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1. Introduction

How prevalent is COVID-19? Accurate measures of the fraction of the population that is

currently infectious are crucial for policymakers and researchers trying to understand and predict

COVID-19 dynamics. Latent prevalence—the unknown fraction of infected individuals in the

population—is generally different from the publicly reported prevalence—the reported case counts

divided by the total population. However, latent prevalence is empirically challenging to estimate

because testing is often reserved for individuals exhibiting symptoms. This limitation induces

sampling bias and, as a result, causes publicly reported prevalence, like those collected by state

governments or the CDC, to underestimate the true number of cases (Stock, 2020; Burger and

McLaren, 2017). The gold-standard solution to sample selection is randomized testing. However, a

random sampling study can quickly become prohibitively costly and organizationally unwieldy to

provide accurate, real-time information as disease dynamics change.2

This study attempts to solve the selection problem by developing a hidden-infection method

that is easily applicable and can be calibrated using randomized testing data. This method estimates

the prevalence in local areas based on real-time public data by applying Bayes’ Law. The method is

flexible enough to allow for time-varying infectiousness, which has been shown to be important for

understanding the economic consequences of COVID-19 (Chetty et al., 2020; Yang et al., 2020).

We validate the predictions of this method using randomized testing data from a large-scale field

experiment in Utah of over 10,000 participants in May and June of 2020. We then apply our methods

to different locations and time periods: Indiana in April 2020 and two counties in Utah in March of

2021. We find that our estimates of latent prevalence are remarkably similar to the estimates from

those randomized field tests.

Our hidden-infection method estimates the latent prevalence in real-time and requires only one

parameter—which we estimate from our random testing data—and one publicly available time

series: the positive rate of testing.3 This approach builds on Stock (2020), which shows that one can

2See the significant changes in prevalence dynamics between late May and early July 2020.
3Our measurement is related in spirit to sufficient welfare statistics as in Chetty (2009) and Arkolakis et al. (2012), but
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use Bayes’ Law to translate positive testing rates into latent prevalence, as long as infections are

independent of testing conditional on symptoms and tested individuals are symptomatic. We extend

this analysis in two ways. First, we incorporate experimental data to calibrate the model and later

validate it. Second, we improve the definition of a symptomatic individual to that of an individual

with a high risk of infection. We rely on recent refinements of the machine learning method LASSO,

which can be shown to select the correct predictor variables reliably (see the discussion of “oracle

properties” in Ahrens, Hansen and Schaffer (2020)). LASSO automates the selection of variables

that predict the risk of infection and include symptom and non-symptom variables, e.g., employment

outside of home or health-care provider. These extensions allow the method to adapt as the virus

changes or to be applied for future diseases or pandemics.

The hidden-infection method requires only one parameter: the likelihood ratio of symptomatic

individuals among infected relative to uninfected persons. Again, our definition of symptomatic

includes all individuals that have a high predicted probability of infection given covariates. We

estimate this likelihood ratio using data from a large-scale field experiment of roughly 10,000

randomly selected individuals in Utah between May and July 2020. With this parameter, the method

provides a formula to translate publicly available positivity rates, defined as the proportion of tested

individuals with a positive COVID result, into latent prevalence.

We pursue two approaches to validate our method. First, we directly test the key conditional

independence assumption using our randomized testing and health survey data. We show that we

cannot reject the null that the assumption holds in our micro-data (p-value of 0.943). Second, we

validate our method’s predictions of prevalence by comparing it to prevalence from randomized

testing in Utah between May 1st and July 1st 2020, in Indiana between April 25th and April 29th

2020, and in Utah in March 2021 (Samore et al., 2020; Menachemi et al., 2020). Our method’s

predictions in all three cases are based on the likelihood ratio that we estimate using our first wave

of data from Utah in the summer of 2020. For Indiana, we estimate a latent prevalence of 1.8%,

in comparison to 1.7% from randomized testing (Menachemi et al., 2020) for the spring of 2020.

differs in its focus (i.e., latent disease prevalence).
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For Salt Lake County and Utah County in March 2021, we estimate a latent prevalence of 0.69%

and 0.57%, which are approximately the same as their respective randomized testing estimates of

0.74% and 0.47%. In all four cases, the prevalence estimate from our method is within the 95%

confidence intervals of the randomized testing estimates. This validation evidence is encouraging

for the ability of researchers to apply our method to areas and time periods that are different from

those that generated our estimate for the likelihood ratio.4

We provide estimates for all 50 US states on July 1st 2020. We find that latent prevalence is

2−3 times higher on average than publicly reported prevalence. Additionally, we show that sample

selection is time-varying by comparing the time series of latent and reported prevalence.

This paper contributes to the fast-growing economics literature analyzing COVID-19 disease

dynamics. First, a number of papers have developed different approaches to estimate Susceptible,

Infectious, and Recovered (SIR) type of models, such as Atkeson et al. (2020), Korolev (2020),

Fernandez-Villaverde and Jones (2020), and Yang et al. (2020). Our method allows researchers to

directly measure the time path of COVID-19 prevalence without the use of a SIR model. Second, a

literature in epidemiology has pooled international or cross-state data in combination with strong

functional form assumptions to correct for sample selection, see Grewelle and Leo (2020), Favero

(2020), Fisman and Tuite (2020), and Benatia et al. (2020). Our work offers an alternative approach

that is less reliant on functional forms and pooled regression analysis. A third strand of the literature

utilizes tools from partial identification to provide bounds on prevalence; for example, Aspelund

et al. (2020), Manski and Molinari (2020). We add to this work by providing time-varying lower

bounds for latent prevalence by relaxing one of our key assumptions.

2. Framework

In this section, we construct a Bayesian updating formula and lay down assumptions that allow

researchers to infer the fraction of infected individuals based on positivity rates from testing. The

4This test of generalizability is especially important since our sample from Utah might not be representative of other
more diverse US States.
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derivation using Bayes’s rule and Assumption A below follows work by Stock (2020). In addition,

we provide an estimation strategy for the key parameter of our formula. We conclude the section

with an alternative method that provides a lower bound for the proportion of infected based on

weaker assumptions.

2.1. The Hidden-Infection Method

Consider the experiment of drawing an individual randomly out of a population in a geographic

location s and time period t, where s and t belong to a certain scope of analysis. We define three

events based on the outcomes of this random draw: Ist , τst , and σst . The first event is Ist and occurs

when the randomly drawn individual is infected with COVID-19; the second is τst and occurs

when the individual has been recently tested for COVID-19; finally, σst occurs when the individual

has symptoms and characteristics that predict COVID-19 infection, for example, as diagnosed by

a medical professional. The event σst can be understood as an outcome of a unobserved, latent

prediction model by a medical professional. We call individuals in the σst event “symptomatic

individuals” for simplicity throughout the text. However, we do not restrict the σst event only to

individuals that exhibit COVID symptoms. Rather, the event occurs whenever the individual’s or

medical provider’s best prediction indicates a high probability of infection. That inference is most

heavily based on symptoms but may also depend on other information such as exposure, contact

tracing, being a healthcare worker, etc. We formalize a prediction model for the probability of

infection in Section 2.2. As we describe in footnote 6, our method could also be used with the event

τst (”being tested”) instead of the event of being symptomatic σst . However, we prefer σst , as it is

less affected by the testing regime, which is likely to vary across locations and over time.

The probability of any event equals the fraction of individuals with the outcome associated with

that event in the population. For example, P[Ist ] equals the fraction of individuals in location s at
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time t that are infected with COVID-19. Define the following quantities,

α
0
st = P[σst |Ic

st ], (1)

α
1
st = P[σst |Ist ], (2)

where Ic
st denotes the complement of event Ist , namely, when the randomly drawn individual is not

infected. Each α represents the fraction of symptomatic individuals among the infected (α1
st) or not

infected (α0
st), respectively.

Next, we use Bayes’s rule to derive an expression for P[Ist ] as a function of P[σst ], α1
st , and

P[Ist |σst ],

P[Ist |σst ] =
P[Ist ∩σst ]

P[σst ]
=

P[σst |Ist ]P[Ist ]

P[σst ]
= α

1
st
P[Ist ]

P[σst ]
,

P[Ist ] =
P[Ist |σst ]P[σst ]

α1
st

. (3)

Similarly, we obtain an expression for P[σst ] as a function of α0
st , α1

st , and P[Ist ],

P[σst ] = P[σst |Ist ]P[Ist ]+P[σst |Ic
st ]P[Ic

st ]

= α
1
stP[Ist ]+α

0
st(1−P[Ist ]) = (α1

st−α
0
st)P[Ist ]+α

0
st . (4)

Plug (4) in (3) and solve for P[Ist ],

P[Ist ] =
P[Ist |σst ]

{
(α1

st−α0
st)P[Ist ]+α0

st
}

α1
st

=
P[Ist |σst ]

α1
st

α0
st
(1−P[Ist |σst ])+P[Ist |σst ]

. (5)

Equation 5 gives the proportion of infected people in the population (P[Ist ]) as a function of the

proportion of infected people in the sub-population of symptomatic individuals (P[Ist |σst ]) and the

ratio α1
st/α0

st . In what follows, we make assumptions on the joint distribution of these events to
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obtain an equation relating P[Ist ] to positivity rate, i.e, P[Ist |τst ]. We study deviations from these

assumptions in Section 2.3.

Assumption A. (a) Everyone that is tested is symptomatic,

P[σst |τst ] = 1 ∀s, t. (6)

(b) Conditional on being symptomatic, being infected and being tested are independent events:

P[Ist ∩ τst |σst ] = P[Ist |σst ]P[τst |σst ] ∀s, t. (7)

Assumption A(a) essentially says that tested individuals had a strong reason to be tested: their

best prediction indicated a high probability of infection, that is, the σst event. The σst event may be

a function of not only symptoms but other information such as demographic characteristics. We

give full details on the relationship between σst and individual characteristics in Section 2.2 below.5

Assumption A(a) implies that P[Ist |τst ] = P[Ist |σst ∩ τst ].

Assumption A(b) reflects our definition of “best prediction.” Part (b) of the assumption says

that the mere fact of being tested (τst) does not improve the prediction power for infection (Ist) that

the best-prediction event σst has. In other words, σst condenses all the information from symptoms

and other factors that help predict infection. We describe a prediction model for probability of

infection in Section 2.2. Assumption A(b) implies that P[Ist |σst∩τst ] =P[Ist |σst ]. Thus, both parts of

Assumption A imply P[Ist |τst ] = P[Ist |σst ] and allow us to retrieve P[Ist |σst ] using publicly available

data on positivity rates of testing : P[Ist |τst ]. Therefore, if the researcher has access to P[Ist |τst ] and

the ratio α1
st/α0

st , the researcher obtains the fraction of infected people under Assumption A.

5It is important to emphasize that our definition of σst does not necessarily mean that a certain symptom or demographic
characteristic automatically implies that the individual is “symptomatic.” Rather, a symptomatic individual is the one
that exhibits any combination of symptoms and demographics, among a large class of combinations, that lead to a
predicted probability of infection that is high. This concept is intended to model the process by which testing regimes
allow or select individuals to be tested, e.g., a medical professional determining that a confluence of symptoms or
conditions add up to a likely infection requiring testing. For example, our model in Section 2.2 is sufficiently flexible
to capture testing regimes with the requirement of one or a combination of observable symptoms, as well as different
testing thresholds for at-risk demographics.
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The ability to obtain latent prevalence P[Ist ] as a function of positivity rate of testing P[Ist |τst ] is

extremely valuable to track COVID-19 in real time, but the exact relationship relies on the likelihood

ratio α1
st/α0

st . Estimation of this ratio requires experimental data and is costly to conduct repeatedly

at multiple times and places. Therefore, researchers need to rely on assuming the ratio is relatively

constant, at least in a neighborhood of region s at time t of the experimental data. We argue that the

assumption of a constant likelihood ratio α1
st/α0

st is reasonable if, for example, differences in local

testing regimes or pandemic patterns affect α1
st and α0

st proportionately, such that the ratio stays

constant. Our empirical evidence in Section 4.2 suggests this simplifying assumption is plausible

within a certain scope of time and geography. Of course, researchers will not be able to extrapolate

the ratio too far from the location and time period of the experimental data. For example, local and

seasonal variation in the prevalence of the flu might imply that α0
st varies disproportionately relative

to α1
st . We discuss this issue in Appendix B and suggest solutions.

Assumption B. The proportion of symptomatic among infected individuals divided by the propor-

tion of symptomatic among uninfected individuals is constant across time and space:

α1
st

α0
st
= λ ∀s, t. (8)

Our hidden-infection-method obtains the latent prevalence under Assumptions A–B using some

estimate of λ and the positivity rate with the following equation,6

P[Ist ] =
P[Ist |τst ]

λ (1−P[Ist |τst ])+P[Ist |τst ]
. (9)

6We note that a version of (9) could be derived by starting from P[Ist |τst ] instead of P[Ist |σst ] and leading to an estimate
of the latent prevalence of P[Ist ] =

P[Ist |τst ]
Λst (1−P[Ist |τst ])+P[Ist |τst ]

. The key difference is that Λst =
P[τst |Ist ]
P[τst |Ic

st ]
is now the likelihood

ratio of infected people being tested to non-infected people being tested. Although this alternative formulation of our
hidden infection method could also be used to track latent prevalence over time, we argue that it is more reasonable
to assume that λst is constant over time and space than Λst because the latter varies with changes in testing regimes,
which were frequent during the first years of the pandemic.
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2.2. Estimation of λ

The symptomatic event σst , as we have defined it, is unobserved and has to be estimated.

The event occurs when a randomly drawn individual displays characteristics that strongly predict

infection by COVID. These characteristics may include not only symptoms such as loss of taste or

smell, fever, body pain, sore throat, but also variables such as race, gender, sector of employment,

etc.

In this section, we specify a prediction model for infection as a function of individual character-

istics. Estimation of such a model allows us to construct an indicator variable for the event σst as a

function of individual characteristics. The ultimate goal is to produce an estimate for λ to be used

along with Equation 9. The analysis applies to a fixed location s and time period t for which the

researcher has experimental data. Thus, we drop the subscripts s and t for ease of notation in the

rest of this section.

Define the binary random variables, DI = I{I}, Dσ = I{σ}, and Dτ = I{τ}. Let X be a 1×K

random vector of individual characteristics that predict infection by COVID plus an intercept. For a

K×1 vector of parameters β and a threshold p ∈ (0,1),

DI = Xβ +U, E[U |X ] = 0, (10)

Dσ = I{Xβ > p}. (11)

The linear probability model in Equation 10 is a flexible specification for P[DI = 1|X ] to the

extent that the vector X may include high-order polynomials and interaction terms of individual

characteristics. Equation 11 says that the σ event occurs when the probability of being infected is

higher than p, where the researcher specifies p, for example, to maximize the predictability of the

model. In our empirical section, we choose p to be the unconditional probability of infection.

We can write the parameter λ in terms of moments of (DI,Dσ ,Dτ),

λ =
P [σ |I]
P [σ |Ic]

=
E
[
Dσ DI]E[(1−DI)]

E [DI]E [Dσ (1−DI)]
. (12)
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We may also use the model to assess the validity of the independence condition in Assumption

A by obtaining an estimate of the following parameter,

µ =
P [I∩ τ|σ ]

P [I|σ ]P [τ|σ ]
=

E
[
DIDτDσ

]
E [Dσ ]

E [DIDσ ]E [DτDσ ]
. (13)

If the independence condition holds, then µ should equal 1.

The researcher has a sample of iid data, (Xi,DI
i ,D

τ
i ), i = 1, . . . ,n, and seeks to estimate β , λ , and

µ . In settings with high-dimensional X , an estimate β̂ may be obtained by LASSO in Equation 10.

Then, the researcher constructs D̂σ
i = I{Xiβ̂ > p} for each individual in the sample. This process

yields estimates for the parameters of interest as follows,

λ̂ =

(
∑

n
i=1 D̂σ

i DI
i

)(
∑

n
i=1(1−DI

i )
)

(
∑

n
i=1 DI

i
)(

∑
n
i=1 D̂σ

i (1−DI
i )
) ,

µ̂ =

(
∑

n
i=1 DI

i D
τ
i D̂σ

i

)(
∑

n
i=1 D̂σ

i

)
(

∑
n
i=1 DI

i D̂
σ
i

)(
∑

n
i=1 Dτ

i D̂σ
i

) .
The procedure to obtain standard errors and construct confidence intervals is non-standard for

two reasons. First, the distribution of β̂ is generally non-Gaussian when the researcher has high-

dimensional X and employs LASSO. Second, Dσ = I{Xβ > p} is a discontinuous function of β .

We address both issues by relying on the residual bootstrap for LASSO developed by Chatterjee and

Lahiri (2011) and by approximating the indicator function by a Normal CDF with small variance.

Appendix A describes the procedure in detail.

2.3. Relaxing Assumptions

Assumption A may be strong in some contexts. The vector of characteristics X may not be rich

enough to produce a best prediction of infection that satisfies both requirements of Assumption A.

A much weaker requirement is to assume that the fraction of infected among symptomatic is greater

than or equal to the fraction of infected among tested individuals.

Assumption C. P[Ist |τst ]≤ P[Ist |σst ] ∀s, t.
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Even if the conditional independence Assumption A fails, Assumption C is likely to hold

because σ is defined as best predictor of infection, and we expect it to contain more information

about infection compared to just the fact the individual was tested. It becomes natural to assume that

there is a higher proportion of infected individuals among σ individuals compared to τ individuals.

It turns out that researchers may replace Assumption A with Assumption C and still obtain a lower

bound on the proportion of infected individuals. To see that, note that Equation 5 is an increasing

function of P[Ist |σst ]. Under Assumptions B and C,

P[Ist ]≥
P[Ist |τst ]

λ (1−P[Ist |τst ])+P[Ist |τst ]
. (14)

Therefore, researchers may compute a lower bound for P[Ist ] using λ and positivity rates in any

given region and time.

The extrapolation based on Assumption B may also be considered strong in some contexts.

We show in Section 4.2 that extrapolating λ to multiple locations and time periods works well:

estimates of latent prevalence based on λ are statistically indistinguishable from estimates obtained

by randomized testing. Despite this, researchers must exercise caution in extrapolating λ and should

consider either estimating λ in their context or calibrating it using additional data.

3. Data

We combine publicly available data with data from the Health and Economic Recovery Outreach

(HERO) project, a large COVID surveillance program conducted in Utah (Samore et al., 2020). The

public data is from the COVID tracking project7 and contains the daily rates of positive tests in all

state-wide COVID-19 tests. This allows us to estimate P(Ist |τst). Since the daily data are noisy, we

use 7-day moving averages.

7Data accessed from covidtracking.com/api.
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3.1. Field Experiment

The HERO project was initiated to estimate COVID-19 prevalence in Utah, and its data allow

us to estimate the key parameter λ of our method. Randomized testing also provides an estimate of

viral prevalence to benchmark our approach.

Between May 1st and July 1st , we contacted 25,438 households in central Utah (Davis, Salt Lake,

Summit, and Utah Counties). To recruit a representative sample, we randomly selected households

from a public list of 657,870 addresses (provided by Utah municipalities) using a stratified sampling

approach. Each address was encouraged to fill out a survey for each household member and get a

PCR (viral) and serology (antibody) test if they were older than 12. Individuals were compensated

with a $10 USD gift card for completing the survey and being subsequently tested, paid at the test

center. Households in our first recruitment strategy (“in-person” recruitment) received a postcard, a

letter, and a field team visited their address three times. The remaining addresses (“letter only”)

received a letter but were not contacted by our field team.

In total, 8,916 addresses ultimately received a visit from our field team and were included in the

in-person sample, and 13,997 addresses for letter-only contact. We supplemented this with 2,078

addresses, which were uncontacted backup blocks in the in-person tract-groups, for a total of 16,076

letters.

Of the 8,916 addresses our field team approached, 2,975 responded by completing at least

one survey, resulting in an average response proportion of 33.4%. In the in-person sample, 1,752

(19.7%) visited the testing bus and completed a PCR test, and 2,154 (24.2%) completed a serology

test. The sample of letters-only households yielded lower response proportions, with only 2,091

(13.0%) households completing at least one survey and 1,851 (11.5%) being ultimately tested. On

average 2.0 people per household from the in-person sample were tested and 1.8 people from the

letter-only sample. In total, 8,221 people completed a viral test and 6,451 people completed a

serology test.

Gaulin et al. (2021) investigate the important issue of non-response to invitations to participate

in COVID-19 testing in our context. Using a large-scale field experiment, they show that response
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proportions increase with more incentives (monetary and otherwise). The positivity rates, however,

do not vary across these interventions. We also find that estimates are very similar using the

in-person and letter-recruitment subsets, alleviating some concern that selection is correlated with

infections, testing, or symptoms. Table C.2 in the appendix reports estimates for λ , which we use to

estimate latent prevalence of 0.24% (in-person) and 0.33% (letter-recruitment). These estimates are

similar to our estimate of 0.24% in the full sample.

3.2. Health Survey and Prediction Model

The survey was completed by the field team during their visits to the address or completed online

by the individuals in the household (for both in-person and letters-only samples, based on directions

sent in the letters). We asked participants, “Over the last 7 to 10 days, have you experienced any

of the following symptoms? Select all that apply” with multiple-choice answers including, new

loss of taste or smell (hereafter referred to as anosmia) fever, new or worsened cough, new or

increased shortness of breath or difficulty breathing, chills, repeated shaking with chills, muscle

pain, headache, sore throat, and none of the above.

We use the machine learning method rlasso from the lassopack for STATA, which has its

theoretical foundations summarized by Ahrens, Hansen and Schaffer (2020), including its ability

to consistently select the correct predictors for an optimal prediction model. The survey provides

us with a series of characteristics, including whether someone experienced symptoms, such as

anosmia and fever, demographics, such as gender and race, and other risk factors such as the sector

of employment and known contact with a positive case. Other characteristics include worked

outside of the home, general health characteristics, school completed, and ethnicity. The LASSO is

particularly helpful in our setting because we have a high number of explanatory variables (including

interactions) and are a priori uncertain of which ones predict infection. In our data, infection is

measured as a positive COVID-19 serology test. Moreover, we let LASSO choose among high-order

interactions of these variables to search across flexible specifications. In practice, we construct

D̂σ
i = I{Xiβ̂ > p} using a threshold based on the unconditional probability of infection p, which in

our data is close to 1% (Equation 11). It is reassuring that the LASSO consistently selects anosmia
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because the epidemological literature considers it a strong predictor of COVID-19 infection, see

Menni et al. (2020). Similarly, LASSO consistently selects “known contact” with an infected person

as well as its interactions with other variables.

3.3. Descriptive Evidence

Panel A of Table 1 provides descriptive statistics from the US Census and CDC for our sample

counties in central Utah. These counties contain two-thirds of Utah’s population. Panel B of Table 1

reports the number of households we sampled and the households and individuals that participated

in our sample by county. Our overall response proportion is roughly 15 percent.

Panel C of Table 1 reports estimates of survey responses regarding characteristics, mobility,

and COVID-19 concern, as well as viral and antibody prevalence for those that were ultimately

tested. The median age of individuals in our sample is similar to the median age in the census data,

albeit systematically older because we exclude individuals younger than 12. We use these empirical

estimates to provide external validity to the hidden-infection-method developed in this study.

4. Results

4.1. Prevalence of COVID in Utah

Panel A of Table 2 reports estimates for α1, α0, and the likelihood ratio λ . In all four columns,

we use the LASSO machine learning method to select variables that predict symptomatic individuals

according to our definition in Section 2.2. The difference across columns is the initial set of variables

given to the LASSO procedure. In column 1, we limit the set of variables to those about symptoms,

like headache, fever, anosmia, etc. Of these symptoms, LASSO selects anosmia as the symptom that

predicts infection risk. This selection is consistent with the medical evidence in Menni et al. (2020),

which show that anosmia is a particularly strong predictor of COVID-19 infection in patients. In

column 2, we include nonsymptom variables, including working outside of the home, industry of

work, and known exposure. Column 3 includes up to three-way interactions of symptom variables,

while column 4 does three-way interactions of symptom and nonsymptom variables.
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The estimate of the likelihood ratio λ is 16.35 in column 1 and is remarkably similar across all

four columns. The median positivity rate in Utah from May 1st to July 1st 2020 is 6.38%. Plugging

these estimates into Equation 9, we obtain an estimate for the latent prevalence during this period of

0.42%.8 Said differently, our hidden-infection-method estimates that 0.42% of the population in

Utah during this period were infected.

P[Ist ] =
P[Ist |τst ]

λ (1−P[Ist |τst ])+P[Ist |τst ]
(15)

=
6.38%

16.35∗ (100%−6.38%)+6.38%

= 0.42%.

Our estimate using the hidden-infection-method is similar to our estimate using randomized

testing in Utah during the same period of time and within the 95% confidence interval of 0.12%

and 0.42% for the randomized testing estimate. Specifically, using randomized testing, we estimate

that, on average, 0.27% of the population was infected in Utah from May 1st to July 1st 2020.9 In

comparison, the publicly reported prevalence calculated as the ratio of confirmed cases minus fatali-

ties and recoveries relative to state population is 0.109%, roughly a third of the prevalence estimate

from randomized testing, and outside of the 95% confidence interval. Our hidden-infection method,

therefore, provides a reasonable estimate of the latent prevalence (as estimated by randomized

testing) and a better estimate than the publicly reported prevalence.

4.2. Benchmarking the Hidden-Infection-Method

In this section, we use our estimate of the likelihood ratio λ from Utah between May 1st and

July 1st 2020, in combination with publicly reported data to out-of-sample predict prevalence from

actual randomized testing in Indiana from April 25–29, 2020 and Utah from March 3rd to March

13th 2021.

8The Utah State COVID-19 dashboard reported a median positivity rate of testing of 6.38%, as reported in daily tracking
by covidtracking.com.

9This estimate is weighted using sampling weights to account for nonresponse and sampling design.
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The estimates from Utah from March 3rd to March 13th 2021 provide an interesting test because

we targeted locations in Utah and Salt Lake County that were experiencing higher case counts, and

it was significantly later in the pandemic. This test is particularly interesting because the conditional

independence assumption may be less plausible in locations experiencing higher than normal case

counts and because one may think that α0 could be substantially different in 2021 than in 2020 due

to seasonal trends in influenza-like illnesses. However, in practice, we recommend that researchers

with access to context-specific data use our method with a local estimate of λ .

Across location and time, our hidden-infection-method provides consistent estimates of the

viral prevalence P[Ist ]. In Indiana from April 25th–29th 2020, Menachemi et al. (2020) report a

viral prevalence (using PCR tests) of 1.7% with a 95% confidence interval from 1.1% to 2.54%.

The median reported positive rate for Indiana during that same period was 23.1% (data from

covidtracking.com). Using our likelihood ratio of 16.35, we obtain a median latent prevalence

estimate of 1.80% over that time period, again close to the actual randomized testing estimate and

well within the 95% confidence interval. In Utah, from March 3rd to March 13th 2021, we estimated

prevalence in two hot spots in Utah: one in Utah county and one in Salt Lake county. In Utah

County, we estimate a prevalence of 0.69% using the hidden-infection-method and 0.74% (95%

confidence interval 0.24% to 1.25%) using our randomized testing. In Salt Lake County, we estimate

a prevalence of 0.57% using the hidden-infection-method and 0.47% (95% confidence interval 0%

to 1.00%) using our randomized testing. Figure 1 shows the point estimates and confidence intervals

for prevalence from randomized testing. It should be noted that our latent prevalence estimates

fall within the confidence intervals from randomized testing and are often quite close the exact

point estimate. Said differently, in practice, the estimate approximates random testing well even

in different time periods and locations and in hot spots with higher reported cases and potentially

different testing regimes.

4.3. Test of Conditional Independence

The previous section validated our hidden-infection-method using out-of-sample predictions.

This alleviates some concern of the strength of Assumptions A and B in practice. In addition, we
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report in panel B of Table 2 that we do not find evidence in the randomized testing data against

the independence condition in Assumption A. We report estimates and confidence intervals for

µ, which should equal to one if the conditional independence assumption holds (Equation 13).

We report these estimates using different sets of variables that predict being at risk of COVID-19

infection (Columns 1–4 of panel B of Table 2). We fail to reject the null of conditional independence

in all four columns. However, we also note that confidence intervals might be considered wide,

which potentially indicates insufficient power. In the case that Assumption A is considered too

strong, researchers may replace it with the weaker Assumption C, and our hidden-infection-method

estimates become estimates for a lower bound for P[Ist ].

4.4. Estimates Across All States

In this section, we report our estimates of latent prevalence for the rest of the United States as

of July 1st , 2020 in Table 3. These estimates are reported in the first column of Table 3, with the

95% confidence interval in the second column, based on bootstrapped estimates of the likelihood

ratio λ . Details of the procedure are given in Appendix A. The third column reports the current

reported positive testing rate that is used in our hidden-infection method to calculate P[Ist ] in the

first column. This table also provides an estimate of reported prevalence from publicly available

data, that is, (Ost−Fst−Cst)/Nst , where Ost is the number of confirmed cases in state s at time t ,

Fst is total fatalities, Cst is recovered cases, and Nst is the population. Compared to our method, this

reported prevalence estimate suffers from selection bias. It also requires tracking confirmed cases

until recovery or a fatality, which is often incomplete and hard to measure.

One of the advantages of our hidden-infection method is that it relies only on publicly available

data on positivity—which is easily measurable. In contrast, data on total fatalities and recovered

cases are relatively poor quality because of incomplete tracking. Several states do not report these

numbers or report questionable numbers (e.g., California, Florida, and Massachusetts). For states

that do not report recoveries, we impute recovered cases as the 21 day lag of new cases minus
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fatalities for all states.10

The last column in Table 3 shows that latent prevalence is, on average, 2.89 times higher than

reported prevalence numbers. In Figure 2, panel (A), we show this difference using a scatter plot

of our estimated latent and reported prevalence for July 1st 2020. If reported prevalence truly

captures all latent prevalence, then the two measures should line up around the provided 45-degree

line. Instead, most data points are above the 45-degree line, indicating that our estimated latent

prevalence is substantially higher than the reported prevalence.

Our estimates of the ratio of latent prevalence to reported prevalence are also substantially

smaller than those of other studies that use alternative methods for different contexts. For example,

Li et al. (2020) uses Bayesian estimation with Kalman-filtering of daily confirmed case counts

in China to estimate the number of latent infection cases, which is over seven times larger than

reported case counts.

Benatia et al. (2020) use the pooled estimation of a sample selection model across states to

estimate latent prevalence. They report ratios of estimated cases to confirmed cases of 9.7 for Utah

and 16.2 for Indiana for April 12. Almost all states have ratios of latent to confirmed infections

of over ten and are substantially higher than estimates either from our hidden infection method or

from actual randomized testing.

Aspelund et al. (2020) use partial identification methods to establish that latent infections were

5 to 10 times larger than reported infections in the early stages of COVID-19 in Iceland. Other

partial identification studies such as Manski and Molinari (2020) find very large bounds for latent

prevalence, such as 14.1%-61.8% for New York on April 24th 2020. Since the reported prevalence

for New York on that date is 0.87%, the implied ratio of latent to reported prevalence is between

16 and over 71. In comparison, for that same date, our hidden-infection method implies a latent

prevalence of 3.04% or a ratio of latent to reported prevalence of 3.5.

10This calculation provides similar numbers for states that report recoveries and, in some cases, are exactly those
numbers.
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4.5. Tracking Prevalence

One key advantage of using the hidden-infection method is that it allows us to track prevalence

in real-time. We highlight four key features in Figure 2, panel (B). This figure graphs reported and

latent prevalence on two different axes to highlight their co-movements. First, latent prevalence is

2 to 4 times higher than the reported prevalence (note the different vertical axis scales). Second,

the ratio between latent and reported prevalence changes over time because our method accounts

for the changes in sample selection. Sample selection changes as the set of cases accounted for

in the publicly reported case counts, fatalities, or recovered cases varies over time. Third—and

related to the changes in sample selection—it is worth highlighting that the latent prevalence rate

from the hidden-infection method and the reported prevalence depend on different data inputs. Our

estimated latent prevalence relies on publicly reported positivity, which accounts for changes in

testing availability. Therefore, changes in positivity are more likely to reflect disease spread than

changes in testing. In contrast, reported prevalence is impacted by testing, recovery reporting, and

fatality reporting, all of which introduce their own sample selection biases, which can change over

time. Fourth, our estimated latent prevalence generally leads reported prevalence. For example, the

latent prevalence in Utah peaks on June 25th, almost a month before the reported prevalence peak

on July 24th. The lag in reported prevalence is most likely driven by reporting delays or imputations

in fatalities and recoveries.

An important limitation for any user of our hidden-infection method to be aware of is that it will

yield poor approximations if testing is highly rationed. For example, if only people with information

on likely exposure to COVID-19 through contact tracing are tested. For example, several states

exhibited values of P(Ist |τst) = 1 for several weeks after the first confirmed case. This value was

mainly driven by the fact that the only tests being conducted were on highly symptomatic people

with known exposure to COVID-19.
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5. Conclusion

This paper provides a method to measure the latent prevalence of COVID-19, correcting for

sample selection in symptom-based testing data and incomplete tracking of recovered cases and

fatalities. We calculate latent prevalence for all 50 US states, showing that latent prevalence is likely

2-3 times higher than reported and that sample selection of prevalence is time-varying.

Our methodology demonstrates surprising out-of-sample generalizability. First, we calibrate

and validate the model using randomized testing in Utah from May to June 2020. Second, we show

it predicts Indiana’s active prevalence in April 2020 and Utah’s active prevalence in March 2021.

Since conditions on the ground, such as testing regime and epidemiological environment, can differ,

we also provide boundary conditions for the applications of different variants of our method, either

by itself or in combination with randomized testing. We hope our method can be a useful starting

point to track COVID-19 and other future potential outbreaks in real-time. Future extensions of

our approach include (i) integrating it to an economic model that predicts the impact of policies

such as stay-at-home orders; and relaxing the invariance assumption on λ by allowing it to vary as

a function of covariates.
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Figure 1: Random testing data are plotted with their calculated 95% confidence intervals in blue,
with the latent prevalence calculated estimate shown with a grey circle. Data on positivity rates to
calculate the latent prevalence is from the COVID tracking project.

22



Figure 2: Latent and reported prevalence
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Panel (A): Latent prevalence is calculated using equation (9). Reported prevalence is calculated as
(Ost −Fst −Cst)/(Nst), where Ost are confirmed cases in state s at time t, Fst are total fatalities, Cst are
recovered cases, and Nst is population. States with ˆ and red text are displayed lower on the Y-axis then
their true values for convenience. Data is from the COVID tracking project. The estimates and data are
displayed for July 1st 2020.
Panel (B): Time path of latent and reported prevalence in Utah. Latent prevalence is defined as the
fraction of currently infected in the state. Reported prevalence is calculated as (Ost −Fst −Cst)/(Nst),
where Ost are confirmed cases in state s (i.e., Utah) at time t, Fst are total fatalities, Cst are recovered
cases, and Nst is population. Note that the two prevalences are plotted on different scales for ease of
functional comparison. Data is from the COVID tracking project, which takes daily snapshots of the
Utah state COVID dashboard.
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Table 1: Sample Characteristics

Notes: This table provides descriptive statistics from the US Census and our
survey that provides an overview of our sample.

Salt Lake Utah Davis Summit

Panel A: Aggregate Data from Census and CDC

Population 1,120,805 590,440 340,621 40,511

Household Size 3.0 3.6 3.2 2.7

Median Age 34.7 27.2 32.5 39.9

% Hispanic 18.1 11.4 9.1 6.0

Reported Prevalence (5/7/2020) 268 206 91 913

Reported Deaths (5/7/2020) 39 11 2 0

Panel B: Sample Characteristics

Households Sampled 12,138 5,202 4,023 4,075

Households In Sample 2,673 1,130 1,029 280

Households with Antibody Test 2,068 890 816 217

Households with Viral Test 1,589 715 706 144

Individuals In Sample 5,500 2,684 2,303 480

Individuals with Antibody Test 4,060 2,060 1,750 351

Individuals with Viral Test 3,129 1,603 1,487 232

Panel C: Individual Survey and Testing Characteristics

Median Age 42.2 40.2 43.4 51.5

% Hispanic 8.97 8.85 3.46 5.70

% Female 52.5 52.9 51.7 54.6

% Very Concerned 9.89 12.5 8.26 9.62

% Viral Prevalence 0.286 0.187 0.202 0.851

% Antibody Prevalence 0.98 1.26 0.91 2.81
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Table 2: Key parameters from Randomized Testing

In panel A, we report estimates of α0, α1, and λ = α1/α0, using our experimental data from Utah
from May to July 2020. The estimates for viral and antibody prevalence include corrections for
nonresponse and sampling design (see Samore et al. (2020)). All columns use LASSO to select
variables that predict being infected using different sets of variables, as described in Sections 2.2 and
3.2. Bootstrapped standard errors and 95 percent confidence intervals are reported in parentheses
and square brackets, respectively, following the procedure described in Appendix A. In Column 1,
we report estimates allowing the LASSO to choose from all clinical symptom variables in our data,
including anosmia, fever, cough, shortness of breath, chills, muscle pain, headache, and sore throat. In
Column 2, we report estimates allowing LASSO to choose from all symptomatic variables, as well as
nonsymptomatic variables, e.g., a binary variable for working outside of the home. We give the full list
of variables in Section 3.2. Column 3 includes up to three-way interactions of symptomatic variables,
and Column 4 allows for three-way interactions of symptomatic and nonsymptomatic variables. In
panel B, we report estimates for µ as means of assessing the independence condition in Assumption
A (Equation 13). All estimates are weighted for sampling weights to account for nonresponse and
sampling design. Estimates without weighting are reported in Table C.1 (Appendix C).

Variables to Predict Infection
Level Three-way interactions

Symptom Symptom and Symptom Symptom and
nonsymptom nonsymptom

(1) (2) (3) (4)

A: Parameter estimates

α1 0.057 0.057 0.057 0.288
(0.001) (0.004) (0.005) (0.023)

[0.054,0.059] [0.049,0.065] [0.047,0.067] [0.243,0.333]

α0 0.004 0.004 0.004 0.017
(0.001) (0.004) (0.001) (0.014)

[0.002,0.005] [0.000,0.011] [0.001,0.006] [0.000,0.044]

λ 16.354 16.501 16.354 16.582
(0.058) (0.022) (0.461) (0.109)

[16.241,16.468] [16.457,16.544] [15.450,17.259] [16.369,16.795]

B: Test of conditional independence

µ 1.022 1.091 0.612 0.546
(0.515) (0.432) (0.537) (0.529)

[0.013,2.032] [0.245,1.937] [0.000,1.665] [0.000,1.584]
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Table 3: Latent vs Reported Prevalence

This table presents state level estimates of our model parameters. Positive rate is the fraction of tests reported that are
positive for COVID-19 from the COVID tracking project. P(Ist) is latent prevalence from equation (9) in state s at
time t. 95% CI is the 95 percent confidence interval calculated based on the most conservative CI for λ calculated in
Table 2 column (3). Cases-deaths, is calculated as the number of confirmed cases minus fatalities as a fraction of state
population. Rep. Prev. is baseline reported prevalence, calculated as number of confirmed cases minus fatalities and
recoveries as a fraction of state population. The ratio in the last column is the ratio of estimated latent prevalence to the
baseline reported prevalence. Estimates are calibrated on July 1st , 2020.

State P(Ist) 95% CI Positive rate Cases - deaths Rep. Prev. Ratio
(1) (2) (3) (4) (5) (6)

A: Utah

UT 0.79% [0.75, 0.83] 11.48% 0.69% 0.30% 2.62

B: All other states

AK 0.06% [ 0.06, 0.07] 1.04% 0.13% 0.05% 1.22
AL 1.06% [ 1.01, 1.12] 14.95% 0.77% 0.35% 3.08
AR 0.65% [ 0.62, 0.69] 9.67% 0.69% 0.36% 1.83
AZ 2.35% [ 2.23, 2.48] 28.22% 1.12% 0.74% 3.19
CA 0.52% [ 0.50, 0.55] 7.92% 0.58% 0.25% 2.09
CO 0.27% [ 0.26, 0.28] 4.23% 0.53% 0.07% 3.60
CT 0.05% [ 0.05, 0.06] 0.89% 1.19% 0.06% 0.88
DE 0.32% [ 0.30, 0.34] 4.97% 1.12% 0.15% 2.15
FL 1.35% [ 1.28, 1.42] 18.24% 0.71% 0.42% 3.23
GA 1.16% [ 1.10, 1.23] 16.14% 0.76% 0.28% 4.13
HI 0.07% [ 0.07, 0.08] 1.20% 0.06% 0.02% 4.45
IA 0.51% [ 0.49, 0.54] 7.80% 0.90% 0.22% 2.37
ID 1.00% [ 0.95, 1.06] 14.18% 0.33% 0.16% 6.30
IL 0.19% [ 0.18, 0.20] 3.07% 1.09% 0.11% 1.68
IN 0.34% [ 0.33, 0.36] 5.33% 0.64% 0.11% 3.04
KS 0.80% [ 0.76, 0.84] 11.63% 0.51% 0.14% 5.56
KY 0.27% [ 0.26, 0.29] 4.29% 0.34% 0.09% 3.11
LA 0.62% [ 0.59, 0.66] 9.27% 1.23% 0.35% 1.79
MA 0.18% [ 0.17, 0.19] 2.82% 1.45% 0.07% 2.47
MD 0.36% [ 0.34, 0.38] 5.56% 1.06% 0.14% 2.58
ME 0.14% [ 0.13, 0.15] 2.27% 0.24% 0.05% 2.90
MI 0.16% [ 0.15, 0.16] 2.48% 0.65% 0.06% 2.64
MN 0.24% [ 0.23, 0.26] 3.81% 0.62% 0.11% 2.11
MO 0.44% [ 0.42, 0.47] 6.80% 0.34% 0.11% 4.07
MS 1.06% [ 1.00, 1.12] 14.85% 0.90% 0.32% 3.35
MT 0.10% [ 0.09, 0.11] 1.61% 0.09% 0.04% 2.39
NC 0.59% [ 0.56, 0.62] 8.85% 0.61% 0.27% 2.21
ND 0.22% [ 0.21, 0.23] 3.44% 0.46% 0.09% 2.46
NE 0.41% [ 0.38, 0.43] 6.25% 0.97% 0.17% 2.41
NH 0.15% [ 0.14, 0.16] 2.38% 0.39% 0.05% 3.13
NJ 0.10% [ 0.09, 0.10] 1.58% 1.76% 0.07% 1.33
NM 0.23% [ 0.22, 0.25] 3.67% 0.56% 0.15% 1.60
NV 1.29% [ 1.22, 1.36] 17.57% 0.59% 0.28% 4.52
NY 0.07% [ 0.07, 0.08] 1.21% 1.90% 0.07% 1.04
OH 0.37% [ 0.35, 0.39] 5.73% 0.43% 0.11% 3.28
OK 0.43% [ 0.41, 0.46] 6.63% 0.35% 0.17% 2.58
OR 0.40% [ 0.38, 0.42] 6.15% 0.20% 0.09% 4.43
PA 0.34% [ 0.33, 0.36] 5.34% 0.63% 0.08% 4.51
RI 0.10% [ 0.10, 0.11] 1.68% 1.52% 0.11% 0.98
SC 1.14% [ 1.08, 1.20] 15.85% 0.71% 0.43% 2.68
SD 0.51% [ 0.48, 0.54] 7.75% 0.75% 0.14% 3.78
TN 0.70% [ 0.66, 0.74] 10.28% 0.65% 0.25% 2.78
TX 1.28% [ 1.22, 1.36] 17.53% 0.56% 0.30% 4.28
VA 0.35% [ 0.34, 0.37] 5.49% 0.71% 0.13% 2.77
VT 0.04% [ 0.04, 0.05] 0.71% 0.18% 0.02% 2.40
WA 0.39% [ 0.37, 0.42] 6.06% 0.46% 0.14% 2.80
WI 0.41% [ 0.38, 0.43] 6.24% 0.54% 0.14% 2.91
WV 0.13% [ 0.12, 0.13] 2.01% 0.16% 0.04% 2.99
WY 0.34% [ 0.32, 0.36] 5.27% 0.26% 0.09% 3.60

AVERAGE 0.50% [ 0.45, 0.50] 7.25% 0.68% 0.17% 2.89
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Appendix: For Online Publication Only

Appendix A. Standard Errors and Confidence Intervals

The first goal of this section is to describe a procedure to obtain valid standard errors for the
estimators (λ̂ , µ̂) and a valid confidence set for (λ ,µ). The estimators are described in Section 2.2
and applied to the data in Section 4. The second goal of this section is to extend this procedure for
inference on P[Ist ] using Equation 9.

We start with two main ingredients. First, Φ
(x−p

h

)
is approximately equal to I{x > p} as h ↓ 0,

where Φ is the CDF of a standard Gaussian distribution. Second, the data in Section 3 is such that
X is a vector of discrete random variables. These two ingredients allow us to write (λ ,µ) as a
differentiable function of β and moments of the data on (X ,DI,Dτ).

To see that, let {x1, . . . ,xP} be the discrete support of the random vector X and choose a small
h > 0. Define

W =
[
I{X = x1}, . . . ,I{X = xP}

]
, (A.1)

F(β ) =


Φ

(
x1β−p

h

)
...

Φ

(
xPβ−p

h

)
 . (A.2)

It turns out that I{Xβ > p} is approximately equal to WF(β ) for small h. We use h = 0.1 in our
routine.

Define the vector of parameters θ as follows.

θ =


β

E[DI]
E[W ′]

E[DIW ′]
E[DτW ′]

E
[
DIDτW ′

]

 ,

where W ′ denotes the transpose of the W vector. Following the definitions in Section 2.2,

λ

µ

=


E[Dσ DI](1−E[DI])

E[DI ](E[Dσ ]−E[Dσ DI ])

E[DIDτ Dσ ]E[Dσ ]

E[DIDσ ]E[Dτ Dσ ]

=


{E[DIW ]F(β )}(1−E[DI])

E[DI ]({E[W ]F(β )}−{E[DIW ]F(β )})

{E[DIDτW ]F(β )}{E[W ]F(β )}
{E[DIW ]F(β )}{E[DτW ]F(β )}

 .
= G(θ), (A.3)

where G(θ) is a differentiable function of θ .
The next step is to construct an estimate for the asymptotic distribution of

√
n
(

θ̂ −θ

)
us-

ing the residual bootstrap. This naturally gives an estimate for the asymptotic distribution of
√

n
(

G(θ̂)−G(θ)
)

via the Delta method. Chatterjee and Lahiri (2011) describe a residual bootstrap

procedure that is consistent for the asymptotic distribution of
√

n
(

β̂ −β

)
, where β̂ is computed
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using LASSO. They also demonstrate that the moments of the bootstrap distribution are consistent
for their relevant counterparts. The bootstrap procedure that we propose below is a straightforward
modification of their procedure, because the non-β components of θ are sample averages. The
steps of the procedure are described below.

Step 1. Construct an estimate θ̂ for θ . For the β components of θ , use LASSO with penalization
parameter λn that satisfies λn/

√
n→ λ0 ∈ [0,∞). That gives β̂ . The remaining components in θ̂ are

just sample averages: DI , W , DIW , DτW , and DIDτW ;

Step 2. Construct a vector of residuals ε̃i. First, we need to regularize the LASSO estimate β̂

according to Chatterjee and Lahiri (2011). To do that, choose a sequence an = cn−δ with c ∈ (0,∞)

and δ ∈ (0,0.5) and construct β̃ by making β̃ j = β̂ jI{|β̂ j| ≥ an} for every j = 1, . . . ,K. In practice,
Chatterjee and Lahiri (2011) find that an ∈ {0.0125,0.05,0.125,0.25} work well in simulations
with n = 250, X j drawn from a standard Gaussian, and |β j| ≤ 6. For δ = 0.25, these values of
an correspond to c ∈ {0.05,0.2,0.5,0.99} in the rule an = cn−δ . We use an = 0.05 for our results
in section 4, but find that our results are consistent across an ∈ {0.05,0.1,0.2}. Take θ̂ from the
previous step, replace β̂ with β̃ , and call the resulting vector θ̃ . The vector of residuals ε̃i is

ε̃i =



DI
i −Xiβ̃

DI
i −DI

W ′i −W ′

DI
iW
′
i −DIW

′

Dτ
i W ′i −DτW ′

DI
i D

τ
i W ′i −DIDτW

′


, (A.4)

for i = 1, . . . ,n;

Step 3. Simulate bootstrap residuals ε∗i . Define ε = 1
n ∑

n
i=1 ε̃i. Construct a sample of residuals

{ε∗1 , . . . ,ε∗n} by drawing n observations randomly and uniformly with replacement from the set of
centered residuals {ε̃1− ε, . . . , ε̃n− ε};

Step 4. Simulate bootstrap data. Take the sample of bootstrap residuals of the previous step and
construct the bootstrap sample of data,


DI

i
∗

DI
i
∗∗

W ∗i
′

DIW ∗i
′

DτW ∗i
′

DIDτW ∗i
′

=



Xiβ̃

DI

W ′

DIW
′

DτW ′

DIDτW
′


+ ε
∗
i , (A.5)

for i = 1, . . . ,n;

Step 5. Compute bootstrap estimates θ ∗. Apply the same LASSO estimator of Step 1 to the sample
of DI

i
∗ and Xi to compute β ∗. Take sample averages of DI

i
∗∗, W ∗i , DIW ∗i , DτW ∗i , and DIDτW ∗i . Call

2



these sample averages DI∗, W ∗, DIW
∗
, DτW ∗, and DIDτW

∗
, respectively. Stack all these estimates

in the vector θ ∗;

Step 6. Compute the bootstrap distribution. Repeat Steps 3–5 B times, e.g., B = 1,000. For each
repetition, record bootstrap estimate θ ∗b , b = 1, . . . ,B. Compute T ∗n,b =

√
n
(

G(θ ∗b )−G(θ̃)
)

for
each b. The bootstrap distribution of T ∗n is approximately equal to the empirical distribution of T ∗n,b
over b = 1, . . . ,B, given the original sample. This empirical distribution is a consistent estimator for
the distribution of

√
n
(

G(θ̂)−G(θ)
)

, which interests us;

Step 7. Compute standard errors. Compute the variance-covariance matrix of the bootstrap
distribution of T ∗n from the previous step. This is a consistent estimator for the asymptotic variance-
covariance matrix of

√
n
(

G(θ̂)−G(θ)
)

. Take this matrix, divide by n, and take the square root.

The elements of the main diagonal are valid standard errors for (λ̂ , µ̂);

Step 8. Compute confidence set. Let 1−α be the desired asymptotic confidence level. Compute
the 1−α quantile of the distribution of ‖T ∗n ‖, where ‖ · ‖ is the Euclidean norm. Call that 1−α

quantile t̂n(1−α). The joint confidence set for (λ ,µ) is given by

In,1−α =
{

g ∈ R3 : ‖g−G(θ̂)‖ ≤ n−1/2t̂n(1−α)
}
.

If the researcher only desires a confidence set for one individual parameter, e.g., λ , simply repeat
the procedure above for the first coordinate of T ∗n .

We now consider inference on P[Ist ]. The researcher first obtains λ̂ using experimental data in a
certain region s0 and time period t0. For a different region s or time period t, the researcher obtains
a publicly reported positivity rate, that is, P[Ist |τst ]. Combining the two numbers with Equation 9
gives an estimate for P[Ist ],

P̂[Ist ] =
P[Ist |τst ]

λ̂ (1−P[Ist |τst ])+P[Ist |τst ]
.

Note that, given P[Ist |τst ], P̂[Ist ] a decreasing function of λ̂ . Thus, if the 1−α confidence
interval for λ is [λ̂l, λ̂u], then a 1−α confidence interval for P[Ist ] can be constructed by[

P[Ist |τst ]

λ̂u(1−P[Ist |τst ])+P[Ist |τst ]
;

P[Ist |τst ]

λ̂l(1−P[Ist |τst ])+P[Ist |τst ]

]
.

Appendix B. Accounting for seasonal variation in α0

In the main text, we assumed that the likelihood ratio λ = α1

α0 is constant across time and
space. This assumption might be considered especially problematic for α0

st = P[σst |Ic
st ], which is the
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fraction of symptomatic individuals among uninfected. In fact, clinical symptoms, such as cough
and runny nose, might exhibit strong seasonal variation due to the flu season.

One way to accomplish such an adjustment is to rely on data on “influenza-like illnesses” (ILI)
from the CDC, which are defined as exhibiting “fever plus cough or sore throat” and no other
known causes of these symptoms, other than influenza. Specifically, the CDC publishes weekly
data on the ratio of outpatient visits that exhibit ILI symptoms during the flu season, relative to the
non-flu-season baseline. We denote this ILI ratio as rili

t .
To utilize such ILI data, one will need to make the following additional assumption:

Assumption D. Time variation in the probability of being symptomatic for uninfected persons
α0

t is proportional to variation in the ILI ratio: α0
t = α0 · rili

t

With this assumption, one can use ILI ratios from the CDC for the 2020-2021 flu season
to adjust our latent COVID-19 prevalence measures, see www.cdc.gov/flu/weekly/weeklyarch
ives2020-2021/data/senAllregt11.html. This data measures the percentage of outpatient visits due
to ILI, during the flu season, relative to the non-flu season, denoted by rili

t . We use this adjustment
to re-calculate our latent COVID-19 prevalence measures and create the time series in Figure B.3
below.

Figure B.3: Time series of latent COVID-19 prevalence in Utah, from April 2020 to February 2021.
The red dashed line displays our baseline latent COVID-19 prevalence P(Ist), using a constant α0.
The grey line uses adjustments for the 2020-2021 flu season, using α0

t = α0 · rili
t , where rili

t is the
ratio of influenza-related illness (ILI) outpatient visits during a specific week in the 2020-2021 flu
season, relative to visits for ILI during non-flu season months.

We draw two conclusions from this figure. First, our method can relatively easily be adjusted to
take account for time variation of influenza-like illnesses during the flu season, if one is willing to
use Assumption D. Second, even without adjustments for the flu season, our COVID-19 prevalence

4

https://www.cdc.gov/flu/weekly/weeklyarchives2020-2021/data/senAllregt11.html
https://www.cdc.gov/flu/weekly/weeklyarchives2020-2021/data/senAllregt11.html


estimate provides a lower bound to the latent prevalence of COVID-19 after adjustment for the flu
season.

Appendix C. Additional Estimates

This appendix produces unweighted estimates and estimates from two subsamples of recruitment
from our field study.

Table C.1: Unweighted Key parameters from Randomized Testing

In panel A, we report estimates of α0, α1, and λ = α1/α0, using our experimental data from Utah
from May to July 2020. All columns use LASSO to select variables that predict being infected using
different sets of variables to select. In Column 1, we report estimates allowing the LASSO to choose
from all symptomatic variables in our data, such as fever and anosmia. In Column 2, we report
estimates allowing LASSO to choose from all symptomatic and nonsymptomatic variables, such as
working out side of the home. Columns 3 and 4 include interactions up to three-way interactions
of symptomatic and symptomatic and nonsymptomatic variables, respectively. All estimates are
unweighted for sampling and estimates with weighting are reported in 2. Bootstrapped standard
errors and 95 percent confidence intervals are reported in parentheses and square brackets following
the procedure in Appendix A.

Symptoms
Level Three-way interactions

Symptom Symptom and Symptom Symptom and
nonsymptom nonsymptom

(1) (2) (3) (4)

A: Parameter estimates (unweighted)
α1 0.054 0.056 0.054 0.307

(0.001) (0.004) (0.005) (0.023)
[0.052,0.057] [0.048,0.064] [0.044,0.065] [0.262,0.352]

α0 0.004 0.004 0.004 0.019
(0.001) (0.004) (0.001) (0.014)

[0.002,0.006] [0.000,0.011] [0.002,0.006] [0.000,0.046]

λ 13.845 14.321 13.845 16.168
(0.058) (0.022) (0.461) (0.109)

[13.732,13.959] [14.277,14.364] [12.941,14.749] [15.955,16.382]
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Table C.2: Key parameters from Randomized Testing - In Person and Letter Recruitment Separately

This table replicates Column 1 of Table 2, with the full sample (column 1), the in person recruitment
(Column 2) and the letter recruitment (Column 3) samples. In panel A, we report estimates of α0,
α1, and λ = α1/α0, using our experimental data from Utah from May to July 2020. All columns
use LASSO to select variables that predict being infected using all symptomatic variables in our data,
such as fever and anosmia. In panel B, we report a test of our main assumption A, given in equation
(7). All estimates are weighted for sampling. Bootstrapped standard errors and 95 percent confidence
intervals are reported in parentheses and square brackets following the procedure in Appendix A.

Symptoms
Level

All Obs. In Person Letter Recruitment
(1) (2) (3)

A: Parameter estimates (sampling weighted)

α1 0.057 0.085 0.055
(0.001) (0.002) (0.002)

[0.054,0.059] [0.082,0.088] [0.051,0.060]

α0 0.004 0.004 0.003
(0.001) (0.001) (0.002)

[0.002,0.005] [0.002,0.007] [0.000,0.007]

λ 16.354 20.333 16.039
(0.058) (0.100) (0.058)

[16.241,16.468] [20.137,20.529] [15.925,16.152]

B: Test of conditional independence

µ 1.022 1.143 0.625
(0.515) (0.691) (0.871)

[0.013,2.032] [0.000,2.496] [0.000,2.332]
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