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Abstract—Models of human perception – including perceptual “laws” – can be valuable tools for deriving visualization design 
recommendations. However, it is important to assess the explanatory power of such models when using them to inform design. We 
present a secondary analysis of data previously used to rank the effectiveness of bivariate visualizations for assessing correlation 
(measured with Pearson’s r) according to the well-known Weber-Fechner Law. Beginning with the model of Harrison et al. [1], we 
present a sequence of refinements including incorporation of individual differences, log transformation, censored regression, and 
adoption of Bayesian statistics. Our model incorporates all observations dropped from the original analysis, including data near 
ceilings caused by the data collection process and entire visualizations dropped due to large numbers of observations worse than 
chance. This model deviates from Weber’s Law, but provides improved predictive accuracy and generalization. Using Bayesian 
credibility intervals, we derive a partial ranking that groups visualizations with similar performance, and we give precise estimates of 
the difference in performance between these groups. We find that compared to other visualizations, scatterplots are unique in 
combining low variance between individuals and high precision on both positively- and negatively- correlated data. We conclude with 
a discussion of the value of data sharing and replication, and share implications for modeling similar experimental data. 
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1 INTRODUCTION 

Perceptual laws, such as Weber’s Law, offer the tantalizing potential 
to explain differences in the performance of visualizations, simplify 
design recommendations, and drive automated visualization systems. 
However, many such laws have long been studied – not without con-
troversy [2] – using simple models that aggregate individual differ-
ences before modelling. Harrison et al. [1] follows from this tradition, 
investigating the relationship between the correlation of two variables 
(measured using Pearson’s r) and the precision of people’s estimates 
of that correlation using different visualizations (measured using just-
noticeable differences). In accordance with Weber’s Law, they fit lin-
ear regressions to the means of the just-noticeable differences for each 
value of r in each condition, not to the individual observations directly.  

By removing a large portion of the variance in the data (individual 
differences), they complicate the use of their results in deriving design 
recommendations. Even if we establish that one visualization is better 
than another on average, we need to understand how much individual 
variation plays a part. Given visualization B that is slightly worse than 
visualization A on average, but which is more consistently good for a 
range of people, we might be better to recommend the use of visuali-
zation B for a broad audience. In other words, a visualization that is 
slightly better on average may still be much worse for some subset of 
the population. From a design perspective, this is not unlike an archi-
tect who designs every home for the average family of 2.6 people. 
Individuals, not group means, digest visualizations. 

In this paper, we conduct a secondary analysis of the data in Har-
rison et al. [1]. Much of this paper focuses on understanding and ac-
counting for individuals’ differences in precision of estimation in or-
der to derive parametric models that can predict the expected precision 
of each visualization technique. Given an appropriate parametric 
model, we can estimate interpretable differences between visualiza-
tion types (e.g., as a ratio of just-noticeable differences) in order to 
judge whether these differences have practical significance.  

We begin by revisiting the experimental setup and subsequent data 
analysis of Harrison et al. [1]. We then progress through a series of 
model refinements, starting with a basic linear model. We first address 
problems of non-constant variance, presenting evidence that a log-lin-
ear model – which does not follow Weber’s Law – better describes the 
relationship between just-noticeable differences and objective corre-
lation. We then augment our model with censored regression to in-
clude all observations in the analysis, including outliers, data near ceil-
ings resulting from features of the data collection process, and entire 
visualizations originally dropped due to large numbers of data points 
worse than chance. Finally, we adopt a Bayesian model with linear 
mixed effects, which allows us to account for correlated observations 
within participants and incorporate knowledge from previous work 
into our analysis. 

This model allows us to directly and quantitatively answer ques-
tions left largely unaddressed by the original paper: given a dataset 
with unknown correlation, how well would we expect each visualiza-
tion technique to perform (and what is the uncertainty associated with 
this estimate)? What are the expected differences in performance? 
Which visualizations are effectively equivalent? We identify clusters 
of visualizations with similar precision and quantify the expected dif-
ference in precision between clusters, yielding a comprehensive set of 
practical recommendations in the form of a partial ranking of visuali-
zations of correlation. This partial ranking provides concrete guidance 
to practitioners by grouping visualizations with similar performance 
and by giving precise estimates of the difference in performance be-
tween groups of visualizations. Most concretely, we find that scatter-
plots are unique in yielding high precision of estimation of correlation 
for both positively- and negatively- correlated data while also having 
low variation in performance between individuals. This yields a 
straightforward design recommendation grounded in data. 

Finally, we discuss the applicability of similar models to other 
problems of estimating the perceptual performance of visualizations 
from experimental data. Censored regression offers a flexible way to 
account for a class of experimental artifacts likely to be found in other 
perceptual experiments in visualization, and examination of individual 
differences in general yields models with greater explanatory power. 
Our Bayesian approach also facilitates future work by providing a 
principled way to build upon our results.  
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2 BACKGROUND 

2.1 Harrison et al. experimental setup 

Harrison et al. [1] describe an experiment in which they model the 
relationship between the correlation of a pair of variables, measured 
using Pearson's r, and viewers’ precision in estimating this correlation 
in a variety of different visualization types. This experiment employs 
a staircase procedure: participants are shown pairs of visualizations of 
correlation (e.g., two scatterplots) and asked to choose which has the 
higher correlation. Through successive choices, the procedure hones 
in on each participant’s just-noticeable difference (JND) for a given r: 
the minimum difference in r at which they can notice a difference be-
tween the correlations of two visualizations 75% of the time. The ex-
periment includes the following variables: 

 9 visualizations: scatterplot, donut, line, ordered line, parallel co-
ordinates, radar, stacked area, stacked bar, and stacked line (see 
Figure 3 in Harrison et al. [1]) 

 2 directions: positive or negative correlation. 

 2 approaches: from above, indicating that the reference value of 
r was compared to values of r above it in the staircase procedure; 
or from below, indicated it was compared to values of r below it. 

 6 values of r: [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. 

Visualizations and directions were analyzed as visualization × direc-
tion pairs, of which there are 18 (e.g., scatterplot–negative, scatter-
plot–positive, parallel coordinates–positive, etc.). 1687 participants 
were recruited using Mechanical Turk. Each participant completed 4 
staircase tasks corresponding to one visualization × one direction × 
two values of r × both values of approach. For example, a single par-
ticipant might be assigned to complete 4 staircase tasks for scatter-
plot–negative: [r = 0.3 from above], [r = 0.3 from below], [r = 0.7 
from above], and [r = 0.7 from below]. 

2.2 Harrison et al. analysis 

Classic work on perceptual laws commonly takes the approach of first 
averaging individual responses over groups before fitting models. This 
includes work employing Weber’s Law, as in Rensink & Baldridge 
[3], but also work employing Stevens’ Power Law [4]. This approach 
has been criticized for failing to account for individual differences 
[2,5], finding, for  example, that such laws may not fit as originally 

described [5] or that variation between individuals complicates 
straightforward application of the laws in practice [2]. 

Harrison et al. [1] used such an approach, following after Rensink 
& Baldridge [3]. First, they took the mean of all individual observa-
tions of JND within each condition (where each condition is defined 
as a unique combination of visualization × direction × approach × r). 
They then modelled the relationship between the value of r and that 
within-condition mean JND (Fig. 1). Thus, their model describes the 
relationship between r and the mean performance of a group of people 
from the population, but not the performance of any individual. 

What this omits is any sense of the variance in individual perfor-
mance, which diminishes the explanatory power of such models. For 
example, it may be that visualization A exhibits high precision of es-
timation (low JND) in the average case – but that its variance is higher 
than visualization B, which performs slightly worse on average but is 
more consistent across individuals. Without considering variance, we 
have no way of knowing whether such differences exist, and we may 
be led, for example, to choose to deploy a visualization that has 
slightly better average-case performance but which elicits much worse 
performance for some substantial portion of the population. This is 
exactly the problem of bias-variance tradeoff, well-known in machine 
learning [6]. Indeed, by modelling individual differences, Cleveland 
et al. [2] found that variance undermines recommendations to trans-
form areas according to parameters derived by a similar mean-fitting 
procedure (Stevens’ power law) in visualizations of circles on maps. 

Analyzing group means only also obscures problems with model 
fit by discarding large portions of the variance (essentially all individ-
ual variation) and reducing a large sample of data to comparatively 
few data points. This explains why Harrison et al. [1] (like Rensink & 
Baldridge [3]) found very high R2 values describing the fit of their 
models (as high as 0.98 for one visualization). But when we attempt 
to interpret these values of R2 – for example, as the percent of variation 
explained by the model – something is missing. 98% of individual 
variation is not explained by this model, as individual variation was 
discarded before the model was fit. We might instead interpret this as 
indicating 98% of the variation in the location of the mean was ex-
plained, but this is a much less useful thing to know if we wish to 
understand how individuals perceive visualizations. As we will see 
below, if we try to fit linear models to individual observations directly, 
the linear model does not exhibit the best fit. 

Finally, by discarding individual observations, we cannot use the 
error from these models to estimate significant differences between 
conditions. Harrison et al. do not use their parametric models to esti-
mate differences between conditions; they use the nonparametric Wil-

Fig. 1. High-level comparison of the Weber’s Law-based modelling approach of Harrison et al. [1] and the approach taken in this paper as ap-
plied to the scatterplot–positive condition. The approach adjustment (part 2) for the Weber model is necessary because when the approach is 
from above, JND is underestimated (as higher values of r tend to have lower JND), and vice versa when the approach is from below. The correc-
tion moves r up by half the mean JND at that value of r when from above, and down by half the mean JND when from below. See Section 3 for 
more detail on this problem and the alternative approach we take to addressing it in our model. 
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coxon rank-sum test instead. In this paper we propose a model of suf-
ficient specificity that we can conduct parametric estimation of differ-
ences; this allows us to not only examine the differences between con-
ditions but to clearly describe the expected magnitude of those differ-
ences (i.e., effect sizes) using parameters from the model. By employ-
ing parametric models, we can derive interpretable effect sizes – for 
example, ratios of just-noticeable differences, from which we can say, 
“visualization A is x times more precise than visualization B”. 

3 MODEL 1: LINEAR MODEL 

We begin our secondary analysis by incorporating individual differ-
ences to model just-noticeable differences directly on raw values of r. 
A first pass at this would be to simply use a linear regression. Such a 
model might look like: 

 
,௩ݕ ൌ ௩,ଵߚ  ݎ௩,ଶߚ  ߳
߳ ~ ࣨሺ0, ௩ଶሻߪ

 

 
This is a fairly standard linear regression. For each visualization × di-
rection pair v, each JND (ݕ,௩) is equal to a linear function of ݎ with 
intercept ߚ௩,ଵ and slope ߚ௩,ଶ plus some normally-distributed error ߳. 
Note that the intercept, slope, and variance of the error (ߪ௩) are all 
dependent on v, the particular visualization × direction pair. 

Unfortunately, this straightforward model leaves out consideration 
of approach – half of the JNDs were determined by a procedure hav-
ing people compare the reference r to higher values of r (an approach 
from above), and half compared to lower values of r (from below). 
When the approach is from above, the values of JND are underesti-
mated (because higher values of r tend to have lower JND), and when 
the approach is from below, JND is overestimated. This effect is visi-
ble in Fig. 2: note the two systematically different estimates of JND 
depending on approach. Harrison et al. used the correction described 
by Rensink & Baldridge [3] to address this: they adjusted the value of 
r by moving it up by half the mean JND at that value of r when from 
above, and down by half the mean JND when from below (see Fig. 1). 

However, this adjustment is only well-defined if we are using the 
within-condition means of r as our unit of analysis. When fitting a 
model to individual observations, we must find another way to account 
for approach. Again consider Fig. 2: because each condition causes a 
bias in the opposite direction, we could take the average of the two fit 
lines to approximate the outcome y for each r (the black line in Fig. 
2). Such a model can be fit by including approach and its interaction 
with r in the regression. We code approach as a sum-to-zero contrast, 
defined by the variable ܽ: 

 

ܽ ൌ ൜
െ1, if	݄ܽܿܽݎ	is	݂݉ݎ	݁ݒܾܽ
 	1, if	݄ܽܿܽݎ	is	݂݉ݎ	ݓ݈ܾ݁ 

 
We then add the effects of approach and approach ൈ r to the model 
(new terms in red): 
 

,௩ݕ ൌ ௩,ଵߚ  ݎ௩,ଶߚ  ௩,ଷܽߚ  ݎ௩,ସܽߚ  ߳
߳ ~ ࣨሺ0, ௩ଶሻߪ

 

 
Because these are sum-to-zero contrasts, the overall slope (ߚ௩,ଵ) and 
intercept (ߚ௩,ଶ) for r are defined with respect to the mean of the two 
levels of ܽ  – in other words, the slope and intercept describe the mean 
of the slope and intercept of the above and below levels, exactly the 
black line in Fig. 2.  

3.1 Problems with the linear model 

The linear model1 exhibits several issues of fit that indicate violations 
of model assumptions, illustrated in Fig. 3A. Two such issues in par-
ticular are non-constant variance and skewed residuals, both of which 

                                                                 
1 This and all other non-Bayesian models in this paper were fit using the gam-
lss procedure in R [18]. 

are violations of the assumptions inherent in the distribution of the 
error term ߳. 

Non-constant variance (heteroscedasticity). As defined in the 
model, the variance of the error, ߪ௩ଶ, is constant with respect to r. That 
is, for a given visualization × direction pair v, the variance of y (the 
JND) is assumed to be the same no matter what the value of r is. Fig. 
3A.1 shows a sample plot of the model fit for scatterplot–negative: we 
can see that as r increases, the variance of the residuals gets smaller, 
violating this assumption. 

We can assess this assumption for all visualization × direction pairs 
simultaneously by examining the differences between the observed 
JNDs and their predicted values (the residuals). If the constant vari-
ance assumption holds, the scale of the residuals should be the same 
for all predicted values of JND. Fig. 3A.2 shows that at low values of 
JND, the variance of the residuals is lower than at higher values of 
JND. This is consistent with the example fit of scatterplot–negative, 
as low values of JND correspond to high values of r. Non-constant 
variance is common in data with a well-defined lower bound: here, 
JND cannot be less than 0, and as we approach 0, performance tends 
to cluster together more tightly. 

Skewed residuals. Data with a lower bound also often exhibits the 
second model violation seen here: skewed residuals (more generally, 
non-normal residuals). We can think of JND as “bunching up” the 
closer it gets to 0; besides resulting in less variance, this also explains 
the skew in the residuals seen in Fig. 3A.3. The residuals do not follow 
a normal distribution, which is not unexpected given the bounded na-
ture of the data. While it is sometimes the case that we can get away 
with assuming bounded data is normally-distributed, such simplifica-
tions tend to break down the closer we get to the boundaries; here, the 
assumptions are clearly violated and suggest we should consider other 
models. This makes sense: looking at Fig. 3A.1, JND gets quite close 
to the 0 boundary. 

4 MODEL 2: LOG-LINEAR MODEL 

Fortunately, a log transformation of the response is often sufficient in 
cases of non-constant variance and skewed residuals to solve both 
problems simultaneously, and often shows up in models of human per-
formance [7]. The applicability of such a transformation is hinted at 
here, as the residual distribution has the approximate appearance of a 
log-normal distribution. We can more systematically justify this trans-
formation by fitting a Box-Cox transformation [8] to the data, whose 
parameter ߣ describes a power transformation of JND that stabilizes 
variance. The Box-Cox procedure for this data estimates ߣ ൌ 0.0292 
with a 95% confidence interval of ሾെ0.005, 0.0635ሿ, which includes 
0 (the log transform) and excludes 1 (identity; i.e. the linear model) at 
p < 0.00001 (LR ߯ଶሺ1ሻ ൌ 2756.77). 

 
Fig. 2. Example of data and linear regression fits for the different val-
ues of approach for parallel coordinates–negative. 
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Log transformation also has the useful property that the resulting 
model retains some interpretability: coefficients of this model that de-
scribe additive differences on the log-scale correspond to multiplica-
tive differences on the original data scale (in other words, we will be 
able to use this model to make claims like, “visualization A yields x 
times the precision of visualization B for estimating correlation”). The 
log-linear model, which deviates from Weber’s Law, is as follows: 
 

log൫ݕ,௩൯ ൌ ௩,ଵߚ  ݎ௩,ଶߚ  ௩,ଷܽߚ  ݎ௩,ସܽߚ  ߳
߳ ~ ࣨሺ0, ௩ଶሻߪ

 

 
Comparing the residual fit of the log-linear model to the linear model 
(Fig. 3B), we can see that the fit no longer suffers from problems of 
non-constant variance or highly-skewed residuals. This fit also exhib-
its lower AIC than the linear model (െ11683 versus െ10037), indi-
cating greater predictive validity.2 The residual distribution more 
closely matches the normal distribution assumed by the model: Its re-
siduals exhibit less skewness than the linear model (െ0.29 versus 
                                                                 
2 Model comparison by the Akaike Information Criterion (AIC) is asymptoti-
cally equivalent to leave-one-out cross validation [19]. The log-linear model 
was fit using a log-normal error distribution (rather than the equivalent log 
transformation of responses with a normal error distribution shown here) so 
that its AIC can be compared to the linear model. 
3 An alternative to the log-linear model might be a linear model with variance 

0.96) and less excess kurtosis (0.18 versus 2.05), where the normal 
distribution is 0 for both measures. In addition, because all values in 
ሺെ∞,∞ሻ are mapped onto ሺ0, ∞ሻ by the log transformation, we 
have solved another problem for free: the linear model can make non-
sensical predictions, such as JNDs that are less than 0, that the log-
linear model does not.3 Thus, the log-linear model more accurately 
describes the observed distribution of JND for a given r, visualization, 
and direction than the linear model, and should be preferred. 

4.1 Data dropped from the analysis so far 

So far, we have restricted our analyses to those data points analyzed 
in the original work. The original work used two criteria to exclude 
data from analysis: 

Outliers. Within each condition (visualization × direction × ap-
proach × r), observations outside of 3 median absolute deviations from 
the median were dropped from analysis. The original paper justified 
this as a way to address non-normality in the data (although as we have 
seen above, it did not). Since we have addressed the issue of normality 

proportional to r. This addresses non-constant variance but does not address 
skewed residuals. Such a model has AIC of െ10668, skewness of 0.95, and 
excess kurtosis of 1.36 (i.e. it exhibits worse fit and less-normal residuals com-
pared to the log-linear model). It also does not gain the advantage of the log 
transform in restricting predicted JNDs to be positive. 

 
Fig. 3 Comparison of fits of the linear model (Section 3) and the log-linear model (Section 4). Example fits of each model to scatterplot–negative 
are shown in A.1 and B.1. Plots of normalized residuals for all visualization × direction pairs are shown in A.2 and B.2. Density plots of normal-
ized residuals with comparison to the standard normal distribution are shown in A.3 and B.3. 
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through log transformation, this criteria is no longer particularly rele-
vant. Since our goal is to explain as much of the data as possible, we 
believe there is no additional need to drop outliers from the analysis. 

Data worse than chance. In Harrison et al., visualization × direc-
tion pairs with more than 20% of JNDs greater than 0.45 were dropped 
(6 out of 18 pairs). The 0.45 threshold represents the chance threshold 
for this experiment: values of JND near or beyond this threshold indi-
cate a failure on a participant’s part to judge degree of correlation bet-
ter than could be done by answering at random. However, removing 
visualizations with large numbers of observations worse than chance 
addresses only part of the problem. Many of the remaining tested vis-
ualization × direction pairs still have observations at or beyond the 
chance boundary. The problem is that we have excluded certain visu-
alization × direction pairs for having too many observations worse 
than chance, but have done nothing to address those observations 
worse than chance that remain in the visualizations we do analyze.  

Importantly, when points are near or beyond this boundary, we can 
say that they probably represent JNDs of 0.45 or worse, but that we 
do not know the exact JND due to the constraints of the experiment. 
This type of data can be analyzed using censored regression. 

5 MODEL 3: CENSORED LOG-LINEAR MODEL 

Censored regression can be used when some of the observed data 
points do not have a known value, but instead are known to lie above 
(or below) a certain threshold [8,9]. While we do not know the exact 
value of points beyond the threshold, we still know how many points 
were observed beyond the threshold, and it is this information that we 
can use to fit the model (see example in Fig. 4). While we cannot re-
liably observe certain values of JND – either because the setup of the 
experiment makes them indistinguishable from chance, or because of 
ceilings in observable JND due to the bounds on r – we can use obser-
vations close to or beyond those thresholds to estimate the proportion 
of values we might expect to see above them. 

There are three potential ceilings in this experiment. The first two 
were discussed in Harrison et al. but not addressed by their modelling 
procedure, and the third is one we identified in our own analysis:  

 Chance = 0.45: Above the chance threshold, random guessing is 
equally as effective, so we should not expect values of JND much 
higher than this (see Fig. 5 and Fig. 6). The chance boundary was 
determined by simulating a participant guessing randomly in the 
staircase procedure; see Section 3.2 of Harrison et al [1]. 

 Ceiling from above = 1 – r: When the approach is from above, 
JND cannot be higher than 1 െ  as we cannot generate a plot ,ݎ
with an r value greater than 1 (see Fig. 5). 

 Ceiling from below = r: When the approach is from below, JND 
can be less than r (indicating comparison to some ݎ ൏ 0, which 

was allowed in the experimental setup [1]). However, the data 
suggests that the threshold at 0 in some visualizations may nev-
ertheless have caused a ceiling in JND (perhaps due to some per-
ceptual difference in positive or negative correlations) – see Fig. 
6. We therefore take the conservative approach to censor this 
data when the approach is from below. 

Finally, it is worth noting that we cannot simply censor at the thresh-
olds described, as the data tends to bunch up just below these thresh-
olds. We therefore censor at 0.05 less than these thresholds, which was 
chosen based on examining plots like Fig. 5 and Fig. 6 to ensure that 
the dense set of observations just below the thresholds are censored. 
We also tried censoring further below (at 0.1 less than these thresh-
olds) and saw similar results from the model, suggesting 0.05 is a rea-
sonable offset here. 

To incorporate the censoring described, we first define a censoring 
threshold ܿ,௩ that varies depending on r and the approach: 

 

ܿ,௩ ൌ ൜
minሺ0.95 െ ,ݎ 0.4ሻ, ܽ ൌ െ1
minሺݎ െ 0.05, 0.4ሻ, ܽ ൌ 1  

 
Then we change the log-linear model to predict a latent variable ݕ∗ 
instead of ݕ: 

 
log൫ݕ,௩

∗ ൯ ൌ ௩,ଵߚ  ݎ௩,ଶߚ  ௩,ଷܽߚ  ݎ௩,ସܽߚ  ߳
߳ ~ ࣨሺ0, ௩ଶሻߪ

 

 
Finally, we redefine y as being equal to the censoring threshold at the 
corresponding value of r if its observed value is greater than that 

 
Fig. 4. An example of the use of censored regression to estimate a 
model when some of the data has been capped at a ceiling.	
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Fig. 5. Data in two visualization × direction pairs for approach from 
above. The ceilings used to derive censoring thresholds for this ap-
proach are shown. Note how data bunches up near those thresholds. 
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Fig. 6. Data in two visualization × direction pairs for approach from be-
low. The ceilings used to derive censoring thresholds for this approach 
are shown. Note how data bunches up near those thresholds. 
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threshold.4 The model then predicts ݕ based on the latent variable ݕ∗ 
and the censoring threshold c: 

 

,௩ݕ ൌ ቊ
,௩ݕ
∗ , ,௩ݕ

∗  ܿ,௩
ܿ,௩, ,௩ݕ

∗  ܿ,௩
 

 

5.1 Bias in uncensored model 

The censored model allows us to address problems of bias caused by 
JND being underestimated near the ceilings described above. See Fig. 
7, which compares censored models for line–positive and donut–pos-
itive to uncensored models fit to the same data. Note that where large 
amounts of observations are worse than chance, the uncensored model 
estimates people as having higher precision (lower JND) than we 
should expect. This bias conspires to make low-performing visualiza-
tions seem better than they are, motivating our use of censored regres-
sion here. This underscores the problem with excluding some visuali-
zation × direction pairs based on the chance criteria without account-
ing for chance in the pairs we do analyze, and demonstrates how cen-
soring lets us include conditions excluded from the original analysis. 
Censoring addresses these issues without sacrificing the quality of the 
fit for conditions that are not affected by these issues, and thus is pref-
erable to the uncensored model. 

6 MODEL 4: BAYESIAN CENSORED LOG-LINEAR MODEL 

In this section we describe a Bayesian variant of the censored log-
linear model. In Bayesian modelling, we specify our prior beliefs 
about a model as probability distributions, and then update our beliefs 
based on observed evidence (the data collected in an experiment) [11]. 
These updated beliefs are called posterior distributions.  

This approach yields a richer estimation of the parameters of inter-
est – complete posterior probability distributions of all parameters – 
instead of point estimates and confidence intervals. Such posteriors 
offer an easy way for others to build on our work by using our poste-
rior estimates to inform prior distributions in future work. As we will 
see, Bayesian estimation also provides a straightforward way to derive 
the expected performance of a visualization (with uncertainty) on any 
hypothetical dataset of correlations that can be expressed as a proba-
bility distribution over r. We largely adopt Kruschke’s [12] approach 
to Bayesian experimental statistics by using 95% credibility intervals5 
of posterior distributions to estimate differences between parameters. 

6.1 Participant effects 

As a final refinement to the model, we also incorporate linear mixed 
effects modelling [12,13]. Specifically, we add a varying-intercept 
random effect dependent on participant.6 This effect helps account for 
the fact that we have taken multiple measurements from each partici-
pant in the experiment (4 each) by modelling each participant’s aver-
age performance as an offset from the fit line. Without accounting for 
this, we effectively are treating our data as having 4 times the number 
of independent observations as we actually have, causing us to over-
estimate the precision of our parameters (a problem known as pseu-
doreplication [15], which motivates related modelling approaches for 
repeated measures, such as within-subjects ANOVAs). By incorporat-
ing random effects, we improve the generalizability of our estimates 
of other parameters by accounting for the correlation between obser-
vations from the same participant. 

                                                                 
4 As a result of this transformation of the responses and the inclusion of data 
not included in previous models, the censored model cannot be compared to 
the previous models using AIC. However, we believe the theoretical justifica-
tion based on ceilings caused by the structure of the experiment and the ability 
of these models to accommodate data dropped previously motivate the use of 
censored regression here, and for visualization × direction pairs far from those 
ceilings the fit is similar to the uncensored log-linear model. 

We include a random intercept by estimating an offset ܷ from the 
intercept for each participant k: 
  

log൫ݕ,௩
∗ ൯ ൌ ௩,ଵߚ  ݎ௩,ଶߚ  ௩,ଷܽߚ  ݎ௩,ସܽߚ  ߳  ܷ
߳ ~ ࣨሺ0, ௩ଶሻߪ
ܷ ~ ࣨሺ0, ߬௩ଶሻ

 

 
ܷ is called a random effect because each value of it is assumed to be 
randomly drawn from the distribution ࣨሺ0, ߬௩ଶሻ. That is, each partici-
pant comes from some broader population, and their differences in av-
erage performance are distributed normally (on the log scale). The pa-
rameter ߬௩ଶ is the variance of participants’ average performance for 
visualization × direction pair v. This allows us to estimate how varia-
ble participants’ performance is within each visualization × direction 
pair, which tells us how similar different individuals’ estimations are 
to each other for each visualization. As noted earlier, understanding 
how individuals vary compared to the rest of the group is an important 
consideration when deriving design recommendations meant to be ap-
plied broadly. 

6.2 Priors 

In order to fit a Bayesian model, we must also provide prior distribu-
tions for all unknown parameters. These represent our belief in the 
location of each parameter prior to running the experiment. In this pa-
per we use weakly-informed priors derived from the results of Rensink 
& Baldridge [3]. We use weakly-informed priors because we do not 
have data on all plot types, but can use knowledge of performance on 

5 Though we use 95% quantile intervals instead of 95% highest-density inter-
vals since these are invariant under the log transform. 
6 Several models with varying slopes and intercepts failed to show convergence 
within 1,000,000 iterations, likely due to the small number of observations per 
participant and the use of censoring. Visual inspection of per-participant slopes 
suggested low variance in slope, and since our question of interest here is that 
of variance in average performance more than sensitivity to r, we believe a 
varying-intercepts model suffices. 

            
Fig. 7. Comparison of models fit to all data for line–positive and donut–
positive with and without censoring, showing how censoring responds 
when some observations or many observations are censored. In con-
ditions with few censored observations (not shown), the censored 
model fit is virtually identical to the uncensored fit. 
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scatterplots to infer what range of performance we should expect on 
other plot types. The high-level goal of our priors is to express some 
skeptical, but informed, initial belief. For example, our priors on the 
slope and intercept: 
 

௩,ଵߚ ~ ࣨሺlogሺ0.45ሻ,1ሻ
௩,ଶߚ ~ ࣨሺ0,20ሻ

 

 
Our prior on the location of the intercept (ߚ௩,ଵ) is chance (log(0.45)), 
and our prior on the location of the slope (ߚ௩,ଶ) is flat (0). In other 
words, our prior mode is that each condition has no relationship be-
tween r and JND and is indistinguishable from chance. 

However, this is only the mode: we can use Rensink & Baldridge’s 
data to specify the prior variance of these parameters as encompassing 
a set of reasonable models by ensuring that believable models are 
within 1 or 2 standard deviations of the mean of the prior. While Ren-
sink & Baldridge did not fit log-linear models to their data, we can 
approximate a log fit to the data in their Figure 4 [3], giving an inter-
cept of ~ െ 1 and slope of ~ െ 2. Since | െ 1 െ log	ሺ.45ሻ| ൎ 0.20, a 
standard deviation of 1 (variance of 1) will easily cover models having 
intercepts 2 or 3 times as extreme as the scatterplot condition. If we 
wish our prior to include all models with an intercept even twice as 
steep as the scatterplot within 1 standard deviation, a standard devia-
tion of |െ2 ൈ 2| ൌ 4 (variance of 16; conservatively we round up to 
20) should suffice. 

We use a similar examination of Rensink & Baldridge’s Figure 4 
to estimate priors on the effect of approach, which was ~0.2, meaning 
a variance of 0.25 easily covers values of approach twice as extreme: 
  

௩,ଷߚ ~ ࣨሺ0,0.25ሻ
௩,ସߚ ~ ࣨሺ0,0.25ሻ 

 
Finally, we use relatively uninformed priors for variance parameters:7 
 

௩ଶߪ ~ InverseGammaሺ1,1ሻ
߬௩ଶ ~ InverseGammaሺ1,1ሻ

 

 
We fit the model using MCMC sampling in JAGS [16].8  

6.3 Performance on a hypothetical set of datasets 

We can use our model to derive the expected precision of estimation 
of a typical individual on an unknown dataset. Rensink & Baldridge 
[3] proposed doing this (equation 8 in that paper) by integrating the 
fitted line over a probability distribution of values of r one might ex-
pect to encounter in a given domain. Applied to the models in that 
paper, this method has the disadvantage that it cannot derive the un-
certainty associated with the calculated average performance, making 
it impossible to determine differences between visualizations. 

However, if we adopt the same approach in a Bayesian framework 
on models derived from individual observations, uncertainty is 
straightforward to derive in the form of the posterior distribution of 
expected JND. We can do this by drawing r values from a hypothetical 
distribution, for example a uniform distribution over the same space 
sampled in the experiment (we could use a more specific distribution 
if we had knowledge of expected correlation values in some domain): 
 

ݎ ~ ࣯ሺ0.3,0.8ሻ 
 

                                                                 
7 The inverse-gamma distribution is also the conjugate prior here, which facil-
itates convergence. 
8 Two pilot chains were run, and the Raftery-Lewis diagnostic [20] used to es-
timate a minimum chain length to convergence of ~70,000. We then ran two 
chains with burn-in of 100,000 and sample length of 100,000 each, thinned by 
10, for final sample size of 10,000 per chain. Convergence was assessed by 

We can then use MCMC sampling9 to obtain a posterior distribution 
of ߤ௩, the expected JND for the average person given for each visual-
ization × direction pair: 
 

logሺߤ௩ሻ ൌ ௩,ଵߚ   ݎ௩,ଶߚ
 

We can then rank visualizations by their expected performance on an 
unknown dataset (see results, below). Given a problem space with da-
tasets having some known/estimated distribution of r, we can easily 
re-compute rankings from the model. 

7 RESULTS OF FINAL MODEL 

Fig. 8.1 shows the results of our model in log space for each visuali-
zation. Harrison et al. used their model to derive a total ranking of all 
visualizations analyzed (i.e., a ranking that explicitly places each vis-
ualization either above or below every other visualization). However, 
they did not take the error in their model into account when deriving 
this ranking – given how close the estimates of participants’ precision 
is for many of the visualization types, it is likely that their relative 
positions in a total ranking are often simply due to chance.  

Because of this, we instead focus our results on a partial ranking, 
admitting that based on the available evidence there is little practical 
difference between certain visualization × direction pairs (though a 
total ranking is easily derived from our model, available in our sup-
plementary materials). Based on the method outlined in Section 6.3, 
we roughly group visualization × direction pairs into a partial ranking 
based on the expected average person’s performance integrated over 
the fit lines (Fig. 8.2). We can see four groups emerge. We then take 
the difference in expected precision between each successive group. 
This difference in means (on the log scale) corresponds to a ratio of 
geometric means on the original data scale; here we see that the visu-
alizations in each successive group yield at least 1.5x better precision 
(lower JND) than the previous group on average (Fig. 8.3).  

Note how the model accommodates the fact that several of the vis-
ualizations have many observations worse than chance (none of the 
models in the “indistinguishable from chance” group were included in 
Harrison et al.’s final analysis). Using censoring, we were able to for-
mulate a model such that we did not have to drop these conditions; 
instead, we can derive estimates of their performance, just with com-
paratively higher uncertainty – the posterior distributions for those 
conditions near chance are more diffuse than those with higher preci-
sion, and the difference between that group and the low precision 
group has much more uncertainty associated with it (it should be noted 
that “indistinguishable from chance” in Fig. 8.2 should be read “indis-
tinguishable from chance so far as this model and data can tell”). Ra-
ther than dropping these visualizations as in Harrison et al., we simply 
learn less about them from the model. Given a future experiment de-
signed to be more sensitive to JNDs in this range, we might still use 
these posteriors as priors in such an analysis. 

Finally, it is worth considering the expected variance in perfor-
mance between individuals. In the best-performing group, we find that 
variance is fairly similar between conditions (Fig. 9). While parallel 
coordinates–negative may be slightly more variable, the difference be-
tween it and scatterplot–negative is not credible. However, this is 
worth investigating further: with more data, we could estimate this 
difference more precisely, and also judge whether it has practical sig-
nificance for design implications. For now, all evidence seems to sup-
port a general recommendation for the use of scatterplots in nearly all 
cases – it is in the highest-performing group of visualizations for both 
negative and positively-correlated data, and its individual variance is 
comparable to (and likely slightly better than) its nearest contender in 

visual inspection of trace plots, density plots, and autocorrelation plots, and all 
parameters passed the Gelman-Rubin diagnostic [21] (multivariate potential 
scale reduction factor < 1.05). 
9 Conducted in the same sampling run used to fit the model. 



average performance (parallel coordinates). Parallel coordinates, on 
the other hand, has the disadvantage that it does not work equally well 
for negatively- and positively- correlated data. 

8 DISCUSSION 

In this section we discuss several aspects of our work, beginning with 
modelling perception according to “laws” as compared to more ex-
ploratory analysis, touching on the broader applicability and limita-
tions of our modelling approach, discussing replication and the value 
of Bayesian analysis to it, and concluding with design implications. 

8.1 Perceptual laws 

One implication of our work concerns the use of perceptual laws, such 
as Weber's and Stevens’ Laws. While valuable, these models should 
of course be subject to skepticism. Avoiding premature theoretical 
commitment is a core tenet of exploratory data analysis [17]. In our 
case, exposure to the data led us to a more accurate and actionable 
model, but which does not conform to Weber's Law. Moreover, these 
classic laws stem from research conducted over a half-century ago, 
and were likely shaped by the modelling methods available at the time 
(often by necessity amenable to calculation by hand). We can now 
bring more powerful statistical and computational methods to bear. In 
particular, we need not limit ourselves to analysis of averages only, 
and can instead account for individual differences.  

It is worth noting that Weber’s law is most likely to break down at 
extremes – such as r of .1 or .9. It is at these extremes where the log-
linear model disagrees most with the linear model; unfortunately the 
experiment analyzed in this paper collected data only in the range of 
.3 to .8. However, given the better description of the distributions of 
residuals, we expect a log-linear model to better describe these ex-
treme regions if tested in future work. 

8.2 Wide applicability of log  
transformation and censoring 

We believe that log transformations and censoring both have wide ap-
plicability in modelling human perception in visualization. Indeed, log 
transformations have been identified as both widely applicable and 
sorely underused in many areas, including human and biological mod-
els [7], despite the fairly approachable interpretation of them in our 
and others’ opinions [7]. In this work, we found that a log-normal dis-
tribution – rather than a normal distribution – better describes just-

noticeable differences in visualizations of correlation at a given value 
of r (yielding a model with lower AIC and less-skewed residuals). 

We believe that censored regression is broadly applicable in this 
space as well. Censoring allowed us to account for artifacts of the ex-
perimental design, such as the chance threshold, that doubtless occur 
in other studies of perception. These models also provide a principled 
way to learn something – but not too much – about conditions that 
have large numbers of observations that cross such thresholds (condi-
tions that had to be excluded from Harrison et al.). We see this in the 
higher uncertainty in the model’s estimates for conditions near chance 
– censoring accounts for this in a principled way. Had we conducted 
the analysis without censoring (but still included those conditions), the 
estimates of those parameters would have had less uncertainty associ-
ated with them, giving false precision. As we saw, censoring also re-
duces bias in estimation for conditions with only some observations 
crossing the threshold. Finally, since the fit is identical when no ob-
servations cross the threshold, we do not sacrifice quality of fit for 
conditions fully below the threshold, making the censored model 
strictly better than the uncensored one. 

Fig. 8. Final model and partial ranking of visualizations. Part 1 may be compared to Figure 6 from Harrison et al. [1], with several notable differ-
ences: our results are on a log scale (suggesting a different fit shape), our results provide uncertainty (even if standard errors had been given in 
Harrison et al. they would not have been valid due to the mean-fitting procedure), and we include all tested visualizations in the analysis. Part 2 
may be compared to Figure 7 from Harrison et al., except a total ranking from our results would not be the same (e.g., parallel coordinates–neg-
ative and scatterplot–negative swap positions), and we provide and emphasize a partial ranking (instead of a total ranking) consistent with the 
available evidence. Part 3 has no direct analog in Harrison et al. Posterior densities in Part 3 are augmented with median and 95% quantile cred-
ibility intervals. 
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Fig. 9. Posterior distributions of the standard deviation of random ef-
fects for participants in the high precision group (߬௩). Higher standard 
deviation here indicates greater variance in performance between par-
ticipants. As we do not see evidence that the scatterplot is more varia-
ble than its next closest contender for lowest JND (indeed, there is 
some evidence of the opposite), we can recommend scatterplots as a 
widely-applicable visualization for correlation. 	
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8.3 Limitations 

Of course, no model is without limitations. The introduction of the 
log-linear model in Section 4 notes that we can use the Box-Cox trans-
formation to estimate a parameter ߣ describing a power transform of 
the data. While this parameter is not significantly different from 0 (the 
log model), its maximum likelihood estimate is not exactly zero 
(0.0292, 95% CI: [-0.005, 0.0635]). Using an estimated value of ߣ (in-
stead of “rounding to log”) might have yielded slightly better fit, but 
also sacrifices both parsimony and the interpretability of coefficients 
used to derive ratios of precision between groups of visualizations in 
Section 7. By contrast, we believe that the log-linear model yields 
equally interpretable results to a linear model with substantially better 
fit, motivating its preference. 

The censoring thresholds derived in Section 5 required us to 
“fudge” the boundary in order to capture observations just below the 
ceilings. It is worth noting that it is consistent with the requirements 
for censoring if we censor conservatively below the ceiling: for exam-
ple, if the threshold in Fig. 4 is moved to the left (censoring more data), 
it retains the property that the expected proportion of observations to 
its right is the same as that in the underlying distribution. That said, 
since our thresholds were ultimately derived from an exploratory anal-
ysis of the data, complete validation of those thresholds can only be 
made by testing them against data collected in future studies. 

In addition, we have focused squarely on issues of statistical anal-
ysis to robustly evaluate visualization designs. What remains is to ar-
ticulate credible perceptual processes driving the observed data. 

8.4 Replication and building knowledge with Bayes 

This paper would not have been possible without the public release of 
data from Harrison et al. [1]. That release of data contributes to a 
broader conversation not only about the results of any particular study, 
but the analysis of data, and the accumulation of datasets and shared 
knowledge. The analysis in this paper was made not only possible, but 
straightforward by Harrison et al.’s release of data and previous anal-
yses in an easily digested form (a git repository with CSV data, R 
code, and a clear README [http://github.com/TuftsVALT/ranking-
correlation]). It is worth noting that releasing data is much easier than 
releasing easy-to-use data, a practice we hope the community contin-
ues to encourage. In that spirit, we also release our analysis code as 
supplemental material to this paper and as a fork of Harrison et al.’s 
repository [http://github.com/mjskay/ranking-correlation]. 

We also believe that the Bayesian approach we have taken has 
some attractive properties with respect to building a body of 
knowledge. Included in our dataset is a complete posterior sample 
from our Bayesian model, in the hope that others might use it to derive 
priors in future work. In this way, the Bayesian framework offers an 
easy way to build knowledge across studies, one that is perhaps more 
amenable to the publishing incentives of a field centered around con-
ference publications and which has fewer incentives to conduct tradi-
tional meta-analyses. This also allows others to use our model results 
to calculate their own rankings in domains with some known distribu-
tion of values of r (as in Section 6.3), or to use the model to drive 
automated visualization selection depending on a known r. 

8.5 Implications for design 

Harrison et al. provided a total ranking of the precision of visualiza-
tions of correlation for all values of r in (0.1, 0.3, 0.5, 0.7, 0.9) – Fig. 
7 in that paper [1]. This ranking implies, for example, that parallel 
coordinates might be a better visualization of correlation at r = .1, .3, 
and .5 than a scatterplot for negatively-correlated data. We believe that 
these design recommendations overstate the strength of evidence. By 
contrast, our model finds that the performance of scatterplots and par-
allel coordinates are virtually indistinguishable at those values of r for 
negatively-correlated data, and that when considering variance be-
tween individuals, scatterplots may even be better. 

We believe our model yields design recommendations that more 
faithfully reflect the strength of evidence in the data collected than a 
total ranking does. The partial ranking of visualizations of correlation 

in Fig. 8.2-3 communicates the practical differences between visuali-
zations of correlation to designers without overstating small differ-
ences. Finally, given the unique advantages of scatterplots – low var-
iance between individuals, high precision on both positively- and neg-
atively- correlated data – we can give a clear recommendation for de-
signers in the vast majority of circumstances: use scatterplots to visu-
alize bivariate correlation, regardless of the value of r. 

9 CONCLUSION 

In this work we build upon Harrison et al. [1] in modelling the preci-
sion of estimation of correlation. We present a series of refinements to 
their model: incorporation of individual differences, log transfor-
mation, censoring, and Bayesian modelling. Besides better modelling 
the relationship between r and just-noticeable differences, we incor-
porate a notion of the uncertainty of the effects not estimable in the 
models of Harrison et al. Thus, we are able to derive a partial ranking 
of visualizations of correlation concordant with the available evidence 
and which does not follow Weber’s Law. Ultimately, we find that scat-
terplots offer both high precision and low individual variation, making 
them an attractive technique for visualizing bivariate correlation. 
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