FULL PAPER

B)C

Keywords: pancreatic adenocarcinoma; chemotherapy; inflammatory cytokines; apoptosis; immunogenicity

Immunobiological effects of gemcitabine and
capecitabine combination chemotherapy in
advanced pancreatic ductal adenocarcinoma

Gary Middleton™', William Greenhalf??3, Eithne Costello®3, Victoria Shaw?, Trevor Cox®, Paula Ghaneh??3,
Daniel H Palmer?® and John P Neoptolemos?®>

'Institute of Immunology and Immunotherapy, University of Birmingham B15 2TT and University Hospital Birmingham NHS
Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2TH, UK; °National Institutes of Health Research Liverpool Pancreas
Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals
NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK and 3Cancer Research UK Liverpool Cancer Trials Unit, University
of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK

Background: Preclinical studies suggest that chemotherapy may enhance the immune response against pancreatic cancer.

Methods: The levels of granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) and the associated
inflammatory marker C-reactive protein (CRP) were assessed in 38 patients receiving gemcitabine and capecitabine combination
chemotherapy for advanced pancreatic cancer within the TeloVac trial. Apoptosis (M30) and total immune response (delayed-type
hypersensitivity and/or T-cell response) were also assessed and levels of apoptosis induction correlated with immune response.
The telomerase GV1001 vaccine was given either sequentially (n=18) or concomitantly (n=24) with the combination
chemotherapy.

Results: There were no differences between baseline and post-treatment levels of CRP (P=0.19), IL-6 (P=0.19) and GM-CSF
(P=0.71). There was a positive correlation between post-chemotherapy CRP and IL-6 levels (r=0.45, P=0.005) and between CRP
with carbohydrate antigen-19-9 (CA19-9) levels at baseline (r=0.45, P=0.015) and post treatment (r=0.40, P=0.015). The change
in CRP and IL-6 levels was positively correlated (r=0.40, P=0.012). Hazard ratios (?5% Cl) for baseline CA19-9 (1.30 (1.07-1.59),
P=0.009) and CRP (1.55 (1.00-2.39), P=0.049) levels were each independently predictive of survival. The M30 mean matched
differences between pre- and post-chemotherapy showed evidence of apoptosis in both the sequential (P=0.058) and concurrent
(P=0.0018) chemoimmunotherapy arms. Respectively, 5 of 10 and 9 of 20 patients had a positive immune response but there was
no association with apoptosis.

Conclusions: Combination gemcitabine and capecitabine chemotherapy did not affect circulating levels of GM-CSF, IL-6 and
CRP. Chemotherapy-induced apoptosis was not associated with the immunogenicity induced by the GV1001 vaccine in advanced
pancreatic cancer.

Immunotherapy is transforming the management of many cancers. — expression (Lutz et al, 2014) and synergise with checkpoint
Although single-agent checkpoint inhibition has been disappoint-  blockade (Le et al, 2013; Soares et al, 2015). Gemcitabine and 5-
ing in pancreatic ductal adenocarcinoma (Topalian et al, 2012), it  fluorouracil (5-FU) are commonly used drugs in the management
is clear that whole-cell vaccines can positively modulate micro- of advanced pancreatic cancer. A number of studies have
environmental immunity in this disease, upregulate PD-L1 demonstrated that instead of inhibiting an immune response
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against cancer cells as would be classically expected, these drugs
can enhance certain facets of the anticancer immune response.
Hence, combination treatment with immunotherapy to effect
therapeutic synergy has been proposed and clinically tested
(Middleton et al, 2014; Emens and Middleton, 2015).

The ultimate outcome of microenvironmental immunity is in
part dependent on the balance between antigen-specific T cells and
resident immunosuppressive cells, chief of these being the myeloid-
derived suppressor cells (MDSCs). In mice harbouring a variety of
different tumors, a single dose of gemcitabine significantly reduced
the number of splenic MDSCs with no effect on the number of
CD4+, CD8+ or B cells (Suzuki et al, 2005). In another
preclinical study the only other drug, besides gemcitabine, that
significantly reduced the number of MDSCs in the spleens and
tumor beds of mice was 5-FU (Vincent et al, 2010). 5-Fluorouracil
triggered dose-dependent apoptosis of MDSCs: thymidylate
synthase levels in MDSCs were lower than in splenocytes or
tumor cells. Adoptive transfer of MDSCs 1 day after 5-FU blunted
the antitumour response.

The importance of tumor-infiltrating MDSCs in PDA was
assessed in the KPC model, where a marked increase in Grl +
CD11b+ cells (the murine MDSC phenotype) was seen during
progression from pancreatic ductal intraepithelial neoplasia
(PanIN) to invasive adenocarcinoma (Stromness et al, 2014).
Granulocyte macrophage-colony-stimulating factor (GM-CSF) was
upregulated by cancer cells and was a critical survival factor for
MDSCs. MDSCs suppressed T-cell proliferation and induced
apoptosis in activated T cells, whereas antibody-mediated deple-
tion of MDSC:s significantly increased the numbers of proliferating
peritumoural CD8 4 T cells. Depletion of MDSCs also affected the
tumor stroma, resulting in areas of extracellular matrix depletion
and enhanced vascular patency. These immunomodulatory and
stromal effects were accompanied by a significant increase in
tumor cell apoptosis. Knockdown of GM-CSF in an orthotopic
model significantly reduced the growth of pancreatic adenocarci-
noma, reduced Grl+CDI1lb+ cell number and caused a
pronounced accumulation of CD8+ T cells that drove tumour
cell apoptosis (Pylayeva-Gupta et al, 2012). In a study examining
the key cytokines in the generation of human MDSCs, the mixture
of GM-CSF and interleukin-6 (IL-6) consistently generated
MDSCs with the greatest capacity to inhibit autologous T-cell
proliferation and IFN-y production (Lechner et al, 2010).
Pancreatic stellate cells (PSCs) secrete little GM-CSF but large
quantities of IL-6, causing STAT-3 phosphorylation in human
peripheral blood mononuclear cells (PBMCs) and thus inducing
highly suppressive MDSCs, principally of granulocytic type (Mace
et al, 2013). Inhibition of STAT-3 significantly reduced the
generation of MDSCs when PBMCs were cultured with either PSC
supernatants or IL-6/GM-CSF.

GM-CSF also activates JAK2 resulting in STAT-3 activation
(Quelle et al, 1994). STAT3 is critical in mutant KRAS-induced
PanIN formation and progression and the growth of
established tumours (Corcoran et al, 2011). Both GM-CSF and
IL-6 upregulate the inflammatory marker C-reactive protein (CRP)
that contains a STAT-3 response element (Deng et al, 2006;
Nishikawa et al, 2008). C-reactive protein is an independent
prognostic marker in pancreatic cancer (Szkandera et al, 2014).
The clinical importance of STAT-3 activation in advanced
pancreatic cancer as a result of cancer-induced inflammation was
recently demonstrated in a randomised study of second-line
capecitabine with or without the JAK2 inhibitor ruxolitinib
(Hurwitz et al, 2015). Using a cutoff CRP level at the median,
there was a significant survival advantage for the addition
of ruxolitinib in patients with CRP >13mgl~ ', but no benefit
in those with CRP <13 mgl~'. The ongoing phase III study is
including only patients with CRP >10mgl™~ . Given the interest
in combining chemotherapy with immunotherapy, we thus

investigated the impact of the combination of gemcitabine and
the oral fluoropyrimidine capecitabine (GemCap) on CRP,
GM-CSF and IL-6 levels to investigate whether these two
agents modulate the immunosuppressive milieu of pancreatic
adenocarcinoma.

We also analysed the relationship between the induction of
apoptosis by GemCap as measured using the Apoptosense M30
assay and the development of an immune response to a class II
telomerase peptide vaccine (GV1001), given either concomitantly
with GemCap chemotherapy or in a sequential approach where 7
weeks of GemCap was followed by GV1001 in the TeloVac Study
(Middleton et al, 2014). In preclinical models, gemcitabine-induced
apoptosis increases antigen cross-presentation and primes the
immune system (Nowak et al, 2003). Antigen released by apoptosis
is available for cross-presentation rather than sequestered from the
cross-presentation pathway. The induction of apoptosis is
necessary as mice bearing gemcitabine-resistant cells demonstrated
no significant difference in the proliferative activity of adoptively
transferred antigen-specific lymphocytes when treated with
gemcitabine compared with control. 5-Fluorouracil also enhances
antigen cross-presentation (Galetto et al, 2003). The immuno-
logical impact of gemcitabine and 5-FU induced apoptosis in
humans is unknown.

MATERIALS AND METHODS

Patients. Patients with advanced pancreatic cancer were recruited
for translational studies participating in the TeloVac study
(ISRCTN 43482138) (Middleton et al, 2014). Venous blood was
collected from a subset of patients randomised to chemotherapy
with sequential chemoimmunotherapy using the telomerase
peptide vaccine GV1001 (Kael Gemvax, Seoul, Korea) or
chemotherapy with concurrent chemoimmunotherapy using
GV1001 for whom suitable samples were available for T-cell
proliferation, CRP, IL-6, GM-CSF and M30 Apoptosense assays
(Peviva AB, Stroskarlsva, Sweden). Objective tumor response was
measured using RECIST (Therasse et al, 2000).

Chemoimmunotherapy. All patients were treated with combina-
tion gemcitabine and capecitabine. Gemcitabine was given
intravenously at 1000mgm ~> weekly x 3 every 4 weeks with
orally administered capecitabine at 1660mgm ~* per day
(830 mgm ~? twice daily) for 3 weeks followed by 1 week’s rest.
In the sequential chemoimmunotherapy arm, patients received
an initial 7 weeks of chemotherapy followed by vaccination
with GV1001 and GM-CSF (Penn Pharmaceutical Services,
Tredegar, UK) as adjuvant as described previously (Middleton
et al, 2014). In the concurrent chemoimmunotherapy arm, patients
received chemotherapy together with vaccine delivered concomi-
tantly from day 1 of therapy. All subjects provided written
informed consent for the trial and inclusion criteria stipulated
there was no history of autoimmune disease or recent steroid
therapy.

DTH testing. Delayed-type hypersensitivity (DTH) testing was
undertaken by giving a second intradermal injection of 0.105 mg of
GV1001 given simultaneously at the contralateral site on the lower
abdomen without concomitant GM-CSEF. The site was examined
48N later and a positive or negative response was recorded.

Blood sample collections. For patients in the sequential che-
moimmunotherapy arm, blood was drawn just before the sixth and
final gemcitabine infusion before vaccination and 48 h afterwards
for the Apoptosense assay. Blood for CRP, IL-6 and GM-CSF
assays was drawn before the start of therapy and before the sixth
gemcitabine infusion. Peripheral blood mononuclear cells were
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drawn at week 18 for T-cell proliferation assays after 10 weeks of
GV1001 and GM-CSF administration.

For patients in the concurrent chemoimmunotherapy arm,
blood was drawn just before the first gemcitabine infusion at the
very start of therapy and 48h afterwards for the Apoptosense
assay. PBMCs were drawn at 10 weeks for T-cell proliferation
assays, an equivalent period of vaccination before immunogenicity
testing in patients receiving chemotherapy preceding vaccination
in the sequential chemoimmunotherapy arm.

Storage and analyses of samples. Blood was drawn into CPT
tubes (BD Biosciences, Oxford, UK) and spun at site to isolate
PBMCs. The PBMCs were shipped to the biomarker repository at
the Cancer Research UK Liverpool Clinical Trials Unit-GCP
Laboratory Facility, UK. Viability and cell count of the PBMCs
was measured using a ChemoMetec (Allerod, Denmark) Nucleo-
Counter NC-100 before freezing in 90% DMSO and 10% human
serum to — 80 °C overnight. The aliquots were then stored at
—150°C for subsequent batch analysis. Blood for serum was
collected into SST tubes (BD Biosciences) centrifuged at 1500 g for
10 min, aliquoted and stored at — 80 °C.

IL-6 and GM-CSF analyses. The levels of IL-6 and GM-CSF along
with 25 other analytes were measured in triplicate in patient serum
using a commercially available Bio-Plex Pro 27 Plex Human
Cytokine, Chemokine and Growth Factor Assay (Bio-Rad
Laboratories Ltd, Hercules, CA, USA) on the Bio-Plex 200 System.
We report here the analysis of the immunosuppressive cytokines
pertinent to MDSC biology and CRP, a surrogate read-out for
signalling by these cytokines. Details on the trajectory of the other
cytokines have been previously presented (Neoptolemos et al,
2014) and a separate manuscript investigating the predictive value
of these is in preparation. Initial data analysis was undertaken
using Bio-Plex Manager 5.0 Software to determine concentrations.
Serially diluted standards (50 ul) and test serum, diluted 1 in 4 in
sample diluent (50 ul), was added to a plate containing magnetic
antibody-coupled beads for each of the 27 analytes. The samples
were incubated at room temperature on a plate shaker at 900 r.p.m.
for 1min followed by 300r.p.m. for 30 min. Following washing
with the Bio Plex Pro Magnetic Plate Washer, the secondary
antibodies (25 ul) were added to the plate and incubated as before.
The plate was washed again and streptavidin-PE (50 ul) was added
and the plate incubated at room temperature on a plate shaker at
900 r.p.m. for 1 min followed by 300 r.p.m. for 15 min. Assay buffer
(125 ul) was added to each well of the plate before being analysed
on the Bio-Plex 200 machine. Fluorescent intensities obtained for
the test samples were read from the standard curve to give pgml '
values for each of the 27 analytes.

CRP analysis. C-reactive protein was measured in serum samples
at the Department of Clinical Biochemistry and Metabolic
Medicine at the Royal Liverpool University Hospital (Liverpool,
UK). The limit of detection for this assay is 5mgl~".

M30 apoptosense analysis. Serum levels of M30 were measured
using a commercially available enzyme-linked immunosorbent
assay (ELISA) (Peviva AB), and the results were expressed as U1~ !
(see Dive et al, 2010 for details of CK18 evaluation in pancreatic
ductal adenocarcinoma).

T-cell proliferation assay. Thawed PBMCs were seeded in
X-VIVO 15 (Lonza, Slough, UK) supplemented with 10% pooled
human serum (Innovative Research, Paisely, UK) at 2 x 10° cells
per well in 48-well plates (Thermo Fisher Scientific, Asheville,
NC, USA) and 20pugml™' GV1001 peptide. Media were
changed following 3 days of culture and interleukin-2 (Peprotech,
London, UK) added to a final concentration of 10 unitsml .
Restimulation was performed on day 11, and the GV1001-enriched
cells were harvested and aliquoted into a round-bottom 96-well

plate (50 ul, 1 x 10° cells per well). To the GV1001-enriched cells,
irradiated (45 Gy) autologous PBMCs (50 ul, 1 x 10°cells per well)
were added to act as antigen-presenting cells. The GV1001-
specific proliferation was tested for by the addition of 100 ul
of control media, media containing 20ugml~' GV1001 or
5ugml~ ' phytohaemagglutinin (PHA). After 48h of incubation,
*H-thymidine (1 uCi per well) was added for 16 h before harvesting
and counting. A stimulation index above 1-8 with a significant
difference in counts per min from four replicates was defined as a
positive proliferative response to GV1001.

Positive total immune response. This was defined as a positive
DTH test and/or a positive proliferation assay.

Statistical methods. Survival analyses were undertaken using Cox
proportional hazards regression and the Kaplan-Meier method.
Univariate analyses were carried out for patient characteristics,
baseline levels of carbohydrate antigen 19-9 (CA19-9), CRP, IL-6
and GM-CSF dichotomised at median values; GM-CSF was
dichotomised into present and absent. Multivariate analysis was
carried out using a stepwise method. The Mann-Whitney test was
used to analyse dichotomised continuous variables and Fisher’s
exact for categorical data, and the Wilcoxon test was used for
paired analysis.

RESULTS

The trajectory of serum CRP, IL-6 and GM-CSF levels during
treatment with GemCap chemotherapy was determined in
38 patients for whom the appropriate longitudinal blood samples
were available, and who were treated on the sequential chemoim-
munotherapy arm of the TeloVac trial, where patients received 7
weeks of chemotherapy before vaccination with GV1001. The level
of these analytes was assessed at baseline and after 7 weeks of
chemotherapy, before vaccination with GV1001, at a time that
coincided with the first assessment of response by CT scan.
The demographics of this subgroup of patients (Table 1) were
representative of the patients randomly allocated to sequential
chemoimmunotherapy in the TeloVac trial (n =350, median age
64, proportion of males 58%, proportion of locally advanced
patients 30%, patients with ECOG performance status 0, 1 and 2,
29%, 60% and 11% respectively; Middleton et al, 2014). The
median overall survival of the 38 patient subgroup was 7.6 months
and baseline median CA19.9 was 961kUl" !, and of all 350
patients randomised to sequential chemoimmunotherapy, it was
6.9 months and 933kU1~! respectively (Middleton et al, 2014).
Table 2 shows the levels of CRP (mglfl), IL-6 (pgmlfl) and
GM-CSF (pgml™") pre- and post-GemCap chemotherapy, the
percentage change and the radiological response to treatment.

Paired analysis of the log-transformed data showed that there
were no significant differences between baseline and post-
treatment CRP levels (Wilcoxon signed rank test P=0.19), IL-6
(Wilcoxon signed rank test P=0.19) and GM-CSF Ilevels
(McNemar’s test P=0.71). There was a significant positive
correlation (Spearman’s rho) between post-chemotherapy CRP
and IL-6 levels (r = 0.45, P=0.005) and between both baseline and
post-treatment CRP with CA19-9 levels (r=0.45 P=0.015
and r=0.40, P=0.015 respectively). The change in CRP and
IL-6 levels was positively correlated (r=0.40, P=0.012). When
analysing only the 28 patients with stable disease, again there was
no significant difference between pre- and post-chemotherapy CRP
levels (Wilcoxon signed rank test P=0.4) and IL-6 (Wilcoxon
signed rank test P=0.32). The change in CRP and IL-6 levels in
patients with stable disease was also positively correlated (r=0.40,
P=0.033).

Table 2 shows that the CRP levels were at or below the limit of
detection (Smgl_l) in 16 out of 38 (42.1%) patients before
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Table 1. Demographic features of 38 patients including
summary of the IL-6, CRP and GM-CSF levels pre- and post-

chemotherapy

Characteristic N=38
Age

(years, median, range) ‘ 64.0 (44-79)
Gender

(male/female) ‘ 24:14 (63%:37%)

Survival (based on KM)

(days, median, IQR) ‘ 232 (150-366)
Stage

Locally advanced 16 (42%)
Metastatic 22 (58%)
ECOG performance status

0 12 (32%)

1 21 (55%)

2 5 (13%)
Baseline CA19-9

(kUI~ T, median, range) ‘ 961 (10-53 064)
Baseline CRP

(mgl’w, median, range) ‘ 7 (5-238)
Post-treatment CRP

(mgl’w, median, range) ‘ 10 (5-175)
Baseline IL-6

(P9 ml =", median, range) ‘ 23 (9-1163)
Post-treatment IL-6

(P9 ml~ ", median, range) ‘ 18 (3-914)
Baseline GM-CSF

(pgml ™~ T, median, range) ‘ 0 (0-549)
Post-treatment GM-CSF

((ke] ml =", median, range ‘ 0 (0-427)

Abbreviations: CA19-9 = carbohydrate antigen-19-9; CRP = C-reactive protein; ECOG =
Eastern Cooperative Oncology Group; GM-CSF = granulocyte macrophage-colony-stimu-
lating factor; IL-6 = interleukin 6; IQR = interquartile range; KM = Kaplan-Meier.

chemotherapy and in 12 out of 38 patients (31.6%) following 7
weeks of chemotherapy. The majority of patients with a normal
CRP level after chemotherapy had normal CRP levels to start with,
but in just under a half of patients with initially normal CRP levels
the level went up with chemotherapy. Nine out of the 12 (75%)
patients with CRP levels at or below the limit of detection after
chemotherapy also had had CRP levels at or below the limit of
detection before chemotherapy. In 7 of the 16 patients (43.8%) who
had CRP levels at or below the limit of detection before
chemotherapy, the CRP level increased on chemotherapy.

A total of 14 patients had a CRP level >10mgl~" at baseline
and this increased to 19 patients after chemotherapy. There were
10 patients with a CRP level <10mgl~ "' at baseline that increased
to >10mgl~ ' following chemotherapy and there were 9 patients
with a CRP level >10mgl~ "' both pre- and post-chemotherapy
(Figure 1). Seven out of 10 patients with a CRP level <10mgl ™'
at baseline and which had increased to >10mgl~ "' during
chemotherapy had partial response or stable disease as objective
response to chemotherapy. In only 4 patients was the CRP level
>10mgl~ ! at baseline and <10mgl ™' after chemotherapy, and
in all of these the IL-6 level fell. If the cut-point of CRP
>13mgl~' was applied as used previously in a randomised
study (Brandt et al, 2010), 10 patients had elevated CRP levels
before chemotherapy and this increased to 17 patients after
chemotherapy.

The GM-CSF was detectable in the serum of only 9 out of 38
patients at baseline and 10 out of 38 after chemotherapy.

Investigation of positive or negative GM-CSF at baseline and post
treatment showed no significant association with response
(progressive disease vs stable disease) or stage (locally advanced
vs metastatic).

In summary, there was no evidence that gemcitabine and
capecitabine combination chemotherapy reduced the level of
clinically meaningful inflammatory markers in patients with
advanced pancreatic ductal adenocarcinoma.

Univariate analysis of the impact on survival of clinical features
along with logged CRP, IL-6 and GM-CSF levels is shown in
Table 3. Objective tumor response (P= <0.0001), log CA19-9
(P=10.004) and log baseline CRP (P =0.006) were associated with
survival. In a multivariate model, logged CA19-9 and CRP both at
baseline were each independently predictive of survival with hazard
ratios (95% CI) for baseline CA19-9 levels of 1.30 (1.07-1.59),
(P=0.009) and CRP levels of 1.55 (1.00-2.39) (P = 0.049).

The results of the M30 Apoptosense assay before and 48 h after
chemotherapy, along with percentage change and immune
response status, is shown for 42 patients in Table 4. Three out of
18 (16.7%) patients in the sequential chemoimmunotherapy arm
and 7 out of 24 (29.2%) patients in the concurrent chemoimmu-
notherapy had >30% change in the M30 assay (two-tailed Fisher’s
exact P=10.473). If a more conservative 10% cutoff is used to infer
induction of apoptosis, this increased to 9 out of 18 (50%) and 17
out of 24 (70.8%) respectively (two-tailed Fisher’s exact P = 0.209).
The logged M30 data for mean matched differences between
pre- and post-chemotherapy for the sequential and concurrent
chemoimmunotherapy treatment arms showed evidence of
apoptosis (P=10.058 and P=0.0018, respectively).

The median (95% CI) survival for the 10 patients with apoptosis
defined as an M30 >30% rise was 253 (92-304) days compared
with 344 (216-443) days for those 32 patients with an M30 <30%
rise (log-rank ¥* =3.4015, P=0.065) with a hazard ratio (95% CI)
of 0.50 (0.23-1.06) (3*=3.26, P=0.071). The median (95% CI)
survival for the 26 patients with apoptosis defined as an M30
>10% rise was 295 (216-399) days compared with 344 (187-527)
days for those with an M30 <10% rise (log-rank y*=0.707,
P=0.401) with a hazard ratio (95% CI) of 0.75 (0.38-1.47)
(x*=0.70, P=10.403).

In all, 5 of 10 patients in the sequential chemoimmunotherapy
arm and 9 of 20 patients in the concurrent chemoimmunotherapy
had a positive immune response (Table 5). There was no
association between an apoptotic response 48h following
chemotherapy and a positive immune response irrespective of
whether a cutoff of >30% or >10% increase in M30 levels
was used (Table 5). Thus, 7 out of 9 immune responders in the
concurrent chemoimmunotherapy arm and 4 out of 5 responders
in the sequential chemoimmunotherapy arm had no evidence of
apoptosis induction using a 30% cutoff on the M30 Apoptosense
assay.

DISCUSSION

This study has shown that combination gemcitabine and
capecitabine therapy did not reduce CRP, IL-6 or GM-CSF levels
in patients with advanced pancreatic cancer. Moreover, apoptosis
secondary to chemotherapy did not correlate with enhanced
immunogenicity of GV1001. We have previously shown that a
combination of gemcitabine and the oral fluoropyrimidine
capecitabine (GemCap) failed to reduce the levels of circulating
MDSCs in patients with advanced pancreatic cancer independent
of response (Annels et al, 2014). We now show that serum levels of
the two main cytokines that drive the production of MDSCs in
pancreatic cancer, GM-CSF and IL-6, did not significantly fall
during treatment with GemCap. The accompanying lack of a fall in
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Table 2. Serum CRP, IL-6 and GM-CSF levels in advanced pancreatic cancer patients pre- and post-chemotherapy treatment and

radiological response (n=38)

CRP (mgl~") ! CRP | IL-6 (pgml ") \ IL-6 "GM-CSF (pgml ') | GM-CSF

Radiological response Pre Post % Change Pre Post % Change Pre Post % Change
PD 6 38 533.33 23.52 33.07 40.6 0 0 0
PD 27 16 —40.74 25.59 14.98 —41.46 0 0 0
PD 5 5 0 20.98 21.91 4.43 0 0 0
PD 38 31 —18.42 22.88 56.91 148.73 0 0 0
PD 60 48 -20 10.52 13.95 32.6 0 0 0
PD 8 1 37.5 36.53 17.91 —50.97 4.51 0 —100
PD 16 5 —68.75 21.15 7.96 —62.36 72.43 34.12 —52.89
PD 5 24 380 30.49 50.11 64.35 0 34.96 0
PD 238 175 —26.47 34.19 33.27 —2.69 0 0 0
PR 8 25 212.5 9.44 2.88 —69.49 0 0 0
SD 5 20 300 28.91 19.03 —34.18 0 0 0
SD " 7 —36.36 23.84 22.63 —5.08 0 51.61 100
SD 5 9 80 41.9 23.39 —44.18 0 0 0
SD 5 5 0 20.06 17.87 —10.92 0 0 0
SD 7 60 757.14 37.56 57.93 54.23 0 0 0
SD 7 27 285.71 21.56 403.25 1770.36 0 0 0
SD 34 21 —38.24 1163.43 914.06 —21.43 549.41 426.57 —22.36
SD 5 10 100 9.49 13.05 37.51 2.88 0 —100
SD 13 29 123.08 36.55 17.85 —51.16 30.4 0 —100
SD 5 17 240 35.82 50.34 40.54 0 0 0
SD 10 8 —-20 2417 20.11 —16.8 0 0 0
SD 25 6 —76 29.31 11.81 —-59.71 0 0 0
SD 92 37 —59.78 49.65 24.72 —50.21 0 0 0
SD 5 5 0 10.12 10.28 1.58 0 0 0
SD 5 5 0 50.89 125.54 146.69 0 109.01 0
SD 5 5 0 10.28 15.74 53.11 0 0 0
SD 41 5 —87.8 19.63 12.29 —37.39 0 0 0
SD 27 33 22.22 24.3 38.6 58.85 0 0 0
SD 5 5 0 20.39 12.45 —38.94 0 0 0
SD 13 13 0 24.91 12.61 —49.38 11.08 2.41 —78.25
SD 6 9 50 10.73 14.38 34.02 0 0 0
SD 5 28 460 14.01 19.4 38.47 6.28 10.27 63.54
SD 5 5 0 21.08 19.73 —6.4 24.34 7.92 —67.46
SD 11 10 -9.09 19.4 7.23 —62.73 1.68 0.28 —83.33
SD 5 5 0 22.9 11.4 —50.22 0 0 0
SD 5 26 420 15.36 17.75 15.56 0 17.73 0
SD 9 5 —44.44 23.45 18.71 —20.21 0 0 0
SD 5 5 0 14.09 9.37 —335 0 0 0
PD median (IQR) 16 24 —-18.4 235 21.9 4.4 Yes=2 Yes=2 Yes=2

(5.5t049) | (8to43) | (—33.6t0209) | (2110 32.3) | (14510 41.7) | (—46 to 52.5) No=7 No=7 No=7
SD median (IQR) 5.5 9 0 23.2 18.3 —-13.9 Yes=7 Yes=8 Yes=8

(5to12) | (510 23.5) | (—145t0 111) | (17.4 to 32.6) | (12.5 to 24.1) | (—41.6 to 38) No =21 No =20 No =20
All median (IQR) 7 10.5 0 23.2 18.3 —8.66 Yes=9 Yes=10 Yes=10

(5 to 16) (5 to 27) (—20to 123) | (19.4 to 30.4) | (12.6 to 33.1) | (—8.7 to 38.5) No=29 No=28 No=28
Abbreviations: CRP = C-reactive protein; GM-CSF = granulocyte macrophage-colony-stimulating factor; IL-6 = interleukin 6; IQR = interquartile range; PD = progressive disease; PR = partial
response; SD = stable disease.

CRP is to be expected given that CRP is a transcriptional target of
GM-CSF and IL-6 signalling (Deng et al, 2006; Nishikawa et al,
2008). Thus, the use of gemcitabine and fluoropyrimidines as
immunomodulators

positive

alongside

immunotherapies

pancreatic cancer must take into account the failure of these
chemotherapy agents to affect these key immunosuppressive
cytokines, although caution is needed in interpreting our results,
in as we do not know whether circulating IL-6 and GM-CSF levels
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80110 ¢ PD Table 4. Serum levels of M30 (apoptosense) in patients
T : SD (+PR) pre- and post-chemotherapy along with the percentage
=) : change and immune response status: sequential
E 6079 chemoimmunotherapy n=18, concurrent chemo-
& : . immunotherapy (n=24)
) :
= 404 ,: Pre-chemotherapy | Post-chemotherapy M30 %
£ M30 (Ul ) M30 (Ul ) change
3]
2 Sequential chemoimmunotherapy
7]
& Median Median Median
(IQR)=230.12 (IQR)=236.88 (IQR)=11.77
(185.3-406.1) (188.3-481.5) (—6.7-23.5)
Baseline CRP (mg I™") 406.09 37359 —8 Negative
Figure 1. The CRP baseline levels plotted against the post-GemCap 15942 18832 1813 NA
CPR levels. Indicated are the number of patients with >10mgl~" or 18527 21915 18.29 Negative
<10mgl~" levels pre- and post-GemCap treatment. PD = progressive 133.71 131.53 -1.e3 Positive
disease; PR = partial response; SD = stable disease. 176.79 186.36 5.41 Negative
182.35 218.93 20.06 Positive
249.66 232.95 —6.69 Positive
Table 3. Univariate and multivariate analyses of the impact on 236.27 240.81 1.92 Positive
Eu'\rnv_légchii\clzglr;lcal features along with logged CRP, IL-6 and eaa 460,32 12942 Positive
Hazard 451.13 388.79 ~13.82 NA
azard ratio ;
Univariate (95% ClI) P.value 505.93 745.08 47.27 Negative
Response: PD v SD/PR 8.61 (2.97-24.98) | <0.0001 337.78 a7.17 2350 Negative
Age 0.98 (0.95-1.02) 0.40 411.02 504.14 22.66 NA
Stage: locally advanced vs metastatic 0.66 (0.32-1.37) 0.26 19331 48153 14910 NA
ECOG O v 1 1.02 (0.45-2.28) : : :
ECOG 1v 2 0.42 (0.14-1.26) 0.22 188.39 15897 —15.62 NA
ECOGOv 2 0.41 (0.15-1.17) 219.87 214.43 —247 NA
Log CA19-9: baseline 1.33 (1.10-1.61) 0.004 223.96 184.02 1783 NA
Log CRP: baseline 1.76 (1.18-2.65) 0.006
Log CRP: post treatment 1.38 (0.89-2.13) 0.16 651.78 832.69 2776 NA
Log CRP: difference 0.75 (0.46-1.23) 0.25 .
Log IL-6: baseline 0.73 (0.47-1.14) 0.16 Concurrent chemoimmunotherapy
Log IL-6: post treatment 0.84 (0.61-1.15) 0.27 " " "
Log Il-6: difference 1.05 (0.64-1.75) 0.84 Median Median Median
GM-CSF: baseline 0.75 (0.33-1.71) 0.50 (IQR) = 235.81 (IQR)=336.66 | (IQR)=14.34
GM-CSF: post treatment 0.81(0.36-1.81) 0.60 (184.7-352.0) (517.3-228.1) (5.4-36.0)
TR 214.54 243.00 13.26 Negative
ultivariate
1046.50 1199.07 14.58 NA
Log CA19-9: baseline 1.30 (1.07-1.59) 0.009 —
Log CRP: baseline 1.55 (1.00-2.39) 0.049 340.53 32621 —421 Positive
Abbreviations: CA19-9 = carbohydrate antigen-19-9; Cl=confidence interval, CRP= 284.29 312.52 9.93 Positive
C-reactive protein; ECOG = Eastern Cooperative Oncology Group; GM-CSF = granulocyte 239.17 240.03 0.36 Negative
macrophage-colony-stimulating factor; IL-6=interleukin 6; PD=progressive disease; -
PR = partial response; SD = stable disease. The bold values are statistically significant. 29362 34711 1822 Negative
568.56 788.15 38.62 Negative
346.60 411.60 1875 Positive
reflect levels in the tumor microenvironment. We examined the | 166.10 487.64 193.58 Positive
effect of combined gemcitabine and capecitabine on IL-6, GM-CSF | 18464 209.04 13.22 Negative
and CRR. Two other regir.nen.s are now commoply used in advanced [543 16412 1057 Negative
pancreatic cancer: gemcitabine and nab-paclitaxel and FOLFIR- " 505 o A
INOX. We are not aware of any data looking at the sequential effects 357’34 360‘64 0’92 —
of cytokines with these regimens. However, the cytokines we i : i coative
investigated were selected based on their importance to MDSC | 8470 223.56 2104 Negative
biology in pancreatic cancer, and there are data on the impact of the | 171.26 509.29 197.37 Positive
other chemotherapy agents used in these regimens on MDSCs. | 176.86 226.19 27.89 Positive
Unlike gemcitabine and 5-FU, paclitaxel and oxaliplatin had no 180.47 634.77 251.73 NA
effect on tumoural MDSC numbers in.prec.:linical models (Vince:nt 203.97 195.89 398 Positive
et al., 201'0). Ir'ldeed, the're was a numerical increase in MDSCs with 23244 26519 1409 Positive
oxaliplatin. Irinotecan increased MDSC number, increased MDSC 2051 2299 P S
NO ™~ and ROS production and blocked the apoptotic effect of 5-FU : : : ostive
on MDSCs in a colorectal cancer model (Kanterman et al, 2014). 65012 107213 64.91 Negative
These data suggest that these other combination regimens are | 281.48 375.23 33.31 NA
unlikely to have a beneficial effect on MDSCs independent of any | 806.24 1193.86 48.08 Negative
significant reduction in tumour volume and in the case of | 19115 177.42 —7.18 Negative
FOLFIRINOX may be detrimental. We plan to PrOSPeCtl"elY Abbreviations: IQR = interquartile range; NA = not available.

examine the effects of FOLFIRINOX on MDSC number and
function to test this hypothesis.
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Table 5. Number of immune responders in sequential and concurrent chemoimmunotherapy split by apoptosis

| Sequential chemoimmunotherapy arm ‘

" Concurrent chemoimmunotherapy arm !

Immune response? Immune response?®

Apoptosisb Yes (n=15) No (n=5) ApoptosisID Yes (n=9) No (n=11)
Yes (n=2) 1 1 Yes (n=5) 2 3

No (n=8) 4 4 No (n=15) 7 8
Apoptosis® Yes (n=5) No (n=5) Apoptosis® Yes (n=9) No (n=11)
Yes (n=5) 2 3 Yes (n=14) 6 8

No (n=5) 3 2 No (n=6) 3 3
Two-tailed Fisher's exact test P=1.00 P=1.00

®Defined as T-cell proliferative response or positive delayed-type hypersensitivity (DTH).
bDefined as >30% increase in M30 value at 48 h.
“Defined as >10% increase in M30 value at 48h.

The number of patients included was relatively small
but the demographics and outcomes of this subset was similar
to the entire group of patients treated with initial chemotherapy
alone before vaccination and there was no suggestion of a
possible tendency towards reduction in the analytes during
chemotherapy. The median CRP levels were numerically higher
after chemotherapy even in patients with stable disease and there
were more patients with elevated CRP after treatment than
before. Although there was no control group to investigate
changes independent of chemotherapy, obtaining sufficient
sequential samples from patients with advanced pancreatic
cancer is clearly problematic.

The biological basis of our clinical observation that gemcitabine
and fluoropyrimidines do not reduce IL-6 and GM-CSF has been
recently demonstrated (Takeuchi et al, 2015). Gemcitabine and 5-
FU treatment of pancreatic cancer cells significantly increased the
production of IL-6 and GM-CSF by these cells. Human monocytes
differentiated into monocytoid MDSCs when conditioned media
from pancreatic cancer cells were added to the culture medium and
conditioned media from pancreatic cancer cells treated with either
gemcitabine or 5-FU reduced HLA-DR expression and enhanced
Arginasel and NOS2 expression even further. The MDSCs derived
from chemotherapy-treated cell conditioned media were even
more suppressive than those derived using untreated conditioned
media. The expression of HLA-DR on infiltrating CD14 4 cells
was much lower in the pancreatic cancers of patients receiving
preoperative chemotherapy as compared with those going straight
to surgery.

Immunomonitoring in the TeloVac trial involved both DTH
responses and T-cell proliferation. In all, 19 (12%) of 154 patients
who had sequential chemoimmunotherapy were positive to
DTH, and 47 (20%) of 233 patients who had concurrent
chemoimmunotherapy (Middleton et al, 2014). T-cell proliferation
was positive in 10 (31%) of 32 patients given sequential
chemoimmunotherapy and 10 (15%) of 68 patients given
concurrent chemoimmunotherapy. Both DTH and T-cell responses
were not predictive of survival. Chemotherapy-mediated apoptosis
induction was not significantly associated with the immune
responsiveness to the GV1001 peptide vaccine. It may not be
possible to enhance immunogenicity through apoptosis-mediated
increased antigen cross-presentation if the microenvironment
remains unfavourable with high levels of immunosuppressive
cytokines such as IL-6 and GM-CSF.

Caspase-mediated apoptosis will cause cleavage of cytokeratin
18 (released following necrosis of malignant and normal epithelial
cells) producing the M30 fragment. This cleavage product is not
specific to cancer cells undergoing apoptosis either as part of tumor
biology or induced by chemotherapy (Dive et al, 2010). Previously,
we found no association with survival and circulating M30 levels in

a range of patients with early, locally advanced and metastatic
pancreatic cancer and similar findings were made in the present
study (Dive et al, 2010). A two-fold increase over the baseline
spread of M30 assay values has been proposed (Cummings et al,
2006) but we only had a single baseline sample. Others have
proposed lower level changes as important given the association
between changes and objective response based on ROC character-
istics (Brandt et al, 2010).

The majority of the patients for whom we had samples for the
M30 assay were in the group receiving concomitant chemotherapy
at the time of vaccination, and this may have reduced the level of
circulating antigen-specific T cells as has been described with
gemcitabine therapy preclinically (Bauer et al, 2014). In addition,
any intratumoral release of telomerase peptides secondary to
apoptosis induction may also have been insufficient to immuno-
logically synergise with the exogenously administered antigen in
the vaccine.

Using a variety of chemotherapies and tumour antigens (both
peptides and proteins), Kang et al (2013) demonstrated therapeutic
synergy and enhanced numbers of intratumoural and systemic
antigen-specific CD8 4 T cells when chemotherapy and vaccina-
tion were combined in comparison with single-agent therapy.
However, antigen density within the tumour was critical: synergy
only occurred when antigen was delivered directly into the tumour
and did not occur when antigen was delivered by the standard
subcutaneous route. Chemotherapy alone enhanced intratumoural
dendritic cell density but this effect was only therapeutically and
immunologically relevant if there were very high levels of antigen
available for uptake and this could only be achieved by direct
intratumoural delivery. Chemotherapy-induced apoptosis and the
development of an immunologically more favourable microenvir-
onment were insufficient to synergise with antigen delivery by a
standard route.

In conclusion, we have shown that combination gemcitabine
and capecitabine chemotherapy did not reduce the levels of the
immunosuppressive cytokines IL-6 and GM-CSF or the inflam-
matory marker CRP. Furthermore, there was no evidence that
apoptosis induction secondary to this chemotherapy significantly
enhanced the immunogenicity of an intradermally administered
peptide vaccine. These observations may have implications for the
use of gemcitabine and fluoropyrimidines as immunomodulatory
agents in pancreatic cancer. Alternative methods to block the
action of immunosuppressive cytokines are required. Both IL-6
and GM-CSF function via activation of JAK2/STAT3, and the
direct inhibition of JAK2 using ruxolitinib has improved outcome
in pancreatic cancer patients treated with gemcitabine precisely in
those with an elevated CRP reflecting STAT3 activation (Hurwitz
et al, 2015). The phase III confirmation of these data is eagerly
awaited.
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