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Background: Tyrosine kinase inhibitors (TKIs) have demonstrated clinical benefits in the treatment of several tumour types.
However, the emergence of TKI resistance restricts the therapeutic effect. This study uses non-small cell lung cancer (NSCLC) to
explore the mechanisms contributing to TKI resistance in tumours.

Methods: Biological phenotypes and RNA microarray expression data were analysed in NSCLC cells with and without TKI
pretreatment. Specific inhibitors and siRNAs were used to validate the direct involvement of an AKT/FOXM1/STMN1 pathway in
TKI resistance. Patients’ tissues were analysed to explore the clinical importance of FOXM1 and STMN1.

Results: In vitro and in vivo studies showed that TKIs induced the enrichment of cancer stem cells (CSC), promoted epithelial to
mesenchymal transition (EMT), and conferred multidrug resistance on NSCLC cells in a cell type- and TKI class-dependent
manner. Mechanistically, TKIs activated an AKT/FOXM1/STMN1 pathway. The crucial role of this pathway in TKI-induced
enrichment of CSC and drug resistance was verified by silencing FOXM1 and STMN1 or blocking the AKT pathway. Additionally,
overexpression of STMN1 was associated with upregulation of FOXM1 in advanced NSCLC patients, and STMN1/FOXM1
upregulation predicted a poor outcome.

Conclusions: Our findings elucidate an additional common mechanism for TKI resistance and provide a promising therapeutic
target for reversing TKI resistance in NSCLC.

Tyrosine kinase inhibitors (TKIs) are the first group of compounds
to be used successfully for target-based cancer therapy (Ma and
Adjei, 2009). A series of TKIs, including imatinib, gefitinib,
erlotinib, sorafenib, regorafenib, and so on, has been used in the
clinic to treat various kinds of tumour (Sivendran et al, 2012;
Jackson and Chester, 2015; Kircher et al, 2016). However,
resistance to TKI therapy, either intrinsic or acquired, is a major
clinical problem (Kuwano et al, 2016).

Several molecular mechanisms have been demonstrated to
contribute to TKI resistance: (1) secondary mutations in tyrosine

kinase receptors, such as EGFR T790M, which confers resistance to
gefitinib and erlotinib in lung cancer (Morgillo et al, 2016;
Piotrowska and Sequist, 2016); (2) oncogene amplification, such as
MET gene amplification in gefitinib-resistant lung cancer (Tan
et al, 2015); (3) activation of alternative pathways and signalling
molecules, such as the PI3K pathway, which confers resistance to
sorafenib in hepatic cancer (Chen et al, 2011), and IGF1R, which
confers gefitinib resistance in head and neck squamous carcinoma
(Jameson et al, 2011); and (4) aberrant or impaired downstream
pathways, for example, loss of PTEN, which confers resistance to
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erlotinib in lung cancer (Bidkhori et al, 2012). However, there is
still a need for an improved understanding of the complex
mechanisms that are involved in TKI resistance, especially the
mechanisms that may be shared by different TKIs. There is also a
requirement for the development of validated predictive markers to
allow better treatment decisions based on the probability of a
positive response.

In this study, we used non-small cell lung cancer (NSCLC) as a
model to explore common mechanisms that contribute to TKI
resistance in tumours. We investigated gefitinib, which specifically
inhibits EGFR (epidermal growth factor receptor), and sorafenib
and regorafenib, which are multikinase inhibitors. All three TKIs
are approved or under investigation for the treatment of NSCLC
(Hellmann et al, 2015; Paz-Ares et al, 2015; Piotrowska and
Sequist, 2016). Our results show that TKI pretreatment signifi-
cantly enriched cancer stem cells (CSC), promoted epithelial to
mesenchymal transitions (EMT), and induced multidrug resistance
in NSCLC cells. Importantly, a novel AKT/FOXM1/STMN1
biological axis was identified to mediate this phenotypic transfor-
mation. Moreover, the present data suggest that high expression of
both STMN1 and FOXM1 may be a valuable predictive biomarker
for determining the prognosis of NSCLC patients.

MATERIALS AND METHODS

Cell lines, cell culture, and treatment. Human lung cancer cell
lines NCI-H460, A549, and NCI-H1299 were obtained from the
American Type Culture Collection (Manassas, VA, USA). These
cancer cells were routinely cultured in RPMI-1640 or DMEM
medium supplemented with 10% foetal bovine serum and
maintained at 37 1C in a humidified incubator with 5% CO2.
The cells were treated with TKIs at pharmacological concentrations
(5 mM sorafenib, 5mM regorafenib, and 4mM gefitinib) for 48 h, and
then allowed to recover for 48 h. After two–four of these treatment
cycles, the cells were prepared for biological studies.

Patients and therapy. A total of 72 patients with advanced
NSCLC (stage IIIB and stage IV) were enroled between January
2004 and June 2012 from Wuhan General Hospital (Wuhan,
China). Detailed information is shown in Supplementary Table 1.
Ethical oversight and approval was obtained from the Institutional
Review Board of Wuhan General Hospital.

Immunohistochemistry. A tissue microarray was constructed
(in collaboration with the Shanghai Biochip Company Ltd.) as
described previously (Wang et al, 2016). Paraffin sections were
dewaxed with xylene and rehydrated in descending concentrations
of ethanol. The endogenous peroxidase was inhibited, and the slides
were incubated with antibody against FOXM1 (1 : 100; Abcam, Inc.
Cambridge, MA, USA) and STMN1 (1 : 100; Cell Signaling
Technology, Beverly, MA, USA). The expression level of FOXM1
and STMN1 was graded as described previously (Wang et al, 2007).

Compounds and reagents. Gefitinib was purchased from J&K
Chemical (Beijing, China). Sorafenib, regorafenib, MK2206 (AKT
inhibitor), and PD98059 (ERK inhibitor) were obtained from
MedChem Express (Princeton, NJ, USA). The primary antibodies
against Sox2, Oct4, Nanog, STMN1, E-cadherin, N-cadherin,
vimentin, ERK, phosphor–ERK, Akt, phosphor–Akt, JNK,
phosphor–JNK, MMP-9, Histone3, and b-actin were obtained
from Cell Signaling Technology. The primary antibodies against
FOXM1, E2F1, and MMP2 were purchased from Abcam. Silencer
Select Validated siRNAs against STMN1 and FOXM1 were
obtained from Life Technologies, Carlsbad, CA, USA.

Clonogenicity assay. The cells were treated with TKIs (5 mM

sorafenib, 5 mM regorafenib, and 4 mM gefitinib) for 48 h, and then
recovered for 48 h. After two–four treatment cycles (two cycles for

sorafenib, four cycles for regorafenib and gefitinib), the cells were
resuspended and reseeded in 30 mm dishes (500 cells per dish).
Next, the cells were incubated for an additional 7 days. The
colonies obtained were fixed in paraformaldehyde, stained with
crystal violet, and counted. The number of colonies was compared
with the number obtained from untreated cells.

Tumoursphere formation assay. Single cells prepared from
mechanical and enzymatic dissociation were seeded in six-well
ultra-low attachment plates (Corning, NY) at 3000 cells per well
for about 2 weeks. The cells were cultured in serum-free DMEM/F-
12 medium containing B27 supplement (1� Invitrogen, Carlsbad,
CA, USA), 20 ng ml� 1 human recombinant bFGF (PeproTech,
Rocky Hill, NJ, USA), and 20 ng ml� 1 EGF (PeproTech).

Western blot analysis. About 1–5� 106 cells were gathered after
pretreatment for the indicated time periods as described above.
Western blotting was performed as previously described (Wang
et al, 2015). In brief, equal amounts of total protein extracts from
cultured cells or tissues were fractionated by 10–15% SDS–PAGE
and electrically transferred onto polyvinylidene difluoride (PVDF)
membranes. Mouse or rabbit primary antibodies and horseradish
peroxidase-conjugated appropriate secondary antibodies were used
to detect the designated proteins. The antibody concentrations are
listed in Supplementary Table 2. The bound secondary antibodies
on the PVDF membrane were reacted with ECL detection reagents
(Pierce, Rockford, IL, USA) and exposed in a dark room. Results
were normalised to the internal control (b-actin or Histone3).

Flow cytometry analysis. Aldefluor assays were done according to
the manufacturer’s guidelines (Stem Cell Technologies, Cambridge,
MA, USA). Single cells obtained from cell cultures were incubated
in an Aldefluor assay buffer containing an ALDH substrate,
bodipy-aminoacetaldehyde (1 mmol l� 1 per 1 000 000 cells), for
30–60 min at 37 1C. As a negative control, a fraction of the cells
from each sample was incubated under identical conditions in the
presence of the ALDH inhibitor diethylaminobenzaldehyde. Flow
cytometry was used to measure the ALDH-positive cell population.
Desired cell populations were isolated using a FACSAria III flow
cytometer (BD Biosciences, San Jose, CA, USA).

Real-time cell analysis (RTCA). RTCA assays were used to detect
cell proliferation or cell migration. The xCELLigence system (Real
Time Cell Analyzer Single Plate, RTCA SP) allows real-time
monitoring of cell proliferation or migration based on impedance
measurement. The technology uses specific cell culture E-Plates
with the bottoms covered with microelectrodes that act as an
electrical impedance-based cell sensor. The analysis is based on the
measurement of electrical impedance created by attached cells
across the high-density electrode array coating the bottom of the
wells. The impedance value is automatically converted to a
dimensionless parameter, cell index (CI), which is defined as the
relative change in electrical impedance created by the attached
cells. As a quantitative measure of cellular status, CI value
represents the extent of the cell-covered area and is directly related
to the number of the proliferative or migratory cells.

Cell viability assay. The in vitro cell viability was determined by
MTT assay. Cells (8� 104 cells ml� 1) were seeded into 96-well
culture plates. After overnight incubation, the cells were treated
with various concentrations of agents for 48 h. Then 10 ml MTT
solution (2.5 mg ml� 1 in PBS) was added to each well, and the
plates were incubated for an additional 4 h at 37 1C. After
centrifugation (2500 rpm, 10 min), the medium containing MTT
was aspirated, and 100 ml DMSO was added. The optical density of
each well was measured at 570 nm with a Biotek SynergyTM
HT Reader.

Microarray gene expression analysis. Total RNA was isolated
from TKI-pretreated cells using an RNeasy Mini Kit
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(Qiagen, Düsseldorf, Germany) as described in the product insert.
Array hybridisation was performed according to the Affymetrix
FS450_0002 Hybridisation Protocol for gene expression. The
Affymetrix GeneChip PrimeView Human Gene Expression Arrays
were scanned with an Affymetrix Genechip Scanner 7G.

Chromatin immunoprecipitation assay (ChIP). NCI-H460 cells
were prepared for the ChIP assay according to the manufacturer’s
instructions (ChIP Assay Kit, Beyontime, China). A FOXM1
antibody was used for immunoprecipitation. STMN1 promoter
primers were used to carry out PCR analysis of DNA isolated from
the ChIP experiment. The sequences of PCR primers are as follows:
Forward: 50-ATACGTGGATTGAGGACCACT-30, Reverse: 50-T
CCAATGTCAAGTAGCGGTTG-30. PCR products were analysed
by 1.5% agarose/ethidium bromide gel electrophoresis. Data are
presented as %input, which was calculated from the integral optical
density value of the PCR bands as: IP/input� 100.

Mouse xenograft tumour model. To assess the characteristics of
chemotherapy-resistant tumours, viable NCI-H460 cells (5� 106

per 100 ml PBS per mouse), as confirmed by trypan blue staining,
were subcutaneously injected into the right flank of 7- to 8-week-
old male BALB/c nude mice. When the average tumour volume
reached 50 mm3, the mice were randomly divided into three
treatment groups: control (saline only, n¼ 6); sorafenib
(100 mg kg� 1 per day, i.g.; n¼ 6); and gefitinib (32 mg kg� 1 per
days, i.g.; n¼ 6). The dose of sorafenib and gefitinib was calculated
according to the clinically equivalent amount. After 3 weeks, the
mice were killed and the tumours were excised and stored at
� 80 1C until used for western blotting. These studies were
performed in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health. The protocol was approved by the Committee
on the Ethics of Animal Experiments of Shenyang Pharmaceutical
University.

Statistical analysis. Differences between experimental groups
were evaluated by one-way ANOVA or Turkey’s post hoc test
using the SPSS11.5 software package for Windows (SPSS, Chicago,
IL, USA). Survival curves were constructed using the Kaplan–
Meier method. Statistical significance was based on a P-value of
0.05 (Po0.05, two-tailed test).

RESULTS

Pretreatment with TKIs induces a CSC phenotype in NSCLC
cells. Enrichment of CSC is considered to be a characteristic of
chemotherapy-resistant cells (Zhao, 2016), so we first measured
whether three TKIs, sorafenib, regorafenib, and gefitinib, affected
the CSC phenotypes of NSCLC cells. Our results showed that, at
pharmacological concentrations, pretreatment with TKIs signifi-
cantly increased the number of colonies formed by A549 cells (p53
wild type) as compared to control cells treated with DMSO
(Figure 1A). A similar pattern was also observed in NCI-H460 (p53
wild type) and NCI-H1299 (p53 deletion) cells. Next, we examined
the effects of TKIs on tumoursphere formation, which mimics the
self-renewal capability of CSC. As shown in Figure 1B, pretreat-
ment with all three TKIs promoted the formation of tumour-
spheres in the three NSCLC cell lines (Figure 1B).

To further confirm the phenotypic change in TKI-pretreated
cells, the levels of the pluripotency transcription factors, Oct4 and
Sox2, were also assessed. As shown in Figure 1C, the expression
levels of Sox2 and Oct4 in NSCLC cells were upregulated by the
three TKI agents, which is consistent with our phenotypic data.
The CSC traits were also confirmed by ALDH assessment. Flow
cytometry data indicated that pretreatment with sorafenib and
gefitinib, but not regorafenib, enhanced the activity of ALDH in

A549 cells (Supplementary Figure S1A). Further, our results
revealed that sorafenib and gefitinib pretreatment led to the
upregulation of certain ALDH subtypes in a cell type-dependent
manner (Supplementary Figure S1B). Next, we further verified the
above data using an in vivo model. NCI-H460 xenograft mice were
administered with sorafenib and gefitinib for 3 weeks, and the
levels of Sox2 and Oct4 in tumours were assessed by western blot.
Both proteins were upregulated in the NCI-H460 xenograft
tumour tissues (Supplementary Figure S2). Taken together, these
results illustrate that continuous treatment with TKIs can induce
the enrichment of CSC in NSCLC cell lines, which might be
associated with TKI resistance.

TKI pretreatment triggers EMT and confers multidrug resis-
tance in NSCLC. Epithelial to mesenchymal transition (EMT) is
considered to be an important characteristic of TKI resistance
(Morgillo et al, 2011a; Jakobsen et al, 2016). We therefore detected
the migration status of cells after treatment with TKIs. RTCA data
revealed that TKI pretreatment of NCI-H460 cells resulted in an
enhancement of cell migration as compared with DMSO-treated
controls (Figure 2A). The effect was strongest for sorafenib
treatment. Consistent with the cell migration data, sorafenib
pretreatment of NCI-H460 cells also led to a marked decrease of
E-cadherin and an increase of N-cadherin, vimentin and MMP2
(Figure 2B), which are recognised as EMT-related proteins (Tania
et al, 2014). A similar pattern was also found in NSCLC cells
pretreated with regorafenib and gefitinib (Figure 2B). Moreover, an
in vivo study in NCI-H460 xenograft mice indicated that the
sorafenib administration decreased the level of E-cadherin and
increased the level of vimentin in the xenograft tumour tissue,
while gefitinib decreased the level of E-cadherin and increased the
level of both vimentin and MMP-9 (Supplementary Figure S2). The
above analyses of phenotypes and biomarkers demonstrate that
TKIs trigger EMT in NSCLC cells.

The EMT phenotypic transformation might affect the drug
sensitivity of the cells. Therefore, we next measured whether TKI-
treated and untreated NSCLC cells differ in drug sensitivity. NCI-
H460 cells were pretreated with TKIs, then exposed to TKIs or
cisplatin (CDDP), a first-line chemotherapeutic drug for NSCLC
(Fennell et al, 2016). Cell viability assays showed that TKI
pretreatment of NCI-H460 cells resulted in resistance to TKIs and
CDDP (Figure 2C). Similarly, TKI pretreatment partially reduced
the sensitivity of A549 and NCI-H1299 cells to TKIs
(Supplementary Figure S3). These results indicate that TKI
pretreatment of NSCLC cells can promote resistance to multiple
drugs.

TKI pretreatment of NSCLC cells promotes the upregulation of
STMN1 mediated by FOXM1. To explore the mechanisms
underlying the TKI-induced phenotypic changes in NSCLC cells,
we performed microarray gene expression analysis using Affyme-
trix PrimeView chips. As shown in the heat plots in Figure 3A,
some oncogenesis-related genes (red colour) were upregulated in
TKI-pretreated NCI-H460 and NCI-H1299 cells. The drug efflux
genes ABCG2 and ABCB1 were upregulated in sorafenib- and
gefitinib-treated cells; the CSC biomarker ALDH1A3 was upregu-
lated in cells treated with all three TKIs; and the EMT-related gene
MMP-9 and the cell proliferation-related gene EGFR were
upregulated in sorafenib- and regorafenib-treated cells. STMN1, a
phosphoprotein associated with cancer metastasis (Kuang et al,
2016), was upregulated in cells treated with all three TKIs
(Figure 3A). For validation, we analysed the expression level of
STMN1 in TKI-treated and untreated NCI-H460, NCI-H1299, and
A549 cell lines, and found that the STMN1 protein was
upregulated in all three NSCLC cell lines following pretreatment
with TKIs (Figure 3B and Supplementary Figure S4). This suggests
that STMN1 may play a crucial role in TKI-induced phenotypic
change.
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The transcription factors, FOXM1 and E2F1, were reported to
positively regulate the expression level of STMN1 (Petrovic et al,
2008; Chen et al, 2013). To address whether the overexpression of
STMN1 is related to FOXM1 and E2F1, we measured their
expression levels in TKI-treated and -untreated NSCLC cell lines.
Our results revealed that pretreatment with TKIs also induced, to
different extents, the expression of FOXM1 and E2F1 in the three
NSCLC cell lines (Figure 3B and Supplementary Figure S2).
Additionally, subcellular distribution results indicated that pre-
treatment with the three TKIs led to the accumulation of FOXM1
and E2F1 in the nucleus as well as the cytoplasm in NCI-H460 cells
(Figure 3C). To further confirm the role of the transcription factors
in STMN1 regulation, the expression of STMN1 was evaluated in
sorafenib-pretreated NCI-H460 and A549 cells after siRNA
knockdown of FOXM1 or E2F1. As shown in Figure 3D and
Supplementary Figure S4B, knockdown of FOXM1 by siRNA
reduced the expression of STMN1 compared with the scramble
control. In contrast, knockdown of E2F1 did not result in the
downregulation of STMN1. The above data indicate that FOXM1,
but not E2F1, plays an important role in the sorafenib-induced
upregulation of STMN1. The direct regulatory relationship
between FOXM1 and STMN1 was further verified by ChIP assay.
Our data demonstrated that pretreatment with the three TKIs
contributed to a substantial enrichment of FOXM1 on the STMN1
promoter in NCI-H460 cells (Figure 3E). This suggests a potential
role for FOXM1 in transcriptional regulation of STMN1. Taken

together, the results demonstrate that overexpression of STMN1 in
TKI-pretreated NSCLC cells is dependent on FOXM1 regulation.

STMN1 and FOXM1 are involved in TKI-induced CSC
enrichment and drug resistance in NSCLC cells. To understand
the role of STMN1 and FOXM1 in TKI-induced enrichment of
CSCs and drug resistance, we next knocked down STMN1 and
FOXM1 by siRNA. Colony formation assay data showed that
knockdown of FOXM1 contributed to a marked reduction in the
number of colonies, compared to the scramble control, in NCI-
H460 cells pretreated with the three TKIs (Figure 4A). Knockdown
of STMN1 also resulted in a decrease in the colony number in
sorafenib- and gefitinib-pretreated NCI-H460 cells (Figure 4A),
and the efficacy of STMN1 knockdown was similar to that of
FOXM1 knockdown, suggesting the possibility of a dependent
relationship between FOXM1 and STMN1. In contrast to FOXM1
knockdown, STMN1 knockdown had no significant effect on
colony formation in regorafenib-pretreated NCI-H460 cells.
Knockdown of FOXM1 also led to an obvious reduction in TKI-
induced sphere formation in NCI-H460 cells (Figure 4B). Con-
sistent with the colony formation data, knockdown of STMN1
resulted in a decrease in the number of tumourspheres in
sorafenib- and gefitinib-pretreated NCI-H460 cells, but had no
significant effect on regorafenib-pretreated cells. We also investi-
gated the effect of STMN1 and FOXM1 knockdown on the
sensitivity of TKI-pretreated cells to TKIs. The results revealed that
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Figure 1. The effects of TKI agents on CSCs’ characteristics in NSCLC cells. (A) The formation of colonies by A549, NCI-H460, and NCI-H1299
cells after pretreatment with sorafenib (5 mM), regorafenib (5 mM), and gefitinib (4mM). (B) The formation of tumourspheres by the three cell lines after
pretreatment with sorafenib (5 mM), regorafenib (5mM), and gefitinib (4 mM). (C) The effects of pretreatment with TKI agents on the expression of
Sox2 and Oct4 in A549, NCI-H460, and NCI-H1299 cell lines. b-actin was used as a loading control. All error bars are s.e.m. *Po0.05, compared
with the control (Ctrl).
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both STMN1 siRNA and FOXM1 siRNA enhanced, to different
extents, the sensitivity of TKI-pretreated NCI-H460 cells to TKIs
(Figure 4C). In particular, knockdown of STMN1 and FOXM1 in
sorafenib-pretreated cells resulted in an obvious improvement in
sensitivity to sorafenib. Gefitinib- and regorafenib-pretreated cells
showed a moderately and weakly increased sensitivity to TKIs,
respectively. Taken together, our results indicate the possibility that
STMN1 and FOXM1 mediate the TKI-induced CSC enrichment
and drug resistance in NSCLC cells.

The PI3K/AKT pathway, but not the MAPK pathway, mediates
TKI-induced STMN1 upregulation and drug resistance. TKI
resistance was reported to be related to feedback activation of the
PI3K/AKT and MAPK pathways (Morgillo et al, 2011b), which are
considered to be upstream of FOXM1 (Miyashita et al, 2015).
Therefore, we next asked whether the FOXM1-dependent
upregulation of STMN1 is associated with the PI3K/AKT and
MAPK pathways. Western blot data showed that the three TKIs
can induce the upregulation of phosphorylated AKT, but have no
obvious effect on phosphor–JNK expression (Figure 5A). The three
TKIs had different effects on activation of the MAPK/ERK
pathway. Sorafenib and gefitinib, but not regorafenib, induced an
upregulation of phosphor–ERK in NCI-H460 cells (Figure 5A). To
further explore the role of PI3K/AKT and MAPK/ERK in STMN1
regulation and drug resistance, we pretreated NCI-H460 cells with
TKIs and measured the expression of STMN1 and cell viability
after treatment with inhibitors of AKT or ERK. As shown in
Figure 5B, treatment with MK2206, an AKT inhibitor, resulted in
decreased levels of STMN1 and phosphor–AKT in NCI-H460 cells
pretreated with the three TKIs. Consistent with the STMN1
downregulation, treatment with the AKT pathway inhibitor also
led to growth inhibition of TKI-pretreated NCI-H460 cells
(Figure 5C). In contrast, the ERK pathway inhibitor PD98059
did not affect the expression of STMN1 or the viability of TKI-
pretreated cells (Supplementary Figure S5A and B). Taken
together, the above data suggest that the PI3K/AKT pathway, but

not the MAPK pathway, mediates TKI-induced STMN1
upregulation and drug resistance in NSCLC cells.

Overexpression of STMN1 and FOXM1 is associated with
unfavourable prognosis in NSCLC patients. To address whether
the expression of STMN1 and FOXM1 is related to the
development and progression of disease in NSCLC patients,
immunohistochemistry was performed on 72 lung tumours from
NSCLC patients and 10 paired normal tissue samples. Both
STMN1 and FOXM1 proteins were elevated in the NSCLC samples
compared with the adjacent normal tissues (Figure 6A), suggesting
a pro-oncogenic role of STMN1 and FOXM1 in NSCLC. In
addition, our data showed that 41 tumours (56.9%) had a higher
level of STMN1. Out of 41 tumours with higher levels of STMN1,
30 (73%) also expressed FOXM1 at a relatively high level
(Figure 6B). Statistical analysis of the data indicated that there
was a positive correlation between STMN1 and FOXM1 in NSCLC
tumour tissues (Po0.05, Figure 6B). Notably, the group of lung
cancer patients with higher expression of both STMN1 and
FOXM1 had poorer overall survival than other groups with lung
cancer (Figure 6C). Therefore, STMN1 together with FOXM1 may
serve as a predictive marker of outcome in NSCLC patients.

DISCUSSION

Here, our in vitro and in vivo studies showed that TKI
pretreatment led to enrichment of CSC, induction of EMT, and
triggering of multidrug resistance in NSCLC cells. Further studies
elucidated that TKI pretreatment resulted in the activation of an
AKT/FOXM1/STMN1 pathway. The crucial role of FOXM1 and
STMN1 in TKI-induced enrichment of CSC and drug resistance
was demonstrated by knockdown of STMN1 and FOXM1 in
NSCLC cells. Interestingly, blocking the PI3K/AKT pathway with a
specific inhibitor led to the downregulation of STMN1 and
reversed the drug resistance. Importantly, we found that
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overexpression of STMN1 was correlated with upregulation of
FOXM1 and was associated with poor prognosis in advanced
NSCLC patients. Our findings illustrate a novel common
mechanism for TKI resistance and provide a promising biomarker
and therapeutic target for NSCLC.

Drug resistance is considered as one of the most important
challenges to cancer therapy (Tan et al, 2015). Multiple mechan-
isms are involved in resistance to various drugs, and only a limited
number of common mechanisms have been reported. Recently, we
and others have reported that cytotoxic drugs can enrich CSC and
subsequently result in drug resistance (Zhao, 2016; Wang et al,
2017). Here we verified that, similar to some cytotoxic drugs, TKI
pretreatment at pharmacological concentrations also resulted in
CSC enrichment and induction of EMT in NSCLC cells. Consistent
with our findings, several clinical studies have shown that
phenotypic and histological transformations frequently occurred
during TKI treatment, especially in resistant patients. Sequist et al

(2011) revealed that 14% of studied TKI-resistant cases showed
histological transformation from NSCLC to small cell lung cancer
(SCLC), and 6% of cases displayed the EMT phenotypic
transformation. Furthermore, Ren et al (2014) reported that,
compared with the epithelial phenotype, the EMT phenotype
predicted a poor response to TKI and a poor outcome. Due to
the diverse differentiation potential of CSC, it is possible that the
enrichment of CSC after TKI treatment leads to histological or
phenotypic transformation, and consequently contributes to TKI
resistance. In fact, the results showing that TKI pretreatment
induces CSC phenotypes in NSCLC cells can be explained by two
different mechanisms, which are not mutually exclusive: (1) TKIs
actively induce CSC phenotypes; (2) CSC are more resistant to
TKIs, and therefore CSC are enriched in the cell population after
treatment.

STMN1, a 19 KD cytosolic protein, was first identified as a
microtubule-destabilising phosphoprotein, which is involved in the
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construction and function of the mitotic spindle. Overexpres-
sion of STMN1 was found in various tumours, including
neuroblastoma, ovarian cancer, breast cancer, and lung cancer
(Cassimeris, 2002; Rana et al, 2008). Recently, several studies
revealed that STMN1 plays an important role in the tumour cell
cycle (Rubin and Atweh, 2004), metastasis (Wu et al, 2014), and
paclitaxel resistance (Lin et al, 2016), which further verifies the
oncogenic role of STMN1. In the present study, our microarray
mRNA expression data demonstrated that STMN1 was upregu-
lated in three TKI-pretreated NSCLC cell lines. Further study
showed that siRNA-mediated STMN1 knockdown resulted in

the reversal of the TKI-induced CSC phenotypes and resistance
to TKI agents. Our data demonstrated that upregulation of
STMN1 plays a common role in regulating the TKI-induced
CSC enrichment and drug resistance. The potential value of
analysing STMN1 in NSCLC was also confirmed by examination
of tumour tissues. The expression of STMN1 was found to be
upregulated in tumour tissues, as compared with normal tissues,
and higher expression of both STMN1 and FOXM1 was
associated with unfavourable prognosis. These findings suggest
the prognostic and therapeutic value of analysing STMN1 and
FOXM1 in NSCLC.
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Clarifying the mechanism of STMN1 upregulation is very
important for understanding TKI resistance and developing effective
therapeutic approaches. Previous studies showed that FOXM1 and
E2F1, as transcription factors, can regulate the expression of STMN1
(Petrovic et al, 2008; Chen et al, 2013). In our study, gene
manipulation and ChIP assay data indicated that FOXM1, but not
E2F1, plays an important role in the upregulation of STMN1 induced
by sorafenib in NCI-H460 cells. Furthermore, the immunohisto-
chemistry data further confirmed that overexpression of STMN1 was
associated with the upregulation of FOXM1 in tumour tissues from
NSCLC patients. To further extend the regulatory network containing
FOXM and STMN1, we also investigated the upstream pathways of
FOXM1, including PI3K/AKT and MAPK (Miyashita et al, 2015).
Our data revealed that the PI3K/AKT pathway, but not the MAPK
pathway, mediated TKI-induced STMN1 upregulation and drug
resistance in NSCLC cells. This suggests that, besides manipulation of
STMN1 or FOXM1, regulation of the PI3K/AKT pathway by specific
inhibitors can also eliminate TKI-induced CSC enrichment and drug
resistance in NSCLC.

In conclusion, the present study shows that TKIs can enrich
CSCs, induce EMT, and subsequently result in drug resistance, and
these properties are associated with aberrant activation of the
AKT/FOXM1/STMN1 axis (Figure 6E). Genetic manipulation of
FOXM1 and STMN1, or blocking the AKT pathway by specific
inhibitors, may eliminate CSC and reverse drug resistance. Our
results not only elucidate an additional common mechanism for
TKI resistance, but also provide a promising therapeutic target to
reverse TKI resistance in NSCLC.
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