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Reactive oxygen species and vascular biology:
implications in human hypertension

Rhian M Touyz and Ana M Briones

Increased vascular production of reactive oxygen species (ROS; termed oxidative stress) has been implicated in various chronic

diseases, including hypertension. Oxidative stress is both a cause and a consequence of hypertension. Although oxidative injury

may not be the sole etiology, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors. Oxidative

stress is a multisystem phenomenon in hypertension and involves the heart, kidneys, nervous system, vessels and possibly

the immune system. Compelling experimental and clinical evidence indicates the importance of the vasculature in the

pathophysiology of hypertension and as such much emphasis has been placed on the (patho)biology of ROS in the vascular

system. A major source for cardiovascular, renal and neural ROS is a family of non-phagocytic nicotinamide adenine

dinucleotide phosphate (NADPH) oxidases (Nox), including the prototypic Nox2 homolog-based NADPH oxidase, as well as other

Noxes, such as Nox1 and Nox4. Nox-derived ROS is important in regulating endothelial function and vascular tone. Oxidative

stress is implicated in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis and

rarefaction, important processes involved in vascular remodeling in hypertension. Despite a plethora of data implicating oxidative

stress as a causative factor in experimental hypertension, findings in human hypertension are less conclusive. This review

highlights the importance of ROS in vascular biology and focuses on the potential role of oxidative stress in human

hypertension.
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INTRODUCTION

Hypertension is a leading cause of morbidity and mortality globally.1

The exact etiology is elusive, with only about 5% of hypertensive
patients having a known cause. However, it is evident that blood
pressure elevation is due to complex interactions involving multiple
organ systems (heart, kidney, brain, vessels), between many genes,
physiological systems (cardiovascular, renal, neural, immune) and
environmental stimuli. At the molecular level, numerous factors
have been implicated in the pathophysiology of hypertension includ-
ing activation of the renin–angiotensin–aldosterone system, inflam-
mation, aberrant G protein-coupled receptor signaling and endothelial
dysfunction.2–4 Common to these is oxidative stress due, in large
part, to excess production of vascular reactive oxygen species (ROS),
to decreased nitric oxide bioavailability and to decreased antioxidant
capacity.5

ROS, originally considered to cause cell damage, are now recognized
to be key signaling molecules that mediate diverse biological responses
such as induction of host defense genes, activation of transcription
factors, phosphorylation of kinases and mobilization of ion transport
systems.6–8 In the vascular system ROS has a physiological role in
controlling endothelial function and vascular tone and a pathophy-
siological role in inflammation, hypertrophy, proliferation, apoptosis,

migration, fibrosis, angiogenesis and rarefaction, important in
vascular remodeling and endothelial dysfunction associated with
hypertension.9–11

The relationship between free radicals and hypertension was sug-
gested in the early 1960s,12 but it was some 40 years later that this
association was investigated in greater detail when it was demonstrated
that angiotensin II (Ang II)-mediated hypertension in rats increases
vascular superoxide production via membrane NAD(P)H oxidase
activation.13 Almost all experimental models of hypertension display
some form of oxidative excess.14–20 As inhibition of ROS-generating
enzymes, anti-oxidants and ROS scavengers reduce blood pressure,
whereas pro-oxidants increase blood pressure, it has been suggested
that ROS are causally associated with hypertension, at least in animal
models.

Despite the plethora of data supporting a role for oxidative stress in
experimental hypertension, the evidence in human hypertension is
weak.21–23 It is still unclear whether oxidative stress causes hyperten-
sion in humans and only a few small clinical studies showed a blood
pressure-lowering effect of anti-oxidants,24–26 with most large anti-
oxidant clinical trials failing to demonstrate any cardiovascular benefit
and blood pressure lowering.27–29 Nevertheless, what is evident is that
oxidative stress has a critical role in the molecular mechanisms
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associated with cardiovascular and renal injury in hypertension and
that hypertension itself can contribute to oxidative stress. A greater
understanding of the (patho)biology of ROS may lead to new
mechanistic insights and novel diagnostics and treatments for hyper-
tension. ROS production in vessels, as well as other organs, including
the heart, kidneys and brain, likely participate in blood pressure
regulation.30–32 This review will focus on ROS, the vascular system
and hypertension, specifically relating to the clinical significance.

VASCULAR GENERATION OF ROS

ROS are produced as intermediates in reduction–oxidation (redox)
reactions leading from O2 to H2O.33,34 The sequential univalent
reduction of O2 is: O2 �!e� : O�

2 �!e� H2O2 �!e� OH� �!e� H2O+O2.
Of the ROS generated in vascular cells, �O2

�, and H2O2 appear to be
particularly important. In biological systems, �O2

� is short-lived
owing to its rapid reduction to H2O2 by superoxide dismutase
(SOD), of which three isoforms have been characterized in mammals:
copper/zinc SOD (SOD1), mitochondrial SOD (SOD2) and extra-
cellular SOD (SOD3).35,36 The major vascular SOD is extracellular
SOD. The charge on the superoxide anion makes it difficult to cross
the cellular membranes, except possibly through ion channels. H2O2

has a longer lifespan than �O2
�, is relatively stable and is easily

diffusible within and between cells. The distinct chemical properties
between �O2

� and H2O2 and their different sites of distribution
suggest that different species of ROS activate diverse signaling path-
ways, which lead to divergent, and potentially opposing, biological
responses.

All vascular cell types produce ROS, including endothelial, smooth
muscle, adventitial fibroblasts and perivascular adipocytes, and can be
formed by many enzymes, including xanthine oxidoreductase,
uncoupled nitric oxide synthase, mitochondrial respiratory enzymes
and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase37–44 (Figure 1). Of these mitochondrial enzymes and
NADPH oxidase seem to be particularly important in hypertension.

Mitochondrial production of ROS
More than 95% of O2 consumed by cells is reduced by four electrons
to yield two molecules of H2O via mitochondrial electron transport
chain complexes (I–IV), with 1–2% of the electron flow leaking to
O2 to form �O2

� under normoxic conditions.45 Normally this �O2
� is

rapidly scavenged by antioxidant enzymes, including mitochondrial
manganese SOD and glutathione peroxidise. Damaged or dysfunc-
tional mitochondria overgenerate �O2

� creating a state of redox
imbalance and consequent oxidative stress. Intramitochondrial �O2

�

production triggers damaging reactions through production of H2O2,
leading to altered adenosine triphosphate synthesis, cellular Ca2+

dysregulation and induction of mitochondrial permeability transition,
all of which predispose to cell death.46 Ang II and endothelin-1
stimulate mitochondrial ROS generation in endothelial and vascular
smooth muscle cells and in rat aorta in vivo.47–51 Mechanisms whereby
these vasoactive agents induce such actions are unclear but could
involve opening of mitochondrial potassium channels (mitoKATP)52

and mitochondrial permeability transition.53 Ang II-induced
Nox activation has also been shown to induce mitochondrial ROS
formation.54

Impaired activity and/or decreased expression of mitochondrial
electron transport chain complexes I, III and IV have been implicated
in vascular aging and cardiovascular disease,55 and an association
between mitochondrial dysfunction and blood pressure has been
reported in human and experimental hypertension.56–58 Ang
II-sensitive hypertension is also linked to mitochondrial-derived

oxidative stress, as AT1 receptor blockade attenuates H2O2 produc-
tion59 and mitochondrial dysfunction in SHR, and in mice, Ang II
infusion is associated with decreased expression of cardiac mitochon-
drial electron transport genes.60 In deoxycorticosterone acetate–salt
hypertension, mitochondrial-derived ROS, via endothelin-1/endo-
thelin A receptors, has an important role in oxidative vascular
damage.61,62 In humans, mitochondrial heritability for systolic blood
pressure is about 5% and mitochondrial effects may account for 35%
of hypertensive pedigrees.63,64 In African Americans with hyperten-
sion-associated end-stage renal disease, mitochondrial–DNA muta-
tions in the kidneys have been identified.65

Nox family NAD(P)H oxidase-derived ROS
NAD(P)H oxidases were originally considered as enzymes expressed
only in phagocytic cells involved in host defense and innate immunity.
Recent evidence indicates that there is a family of NAD(P)H oxidases,
based on the discovery of gp91phox homologs. The new homologs,
along with gp91phox are now designated the Nox family of NAD(P)H
oxidases66–68 and are key sources of ROS in the vasculature. The
prototypical phagocytic NAD(P)H oxidase comprises five subunits:
p47phox (‘phox’ stands for phagocyte oxidase), p67phox, p40phox,
p22phox and the catalytic subunit gp91phox (also termed Nox2).69,70

In unstimulated cells p47phox, p67phox and p40phox, exist in the
cytosol, whereas p22phox and gp91phox are in the membrane, where
they occur as a heterodimeric flavoprotein, (cytochrome b558).
On stimulation p47phox is phosphorylated and the cytosolic subunits
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Figure 1 Regulation of Noxes in vascular cells. Activation of NADPH oxidase
involves multiple subunits and many signaling pathways involving c-Src

p21Ras, protein kinase C (PKC), phospholipase D (PLD), phospholipase

A2 (PLA2) and Rho kinase. All Noxes, except Nox5, appear to have

an obligatory need for p22phox. Nox2 requires p47phox and p67phox for its

activity. Oxidase activation involves Rac translocation, phosphorylation of

p47phox and its translocation, possibly with p67phox, and p47phox

association with cytochrome b558. Induction of Nox mRNA expression is

observed in response to many stimuli including vasoactive agents

(angiotensin II (Ang II), endothelin 1 (ET-1)), growth factors (epidermal

growth factor (EGF), platelet-derived growth factor (PDGF)), amongst others.

Recently identified Nox regulators include ClC-3, Poldip2 and protein

disulfide isomerase (PDI). PDI associates with p22phox to regulate

Nox2. Poldip2 associates with p22phox to activate Nox4, leading to

regulation of focal adhesion turnover and vascular smooth muscle cell

migration. Nox1 is regulated by the chloride/proton exchanger ClC-3. Cyt,

cytochrome; GDP, guanosine diphosphate; GTP, guanosine triphosphate;
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form a complex that translocates to the membrane, where it associates
with cytochrome b558 to assemble the active oxidase, which transfers
electrons from the substrate to O2 forming �O2

�.71,72 Activation also
requires participation of Rac 2 (or Rac 1) and Rap 1A. In vascular
cells, NADPH oxidase is constitutively active.

The mammalian Nox family comprises seven members, character-
ized primarily by the catalytic subunit that they utilize. These include
Nox1, Nox2 (formerly gp91phox), Nox3, Nox4, Nox5, Duox1 and
Duox2.73–75 All Noxes are transmembrane proteins that have con-
served structural properties and that transport electrons across biolo-
gical membranes to reduce O2 to �O2

�. Nox1, Nox2, Nox4 and Nox5
have been identified in vascular tissue. Characterization of Noxes as
they pertain to vascular biology and hypertension has recently been
reviewed.76,77 In vessels, in addition to vascular cells possessing
functional Noxes, resident macrophages, neutrophils and platelets
express NAD(P)H oxidase, particularly in pathological states. Accord-
ingly these cells can also contribute to vascular oxidative stress in
disease.

Nox1, found mainly in colon epithelial cells, is also expressed in
other cell types, including endothelial and vascular smooth muscle
cells.78,79 Nox1 requires p22phox, p47phox and p67phox for its
activity. It is regulated by the redox chaperone protein disulfide
isomerase in vascular smooth muscle cells80 and has been implicated
in vascular smooth muscle cell migration, proliferation and extra-
cellular matrix production, effects mediated by cofilin.81

Nox2 is the catalytic subunit of the respiratory burst oxidase in
phagocytes, but is also expressed in vascular, cardiac, renal and neural
cells.82,83 Human Nox2 is a highly glycosylated protein that runs with
an apparent molecular mass of B70 to 90 kDa on SDS-polyacryl-
amide gel electrophoresis. Nox2 is unstable without p22phox and
requires the cytosolic subunits for its full activation. In neutrophils
Nox2 localizes to intracellular and plasma membranes and in vascular
smooth muscle cells it also localizes with the cytoskeleton. The Nox2
gene, located on the X chromosome, is inducible and is highly
regulated by Ang II and stretch and is upregulated in experimental
hypertension.84–86

Nox4 is found in vascular cells, fibroblasts and osteoclasts and is
abundantly expressed in the kidney.87,88 In vascular smooth muscle
cells, Nox4 and p22phox co-localize with vinculin in focal adhesions
and has been implicated in cell migration, proliferation, tube forma-
tion, angiogenesis and cell differentiation.87,88 Nox4 has also been
found in the endoplasmic reticulum, mitochondria and nucleus
of vascular cells.89,90 Nox4 produces mainly H2O2, whereas Nox1
generates mostly �O2

� that is subsequently converted to H2O2. The
difference in the species generated may contribute to Nox-specific
actions in cell signaling. Nox4 does not seem to require p47phox,
p67phox, p40phox or Rac for its activation, although Nox R1, a Nox4-
binding protein was recently identified, which may be important.91

Nox5 is a Ca2+-dependent homologue, found in testes and lym-
phoid tissue, but also in vascular cells.92,93 Although all Noxes are
present in rodents and man, the mouse and rat genome does not
contain the Nox5 gene.94 Unlike other vascular Noxes, Nox5 possesses
an amino-terminal calmodulin-like domain with four binding sites for
Ca2+ (EF hands) and does not require p22phox or other subunits
for its activation. Nox5 is directly regulated by intracellular Ca2+

((Ca2+)i), the binding of which induces a conformational change
leading to enhanced ROS generation.95 The functional significance of
vascular Nox5 is unknown, although it has been implicated in
endothelial cell proliferation, angiogenesis and migration, in plate-
let-derived growth factor-induced proliferation of vascular smooth
muscle cells and in oxidative damage in atherosclerosis.96,97 Vascular

Nox5 is activated by thrombin, platelet-derived growth factor, Ang II
and endothelin-1.93,98

VASCULAR NOX DISTRIBUTION AND REGULATION

Nox distribution
Endothelial cells, vascular smooth muscle cells and adventitial fibro-
blasts possess multiple Nox isoforms.73,74 In pathological conditions
associated with vascular injury, such as hypertension, macrophages
and leukocytes, themselves rich in NADPH oxidase, invade the vessel
and become resident cells in the vascular media. Endothelial cells
express mRNA and protein for Nox2, Nox4 and associated regulatory
proteins, namely, p22phox, p47phox and p67phox.99 Nox2 is the
major source of ROS in endothelial cells under basal conditions and in
pathological conditions Nox1 and Nox4 may be upregulated.100 Nox2,
Nox4 and Nox5 seem to localize primarily in the perinuclear area
associated with membranes on the endoplasmic reticulum and
nucleus although Nox2 is also found in the plasma membrane within
cholesterol-enriched domains, which may serve as signaling platforms
for ROS generation in vascular disease.101 Vascular smooth muscle
cells possess Nox2 (in human resistance arteries) and Nox4, which
are major sources of ROS. Nox1, present in low concentrations in
basal states, is upregulated in disease. Adventitial fibroblasts possess
Nox2 and Nox4 and perivascular adipose tissue expresses Nox4.102,103

Nox regulation
Regulation of Noxes is complex and involves many NADPH oxidase
subunits and multiple signaling pathways. All Noxes, except Nox5,
seem to have an obligatory need for p22phox.104 Whereas Nox2
requires p47phox and p67phox for its activity, Nox1 may interact
with homologs of p47phox (NAD(P)H oxidase organizer 1) and
p67phox (NAD(P)H oxidase activator 1).105,106 Oxidase activation
involves Rac translocation, phosphorylation of p47phox and its
translocation, possibly with p67phox, and p47phox association with
cytochrome b558. Nox2 and Nox4 are constitutively active. However,
induction of Nox mRNA expression is observed in response to
physical stimuli, (shear stress, pressure), growth factors (platelet-
derived growth factor, epidermal growth factor and transforming
growth factor b), cytokines (tumor necrosis factor-a, interleukin-1
and platelet aggregation factor), mechanical forces (cyclic stretch,
laminar and oscillatory shear stress), metabolic factors (hyperglyce-
mia, hyperinsulinemia, free fatty acids, advanced glycation end
products and G protein-coupled receptor agonists (serotonin, throm-
bin, bradykinin, endothelin and Ang II).107–109 Nox enzymes are also
regulated by ClC-3, Poldip2 and protein disulfide isomerase. Poldip2
associates with p22phox to activate Nox4, leading to regulation of
focal adhesion turnover and vascular smooth muscle cell migration,
thus linking ROS production and cytoskeletal remodeling.110 Ang II
an important and potent regulator of cardiovascular NAD(P)H
oxidase, activates NAD(P)H oxidase via AT1 receptors through
stimulation of signaling pathways involving c-Src p21Ras, protein
kinase C, phospholipase D and phospholipase A2

111–113 (Figure 1).

VASCULAR ANTIOXIDANT SYSTEMS

Enzymatic and non-enzymatic antioxidant systems protect against
injurious oxidative stress. Major enzymatic antioxidants found in
vascular tissue include SOD, catalase, glutathione peroxidases,
thioredoxin and peroxiredoxin.114,115 Non-enzymatic antioxidants
include ascorbate, tocopherols, glutathione, bilirubin and uric acid
and scavenge OH and other free radicals.116 Extracellular SOD,
the major vascular SOD, is produced and secreted by vascular
smooth muscle cells and binds to glycosaminoglycans in the vascular
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extracellular matrix and regulates oxidant status in the vascular
interstitium.114,115

Decreased antioxidant capacity promotes cellular oxidative stress
and has been implicated in cardiovascular and renal oxidative damage
associated with hypertension.114 Activity of SOD, catalase and glu-
tathione (GSH) peroxidase is lower and the glutathione disulfide
(GSSG)/GSH is higher in plasma and circulating cells from hyperten-
sive patients than normotensive subjects.117 In mice deficient in
extracellular SOD and in rats in which GSH synthesis is inhibited,
blood pressure is significantly elevated, demonstrating that reduced
antioxidant capacity is associated with elevated blood pressure.118

Failure to upregulate antioxidant genes and reduced antioxidant
capacity are also associated with age-accelerated atherosclerosis.119

ROS AND VASCULAR BIOLOGY IN HYPERTENSION

Molecular processes underlying ROS-induced vascular injury involve
activation of redox-sensitive signaling pathways. Superoxide anion and
H2O2 stimulate mitogen-activated protein kinases, tyrosine kinases
and transcription factors (nuclear factor-kB, activator protein-1 and
hypoxia-inducible factor-1) and inactivate protein tyrosine phospha-
tases.120,121 ROS also increase (Ca2+)i and upregulate protooncogene
and proinflammatory gene expression and activity122 (Figure 2).
Virtually all processes involved in the inflammatory response involve
ROS. Such phenomena occur through oxidative modification of
proteins by altering key amino acid residues, by inducing protein
dimerization, and by interacting with metal complexes such as Fe–S
moieties.123

ROS have been implicated in the regulation of vascular tone by
modulating vasodilation directly (H2O2 may have vasodilator actions)
or indirectly by decreasing nitric oxide bioavailability through quench-
ing by �O2

� to form ONOO�.124–128 ROS, through the regulation of
hypoxia-inducible factor-1, are also important in O2 sensing,125 which
is essential for maintaining normal O2 homeostasis. In pathological
conditions ROS are involved in inflammation, endothelial dysfunc-

tion, cell proliferation, migration and activation, extracellular matrix
deposition, fibrosis, angiogenesis and vascular remodeling129–131

(Figure 3).
The causal relationship between ROS and hypertension probably

occurs at the vascular level, at least in part, where oxidative stress
promotes endothelial dysfunction, vascular inflammation, increased
reactivity and structural remodeling leading to increased peripheral
resistance and elevated blood pressure.132 ROS formation in organs
other than the vasculature also contribute to hypertension. Redox
signaling in the central nervous system is important in neuronal
control of blood pressure. Centrally produced ROS by NAD(P)H
oxidase in the hypothalamus and brain stem, nucleus tractus solitar-
ius, subfornical organ, rostral ventrolateral medulla and area postrema
are implicated in central control of hypertension, in part through
sympathetic outflow.133 In experimental hypertension, renal Nox
activity and ROS generation are increased and antioxidant enzyme
activity/expression is reduced.134 Renal oxidative stress is associated
with glomerular damage, proteinuria, sodium and volume
retention and nephron loss, all important in the development of
hypertension.134,135

OXIDATIVE STRESS AND HUMAN HYPERTENSION

Almost all experimental models of hypertension show some form of
oxidative excess including genetic forms (spontaneously hypertensive
rats, stroke-prone spontaneously hypertensive rats), surgically induced
(2K1C, aortic banding), endocrine-induced (Ang II, aldosterone,
deoxycorticosterone acetate) and diet-induced hypertension (salt,
fat).21–23,136–138 Sources of ROS in experimental models include
Noxes (Nox1, Nox2 and Nox4), xanthine oxidase, uncoupled nitric
oxide synthase and mitochondrial oxidases. Mice deficient in ROS-
generating enzymes have lower blood pressure compared with
wild-type counterparts, and Ang II infusion fails to induce hyperten-
sion in these mice.139,140

Plasma levels of oxidative markers are increased in patients with
essential hypertension, renovascular hypertension, malignant hyper-
tension, salt-sensitive hypertension, cyclosporine-induced hyperten-
sion and preeclampsia.141–143 These findings are based, in general, on
increased levels of plasma thiobarbituric acid-reactive substances and
8-epi-isoprostanes, biomarkers of lipid peroxidation and oxidative
stress.144–146 Polymorphonuclear leukocyte- and platelet-derived
�O2

�, which also participate in vascular oxidative stress and inflam-
mation, are increased in hypertensive patients.147

Hypertensive patients exhibit a significantly higher production of
plasma H2O2 than normotensive subjects.148 Additionally, normoten-
sive subjects with a family history of hypertension have greater H2O2

production than blood pressure-matched normotensives without a
family history of hypertension, suggesting that there may be a genetic
component that leads to elevated production of H2O2.149,150 Plasma
levels of asymmetric dimethylarginine (endothelial nitric oxide
synthase inhibitor) and the lipid peroxidation product of linoleic
acid, 13-hydroxyoctadecadienoic acid, a marker of ROS production,
were inversely correlated with microvascular endothelial dysfunction
and elevated blood pressure in hypertensive patients. To further
support a relationship between oxidative stress and blood pressure,
Van et al.151 recently showed that myeloperoxidase is positively
and independently associated with blood pressure and that this
association is strongest in subjects with increased levels of oxidative
markers. Phagocytic NADPH oxidase activity is increased in obese
subjects, possibly due to hyperleptinemia, and is related to vascular
remodeling and preclinical atherosclerosis, risk factors associated
with hypertension.152
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We showed that ROS production is increased in vascular smooth
muscle cells from resistance arteries of hypertensive patients and
that this is associated with upregulation of vascular NAD(P)H
oxidase.153,154 The importance of this oxidase in oxidative stress in
human cardiovascular disease is supported by studies showing that
polymorphisms in NAD(P)H oxidase subunits are associated
with increased atherosclerosis and hypertension.155 In particular, the
–930(A/G) polymorphism in the p22(phox) promoter may be a novel
genetic marker associated with hypertension.155,156 p22(phox) �930A/
G, A640G and C242T polymorphisms of NADPH oxidase have are
also associated with peripheral and central pressures in healthy,
normotensive individuals.52 Polymorphisms �337GA and
565+64CT of xanthine oxidase gene are related to blood pressure
and oxidative stress in hypertension, also supporting a role for
xanthine oxidase/ROS in hypertension.

Decreased antioxidant capacity also contributes to oxidative stress
in patients with hypertension. Hypertensive patients have reduced
activity and decreased content of antioxidant enzymes, including
SOD, glutathione peroxidase and catalase.157,158 Decreased levels of
antioxidant vitamins A, C and E have been demonstrated in newly
diagnosed, untreated hypertensive patients compared with normoten-
sive controls.158 Moreover, SOD activity has been demonstrated to
correlate inversely with blood pressure in patients with hyperten-
sion.158 In patients with white coat hypertension serum protein
carbonyl (indicating protein oxidation) was increased and endogenous
antioxidant proteins (protein thiol, SOD, glutathione) were decreased
compared with normotensive individuals, suggesting a relationship
between oxidative stress and hypertension.159 Antioxidant vitamins

reduced blood pressure and arterial stiffness in patients with diabetes
or hypertension in small clinical studies,160 but had no effect
in postmenopausal women, in healthy subjects or in pregnant
women at risk for hypertension/preeclampsia.159–162

THERAPEUTIC POTENTIAL OF ROS MODULATORS

IN HYPERTENSION

The potential of antioxidants in treating conditions associated with
oxidative stress is supported by experimental investigations, observa-
tional findings, small clinical studies and epidemiological data.161,162

However, findings are inconsistent and clinical trial data are incon-
clusive.163–165 In general results of clinical studies investigating cardi-
ovascular effects of antioxidants have been disappointing given the
consistent and promising findings from experimental investigations.
Reasons for this have been extensively reviewed.166–169 Harrison and
colleagues170 proposed a new strategy to increase antioxidant capacity
without the use of exogenous antioxidants. They suggest that drugs
that selectively inhibit multidrug resistant protein 1 would prevent
cellular glutathione loss and thereby protect against oxidative damage,
endothelial dysfunction and hypertension.170 Whether such an
approach is feasible in hypertensive patients remains to be proven.

Theoretically, agents that reduce oxidant formation should be more
efficacious than non-specific, inefficient antioxidant vitamin scaven-
gers. This is based on experimental evidence, in which it has been
demonstrated that inhibition of Nox-mediated �O2

� generation, using
pharmacological and gene-targeted strategies, leads to regression of
vascular remodeling, improved endothelial function, and lowering
of blood pressure.171,172 In fact Nox isoforms may be attractive
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therapeutic targets for vascular disease.171–173 New peptide inhibitors
that have been developed to specifically target NADPH oxidases
include the 18 amino acid peptide gp91ds-tat, which interferes with
Nox and subunit assembly, because nine of the amino acids mimic the
region of p22phox that interacts with p47phox.174 PR39, a naturally
occurring 39 amino acid proline- and arginine-rich peptide that binds
to Src homology domain 3 of p47phox also prevents association
between p47phox and Nox, thereby inhibiting oxidase assembly and
activation.175 Specific Nox inhibitors, including GKT136901, which
induce allosteric changes, may also be promising candidates to reduce
ROS generation.176 However, the safety and effectiveness of all of these
agents require confirmation in humans.

Another interesting approach is targeting glucose-6-phosphate
dehydrogenase, which is a source of NADPH, the substrate for
NAD(P)H oxidase.177 Inhibition of glucose-6-phosphate dehydrogen-
ase has been shown to ameliorate development of pulmonary hyper-
tension, possibly through decreased oxidative stress. To date only
investigational glucose-6-phosphate dehydrogenase inhibitors are
available.

Other pharmacological interventions that reduce oxidative stress
include: apocynin, a methoxy catechol that is activated by intracellular
peroxidases into active metabolites, which inhibit NADPH oxidase,
tetrahydrobiopterin (BH4), polyphenols and flavonoids.175 Recent
studies demonstrated that pycnogenol, a polyphenol and melatonin,
protect the vasculature against oxidative damage, independently
of blood pressure changes.178,179

Some of the beneficial effects of classical antihypertensive agents
such as �-adrenergic blockers, angiotensin-converting enzyme inhibi-
tors, AT1 receptor antagonists and Ca2+ channel blockers may be
mediated, in part, by decreasing vascular oxidative stress.180–184 These
effects have been attributed to direct inhibition of NADPH oxidase
activity and to intrinsic antioxidant properties of the drugs.

In view of current data and the lack of evidence to prove the
benefits from use of antioxidants to prevent cardiovascular disease,
antioxidant supplementation is not recommended for the prevention
or treatment of hypertension.185 However, most therapeutic guidelines
suggest that the general population consumes a diet emphasizing
antioxidant-rich fruits and vegetables and whole grains.186,187 Another
important lifestyle modification that may have cardiovascular protec-
tive and blood pressure lowering effects by reducing oxidative stress is
exercise. In experimental models of hypertension and in patients with
coronary artery disease, exercise reduced vascular NAD(P)H oxidase
activity and ROS production, ameliorated vascular injury and reduced
blood pressure.188,189

CONCLUSIONS

Extensive data confirm the importance of ROS in the physiological
control of vascular function, through regulation of endothelial func-
tion and vascular tone via tightly controlled redox-sensitive signaling
pathways. Uncontrolled production/degradation of ROS results in
oxidative stress, which induces cardiovascular, renal and neural
damage with associated increase in blood pressure. Although oxidative
damage may not be the sole cause of hypertension, it facilitates
and augments blood pressure elevation in the presence of other
pro-hypertensive factors, such as salt-loading, activation of the
renin–angiotensin system and sympathetic hyperactivity. Compelling
findings from experimental and animal studies suggest a role for
oxidative stress in the pathogenesis of hypertension, possibly through
increased activation of Noxes. The exact role of specific Nox isoforms
however remains unclear. From a clinical viewpoint current data on
the causative role of ROS in hypertension are less conclusive. This may

relate to heterogeneity of populations studied, inappropriate or
insensitive methodologies to evaluate oxidative state clinically and
sub-optimal antioxidant therapies used. Further research in the field
of oxidative stress and human hypertension is warranted. In particular,
there is an urgent need for the development of sensitive and specific
biomarkers to assess the oxidant status of patients. Also needed are
clinical trials designed to specifically address the role of oxidative stress
in the development of hypertension. With a better understanding
of mechanisms regulating ROS metabolism and identification of
processes that promote oxidative excess, it should be possible to target
therapies more effectively so that detrimental vascular actions of
oxygen free radicals can be reduced and beneficial effects of nitric
oxide can be enhanced.
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