
tumor-suppressive miRNAs. Here we focused on the lysyl oxidase-like
2 (LOXL2) gene. Our present data showed that LOXL2 was over-
expressed in HNSCC clinical specimens and that silencing of the
LOXL2 gene significantly inhibited the migration and invasion of
cancer cells. Moreover, LOXL2 was a direct target of miR-26a/b,
miR-29a/b/c and miR-218 regulation, as shown using luciferase
reporter assays. These data suggested that the pathway involving
regulation of LOXL2 by tumor-suppressive miRNAs may be a
potential target in the development of novel therapies to treat HNSCC.

MATERIALS AND METHODS

Clinical HNSCC specimens
A total of 19 pairs of primary HNSCC and corresponding normal epithelial
tissue were obtained from patients with HNSCC at Chiba University Hospital
(Chiba, Japan) from 2008 to 2015. The patients’ backgrounds and clinico-
pathological characteristics are shown in Table 1. The patients were classified
according to the 2002 Union for International Cancer Control Tumor-Node-
Metastasis (TNM) staging criteria before treatment. Written consent for tissue
donation for research purposes was obtained from each patient before tissue
collection. The protocol was approved by the Institutional Review Board of
Chiba University. The specimens were immersed in RNAlater (Qiagen,
Valencia, CA, USA) and stored at − 20 °C until RNA extraction.

Cell lines
The following human HNSCC cell lines were used: FaDu (derived from the
primary tumor in a patient with hypopharyngeal SCC) and SAS (derived from
the primary tumor of a patient with tongue SCC). Both cell lines were grown in
Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum
in a humidified atmosphere containing 5% CO2 at 37 °C.

RNA isolation
Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol. The RNA concentrations were
determined spectrophotometrically, and molecular integrity was checked by
gel electrophoresis. The quality of RNA was confirmed using an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Quantitative real-time reverse transcription polymerase chain
reaction (qRT–PCR)
The expression levels of miR-26a (Assay ID: 000405), miR-26b (Assay ID:
000407), miR-29a (Assay ID: 002112), miR-29b (Assay ID: 000413), miR-29c
(Assay ID: 000413) and miR-218 (Assay ID: 000587) were analyzed by TaqMan
qRT–PCR and normalized to RNU48 (Assay ID: 001006). TaqMan probes and
primers for LOXL2 (P/N: Hs00158757_m1; Applied Biosystems, Foster City,
CA, USA), LOX (P/N: Hs00942480_m1) and GUSB (P/N: Hs99999908_ml)
as an internal control were obtained from Applied Biosystems (Assay-On-
Demand Gene Expression Products).

Immunohistochemistry
Three hypopharyngeal SCC tissue specimens were immunostained following
the manufacture’s protocol with the Ultra-Vision Detection System (Thermo
Scientific, Fremont, CA, USA). Primary rabbit polyclonal antibodies against
LOXL2 were diluted 1:1000. The slides were treated with biotinylated goat
antibodies.

Transfection with mature miRNAs and small-interfering RNA
The following mature miRNAs were used in this study: mirVana miRNA
mimics for hsa-miR-26a-5p (product ID: PM10249), hsa-miR-26b-5p (product
ID: PM12899), hsa-miR-29a-3p (product ID: MC12499), hsa-miR-29b-3p
(product ID: MC10103), hsa-miR-29c-3p (product ID: MC10518) and
hsa-miR-218 (product ID: AM17100; Applied Biosystems). The following
si-RNAs were used in this study: stealth select RNAi si-RNA, si-LOXL2
(P/N: HSS180848; Invitrogen), and negative control miRNA/small-interfering
RNA (P/N: AM17111, Applied Biosystems). Transfection methods were
described previously.8–13,20,21

Cell proliferation, migration and invasion assays
To investigate the functional roles of LOXL2, we performed cell proliferation,
migration and invasion assays using si-LOXL2-transfected FaDu and SAS cells.
The experimental procedures were performed as described in our previous
studies.9–13,20,21

Identification of putative target genes regulated by miR-26a/b,
miR-29a/b/c and miR-218
To investigate putative target genes regulated by these miRNAs, we use in silico
analysis. First, we screened genes using TargetScan Release 6.2 (http://www.
targetscan.org/). To identify upregulated genes in HNSCC, we analyzed a
publicly available gene expression data set in GEO (accession number 9638).

Western blotting
Cells were collected 72 h after transfection and lysates were prepared. Next,
20 μg of protein lysates were separated on Mini-PROTEAN TGX gels (Bio-Rad,
Hercules, CA, USA) and transfered to PVDF membranes. Immunoblotting was
performed with rabbit anti-LOXL2 antibodies (1:1000; ab96233, Abcam,
Cambridge, UK); anti-GAPDH antibodies (1:4000; ab8245, Abcam) were used
to detect GAPDH as an internal loading control. Membranes were washed and
incubated with anti-rabbit IgG horseradish peroxidase-linked antibodies (7074;
Cell Signaling Technology, Danvers, MA, USA). Complexes were visualized

Table 1 Clinical features of 19 patients with HNSCC

No. Age Sex Location T N M Stage Differentiaion

1 68 M Tongue 2 0 0 II Well

2 66 M Tongue 2 0 0 II Moderate

3 76 F Tongue 1 0 0 I Well

4 69 M Tongue 1 0 0 I Well

5 73 F Tongue 1 0 0 I Well

6 67 M Tongue 4a 2c 0 IVA Moderate

7 52 M Oropharynx 3 2a 0 IVA Moderate

8 76 M Oropharynx 2 0 0 II Moderate

9 55 M Oropharynx 4a 2c 0 IVA Moderate

10 74 M Oropharynx 2 0 0 II Well

11 63 M Larynx 3 0 0 III Moderate

12 69 M Larynx 3 0 0 III Well

13 66 M Larynx 4a 0 0 IVA Moderate

14 82 M Larynx 3 0 0 III Poor

15 68 M Hypopharynx 4a 0 0 IVA Moderate

16 73 M Hypopharynx 3 1 0 III Poor

17 66 M Hypopharynx 2 2c 0 IVA Moderate

18 68 M Hypopharynx 2 2b 0 IVA Poor

19 65 M Hypopharynx 1 2b 0 IVA Moderate

Abbreviation: HNSCC, head and neck squamous cell carcinoma.
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with Clarity Western ECL Substrate (Bio-Rad). The experimental procedures
were described previously.8–13,20,21

Plasmid construction and dual-luciferase assays
Partial wild-type sequences of the LOXL2 3′-untranslated region (UTR) or
those with deleted miR-26a/b, miR-29a/b/c and miR-218 binding sites were
inserted between the XhoI-PmeI restriction sites in the 3′-UTR of the hRuc
gene in the psiCHECK-2 vector (C8021; Promega, Madison, WI, USA).
The procedure for the dual-luciferase reporter assay was described
previously.8–13,20,21

Identification of genes regulated by LOXL2 in HNSCC
To identify the genes regulated by LOXL2, we performed gene expression
analysis using si-LOXL2-transfected FaDu cells. An oligo-microarray (human
60k v; Agilent Technologies) was used for gene expression studies.

Statistical analysis
The relationships between two groups and the numerical values obtained by
real-time RT–PCR were analyzed using paired t-tests. Spearman’s rank test
was used to evaluate the correlation between the expression of miR-26/b,
miR-29a/b/c and miR-218 and the expression of LOXL2. The relationships
among more than three variables and numerical values were analyzed using
Bonferroni-adjusted Mann–Whitney U-tests. All analyses were performed using
Expert Stat View (version 4, SAS Institute Inc., Cary, NC, USA).

RESULTS

Selection of candidate genes regulated by tumor-suppressive
miRNAs (miR-26a/b, miR-29a/b/c and miR-218) in HNSCC
To identify putative target genes regulated by tumor-suppressive
miRNAs, particularly those inhibiting cancer cell migration and
invasion in HNSCC cells (that is, miR-26a/b, miR-29a/b/c and
miR-218), as described our previous studies,11–13 we used in silico
analysis and genome-wide gene expression analysis. Our strategy for
selection of target genes is shown in Figure 1. We screened target genes
using the TargetScan database and identified 334 genes. Next, these
genes were then analyzed with a publicly available gene expression data
set in GEO (accession number: GSE9638) and upregulated genes
(log2 ratio 41.5) were chosen. As a result, 26 genes were identified
as putative target genes regulated by miR-26a/b, miR-29a/b/c and
miR-218 (Table 2). To show the effectiveness of Table 2, we checked

the public database. Previous studies showed that HAPLN1 (hyalur-
onan an proteoglycan link protein 1) and POFUT1 (protein O-fuco-
syltransferase 1) were upregulated in cancer tissues and act as
oncogenes in oral squamous cell carcinoma.22,23 The new knowledge
of HNSCC might be offered by analyzing the gene included in this list.
Among these candidate genes, we focused on LOX and LOXL2 because
these genes have been reported to promote metastasis in several types
of cancers. Furthermore, our recent study of renal cell carcinoma
showed that miR-29a/b/c significantly inhibited cancer cell migration
and invasion directly targeting LOXL2.21 These data suggest that
LOXL2 member deeply contribute to cancer cell metastasis.

Expression levels of LOXL2 in HNSCC clinical specimens and cell
lines
Next, we evaluated the expression levels of LOXL2 mRNA in HNSCC
clinical specimens. The expression of LOXL2 was significantly
upregulated in cancer tissues compared with that in normal tissues
(P= 0.0057), as demonstrated by qRT–PCR (Figure 2a). We also
determined the expression levels of LOXL2 protein in hypopharyngeal
SCC specimens by immunohistochemical staining. LOXL2 was
strongly expressed in several cancerous lesions, whereas no or low
expression was observed in normal tissues (Figure 2b–d). The patients’
backgrounds and clinicopathological characteristics are summarized in
Table 1.
Finally, the expression levels of LOX in HNSCC clinical

specimens were evaluated by qRT–PCR (Supplementary Figure 1).
Overexpression of LOX was observed in clinical specimens. The
mRNA expression of LOX was significantly repressed in miR-29a/b/c
or miR-218 transfectant compared with mock- or miR-control-
transfectant cells. However, no suppressive effect was observed in
miR-26a/b transfectant cells (Supplementary Figure 1). In addition,
high expression of LOX was not found in cancer cell lines (FaDu and
SAS). Therefore, we omitted this gene as a target of further analysis in
the study.

Expression levels of tumor-suppressive miRNAs in HNSCC clinical
specimens and cell lines
The expression levels of miR-26a, miR-26b, miR-29a, miR-29c and
miR-218 were significantly lower in tumor tissues and cell lines (FaDu
and SAS) than in corresponding normal epithelial tissues, as shown by
qRT–PCR (Figures 3a, 4a and 5a). On the other hand, miR-29b
expression was not significantly downregulated in clinical cancer
tissues (Figure 4a).
Spearman’s rank test showed negative correlations between the

expression of miR-26a, miR-26b, miR-29a, miR-29c and miR-218 and
the expression of LOXL2 in HNSCC clinical specimens (Figures 3b, 4b
and 5b). However, there was no negative correlation between the
expression levels of miR-29b and LOXL2 (Figure 4b).

LOXL2 was directly regulated by tumor-suppressive miRNAs
(miR-26a/b, miR-29a/b/c and miR-218) in HNSCC cells
Next, we performed qRT–PCR and western blotting in FaDu and SAS
cells to investigate whether LOXL2 expression was downregulated by
restoration of miR-26a/b, miR-29a/b/c or miR-218. The expression
levels of LOXL2 mRNA and protein were significantly repressed in
cells transfected with miR-26a/b, miR-29a/b/c or miR-218 compared
with that in mock- or miR-control-transfected cells (Figures 6a,b, 7a,b
and 8a,b).
Furthermore, we performed luciferase reporter assay in SAS cells

to determine whether LOXL2 mRNA contained target sites for
miR-26a/b, miR-29a/b/c and miR-218. We used vectors encoding

TargetScan database analysis
Predicted miR-26a/b target genes (3419 genes)

334 genes 

Genome-wide gene expression in HNSCC clinical 
specimens (log2 ratio > 1.5) (Accession Number: GSE9638)

26 genes (Table 2)

TargetScan database analysis
Predicted miR-29a/b/c target genes (2627 genes) 

TargetScan database analysis
Predicted miR-218 target genes (2940 genes)

Figure 1 Selection for putative target genes regulated by tumor-suppressive
miRNAs (miR-26a/b, miR-29a/b/c and miR-218) in HNSCC. A total of 334
genes were identified as target genes containing binding sites for miR-26a/b,
miR-29a/b/c and miR-218. Among these, 26 genes were upregulated in
HNSCC clinical specimens (accession number: GSE9638). HNSCC, head
and neck squamous cell carcinoma.
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either a partial wild-type sequence or a sequence in which the miRNA
binding site was deleted from the 3′-UTR of LOXL2 mRNA.
We found that the luminescence intensity was significantly reduced
by co-transfection with miR-26a/b, miR-29a/b/c, miR-218 and the
vector carrying the wild-type 3′-UTR of LOXL2 mRNA (Figures 6c,
7c and 8c).

Effects of silencing LOXL2 on cell proliferation, migration and
invasion in HNSCC cell lines
To investigate the functional role of LOXL2, we performed loss-of-
function studies using si-LOXL2 transfectants. First, we evaluated the
knockdown efficiency of si-LOXL2 transfection in FaDu and SAS cells.
Western blotting and qRT–PCR indicated that the si-RNAs effectively
downregulated LOXL2 expression in FaDu and SAS cells (Figure 9a,b).
XTT assays demonstrated that cell proliferation was significantly

inhibited in si-LOXL2-1 transfectants compared with that in mock- or
si-control-transfected SAS cells. On the other hand, proliferation was
not inhibited in FaDu cells (Figure 9c). Migration and invasion assays
demonstrated that cell migration and invasion activities were sig-
nificantly inhibited in si-LOXL2 transfectants compared with that in
mock or si-control transfectants for both cell lines (Figure 9d,e).

Identification of downstream pathways regulated by LOXL2
Few reports have described the functional significance of LOXL2 in
HNSCC. Therefore, we investigated the molecular pathways regulated
by LOXL2 in FaDu cells using genome-wide gene expression analysis
in si-LOXL2 transfectants. Twenty-five genes were downregulated

(log2 ratio o− 1) in response to si-LOXL2 transfection and
upregulated (log2 ratio 41) in HNSCC clinical specimens (accession
number: GSE9638; Table 3).

DISCUSSION

The highly invasive properties of cancer cells frequently cause
locoregional recurrence and distant metastasis in patients with
HNSCC, leading to an expected 5-year survival rate of ~ 50% for
patients with advanced disease.24,25 Therefore, understanding the
molecular mechanisms of metastatic pathways underlying HNSCC
using current genomic approaches, including noncoding RNA net-
works, would facilitate the development of novel therapies for and
prevention of the disease. For elucidation of novel metastatic RNA
networks in HNSCC, we sequentially identified tumor-suppressive
miRNAs that regulated oncogenic genes and HNSCC-related
pathways.11–13 Our previous studies of the functional significance of
downregulated miRNAs in HNSCC expression signatures showed that
six miRNAs (that is, miR-26a/b, miR-29a/b/c and miR-218) signifi-
cantly inhibit cancer cell migration and invasion,11–13 suggesting that
these miRNAs act to suppress metastasis in human cancers. Therefore,
we hypothesized that these tumor-suppressive miRNAs (that is,
miR-26a/b, miR-29a/b/c and miR-218) would regulate genes with
key functions in HNSCC metastasis.
Previous studies have shown that miR-26a and miR-26b act as

tumor suppressors by targeting oncogenic genes in several types of
cancers, such as breast cancer, nasopharyngeal carcinoma and
hepatocellular carcinoma. More recently, the overexpression of

Table 2 Putative target genes regulated by miR-26a/b, miR-29a/b/c and miR-218

miR-26ab miR-29abc miR-218miR-26a/b, miR-29a/b/c

and miR-218 target genes

Representative

transcript Gene name

HNSCC log2

ratio Conserved Poorly Conserved Poorly Conserved Poorly

C11orf41 NM_012194 Chromosome 11 open reading frame 41 3.36 1 4 1 1 0 1

NTRK2 NM_001018065 Neurotrophic tyrosine kinase, receptor, type 2 3.33 0 1 0 2 0 3

RAB3B NM_002867 RAB3B, member RAS oncogene family 2.80 0 1 0 1 0 4

HAPLN1 NM_001884 Hyaluronan and proteoglycan link protein 1 2.67 1 1 1 0 2 0

ZIC5 NM_033132 Zic family member 5 2.58 1 1 1 0 0 1

ONECUT2 NM_004852 One cut homeobox 2 2.51 1 0 1 0 4 1

COL5A1 NM_000093 Collagen, type V, alpha 1 2.44 1 1 4 0 0 1

PNPLA3 NM_025225 Patatin-like phospholipase domain containing 3 2.40 0 2 0 1 0 1

LOXL2 NM_002318 Lysyl oxidase-like 2 2.39 2 0 1 1 0 1

FREM2 NM_207361 FRAS1 related extracellular matrix protein 2 2.34 0 1 2 1 0 2

FAM167A NM_053279 Family with sequence similarity 167, member A 2.29 0 1 1 1 0 1

ZNF469 NM_001127464 Zinc finger protein 469 2.17 1 0 1 0 0 1

TBC1D24 NM_001199107 TBC1 domain family, member 24 2.05 0 1 0 1 0 2

ENTPD7 NM_020354 Ectonucleoside triphosphate diphosphohydrolase 7 1.94 0 1 1 0 0 1

LOX NM_001178102 Lysyl oxidase 1.81 0 1 3 0 1 1

POFUT1 NM_015352 Protein O-fucosyltransferase 1 1.77 0 1 0 1 0 1

SCAI NM_001144877 Suppressor of cancer cell invasion 1.69 0 1 1 0 3 1

DENND5B NM_144973 DENN/MADD domain containing 5B 1.64 1 1 1 0 0 1

SCAMP5 NM_001178111 Secretory carrier membrane protein 5 1.63 0 1 1 0 1 1

PTPRD NM_001040712 Protein tyrosine phosphatase, receptor type, D 1.62 1 0 1 0 0 1

ZNF697 NM_001080470 Zinc finger protein 697 1.61 1 0 0 1 1 0

NAV1 NM_001167738 Neuron navigator 1 1.60 1 0 4 0 0 2

C11orf87 NM_207645 Chromosome 11 open reading frame 87 1.59 0 1 2 0 1 1

ACPL2 NM_001037172 Acid phosphatase-like 2 1.59 1 0 1 0 0 1

LMLN NM_001136049 Leishmanolysin-like (metallopeptidase M8 family) 1.58 1 0 1 0 1 0

ABL2 NM_001136000 v-abl Abelson murine leukemia viral oncogene

homolog 2

1.57 3 2 0 1 1 1

Abbreviation: HNSCC, head and neck squamous cell carcinoma.
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miR-26a has been shown to inhibit tongue SCC cell proliferation and
promote cell apoptosis.11,26 Decreased expression of miR-29a/b/c has
been observed in cholangiocarcinoma, nasopharyngeal cancer, non-
small cell lung cancer, hepatocellular carcinoma, malignant peripheral

nerve sheath tumors and mantle cell lymphoma.27 Our recent studies of
miRNA expression signatures in urothelial cancers and prostate
cancer showed that miR-218 is frequently downregulated in cancer
tissues and functions as a tumor suppressor.20,28 The tumor-suppressive
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functions of miR-218 in several types of cancers have been described
by other research groups.29

To better understand cancer cell metastasis, we sequentially
identified tumor-suppressive miRNAs mediating novel metastatic
pathways using genome-wide gene expression analysis and in silico
analysis.11–13 Among the putative targets of miR-26a/b, miR-29a/b/c
and miR-218 regulation in HNSCC, we focused on the LOX and
LOXL2 genes as metastatic regulators in HNSCC cells. Importantly,
our previous data in renal cell carcinoma showed that the LOXL2
gene is a direct target of tumor-suppressive miR-29a/b/c regulation.21

Past studies have shown that LOX and LOXL2 are overexpressed in
several types of cancers.30–33 In the present study, we confirmed the
overexpression of LOX and LOXL2 in HNSCC clinical specimens.
LOXL2 was directly regulated by miR-26a/b, miR-29a/b/c and
miR-218. LOXL2 was directly regulated by miR-26a/b, miR-29a/b/c
and miR-218. However, LOX was regulated by miR-29a/b/c and
miR-218, not by miR-26a/b in HNSCC cells (Supplementary
Figure 1). Thus, we focused on LOXL2 and investigated the
functional significance of LOXL2 regulation in HNSCC. Our data
showed that silencing of LOXL2 significantly inhibited cancer cell

migration and invasion, consistent with the function of LOX-family
proteins in covalent crosslinking of collagen and/or elastin in the
ECM.34

Collagens are the most abundant ECM component, and excessive
ECM deposition has been observed in many cancers.35–37 In cancer
cells, collagens regulate the physical and biochemical properties of the
cancer cell microenvironment, which modulates cancer cell polarity,
migration and signaling.38 Collagen crosslinking is extracellularly
initiated by the LOX family of secreted enzymes, which are regulated
by hypoxia-inducible factor and are induced under hypoxic
conditions.39 Hypoxic conditions also induce the expression of
collagen-degrading proteins and matrix metalloproteinases (MMPs),
thereby contributing to ECM remodeling; these mechanisms are
mediated by several families of proteinases that have been suggested
to promote cancer cell invasion.40 In this study, we investigated the
pathways downstream of LOXL2 in HNSCC cells following
knockdown of LOXL2 using si-LOXL2. Among the putative LOXL2
downstream genes, PLOD3 encodes enzymes that mediate collagen
lysine hydroxylation,41 and SERPINH1 encodes a member of the
serpin superfamily of serine proteinase inhibitors, which has a role in
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collagen biosynthesis as a collagen-specific molecular chaperone.42

Moreover, MMP1, which is also downstream of LOXL2, encodes a
secreted enzyme that breaks down the interstitial collagens, that is,
types I, II and III.43 Thus, these proteins increase the crosslinking of
collagens and other ECM components, subsequently promoting
matrix stiffness. Moreover, LOXL2-mediated ECM deposition seems
to function in synergy with MMP activity, which may lead to
remodeling of the ECM in such a way as to increase metastasis.40

The intracellular function of LOXL2 is still not clear. Several
transcription factors are upregulated in metastatic cells that are

undergoing the epithelial-mesenchymal transition, including Snail,
TWIST, ZEB and others.44 Transforming growth factor-β has a critical
role in activating Snail, which in turn downregulates E-cadherin;
this process promotes the epithelial-mesenchymal transition.45

Interestingly, past studies have shown that nuclear LOXL2 interacts
with the transcription factor Snail1, represses E-cadherin and induces
the epithelial-mesenchymal transition.46 These findings indicated that
LOXL2 deeply contribute to activation of metastatic pathways in
HNSCC. Recent study showed that LOXL2 binds NOTCH1 promoter
region and repressed NOTCH1 transcription.47 Several studies
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indicated that NOTCH mutation and NOTCH-mediated signal path-
ways can have either an oncogenic or a tumor-suppressive effects.48

A further study is necessary about LOXL2-NOTCH signaling pathways
and HNSCC oncogenesis.

In conclusion, downregulation of miR-26a/b, miR-29a/b/c and
miR-218 was frequently observed in HNSCC clinical specimens. These
miRNAs functioned as tumor suppressors, inhibiting cancer cell
migration and invasion. Our present study showed that LOXL2 was
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a direct target of all of these tumor-suppressive miRNAs in HNSCC
cells. Moreover, LOXL2 was upregulated in HNSCC clinical specimens
and contributed to cancer cell migration and invasion, indicating that
LOXL2 promoted metastasis. The identification of novel metastatic
pathways and targets regulated by the tumor-suppressive miRNA-
LOXL2 axis may lead to a better understanding of HNSCC and the
development of new therapeutic strategies to treat this disease.
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