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ABSTRACT 
A core tradition of HCI lies in the experimental evaluation 
of the effects of techniques and interfaces to determine if 
they are useful for achieving their purpose. However, our 
individual analyses tend to stand alone, and study results 
rarely accrue in more precise estimates via meta-analysis: in 
a literature search, we found only 56 meta-analyses in HCI 
in the ACM Digital Library, 3 of which were published at 
CHI (often called the top HCI venue). Yet meta-analysis is 
the gold standard for demonstrating robust quantitative 
knowledge. We treat this as a user-centered design prob-
lem: the failure to accrue quantitative knowledge is not the 
users’ (i.e. researchers’) failure, but a failure to consider 
those users’ needs when designing statistical practice. Us-
ing simulation, we compare hypothetical publication worlds 
following existing frequentist against Bayesian practice. 
We show that Bayesian analysis yields more precise effects 
with each new study, facilitating knowledge accrual without 
traditional meta-analyses. Bayesian practices also allow 
more principled conclusions from small-n studies of novel 
techniques. These advantages make Bayesian practices a 
likely better fit for the culture and incentives of the field. 
Instead of admonishing ourselves to spend resources on 
larger studies, we propose using tools that more appropri-
ately analyze small studies and encourage knowledge ac-
crual from one study to the next. We also believe Bayesian 
methods can be adopted from the bottom up without the 
need for new incentives for replication or meta-analysis. 
These techniques offer the potential for a more user- (i.e. 
researcher-) centered approach to statistical analysis in HCI. 
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INTRODUCTION 
A core focus of the HCI community is on the development 
of novel ideas and technology artifacts. The focus on novel-
ty is valuable: it establishes a tradition that challenges as-
sumptions about the design of technical systems and often 
results in insights that translate into more useful, usable, 
and enjoyable technologies. We, as a community, also val-
ue accurately understanding and precisely characterizing 
the effects of technology, which can be at odds with the 
first goal. Our community has limited resources to meet this 
latter goal as we have historically devoted more resources 
towards novelty and innovation over accurate and precise 
estimates of the utility of our systems.  

Greater emphasis on novelty has led to concerns about the 
reliability of knowledge accrued in our field. To support 
quantitative knowledge accrual, we have adopted particular 
statistical tools, such as frequentist null hypothesis signifi-
cance testing1, and quantitative standards, such as p < .05, 
that define what constitutes sufficient evidence for re-
searchers to support their claims. It is well known in the 
statistics community that results from individual studies—
especially with the small sample sizes typical in our com-
munity—regularly fail to reliably estimate true effects [17]. 
To gain more reliable estimates of effects, multiple studies 
can be aggregated using frequentist meta-analytic tech-
niques, which combine the results from multiple papers to 
obtain more precise effect size estimates (e.g., the differ-
ence between two conditions). However, our community 
rarely conducts meta-analyses. Paralleling so-called repli-
cation crises in psychology and medicine, movements such 
as RepliCHI [26] have called for an increased focus on rep-
lication and meta-analysis to effectively accrue quantitative 
knowledge about the utility and generalizability of our 
technologies. Others emphasize deeper changes to statisti-
cal practice, such as reducing the focus on p-values in favor 
of effect size estimates and confidence intervals (the New 
Statistics [3]; or in HCI, Kaptein & Robertson [18] or Drag-
icevic [5]), or the abandonment of frequentist null hypothe-

                                                           
1 We will use frequentist and NHST interchangeably. 
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sis significance testing (NHST)2 altogether for Bayesian 
analyses. Similar conversations about the merits of Bayesi-
an analyses are also occurring in psychology [4,16,20]. 

All of these suggestions, apart from a Bayesian approach, 
logically extend NHST, the dominant statistical approach 
used in HCI and related fields such as psychology. NHST is 
a statistical approach that turns research into a binary ques-
tion: can we reject or fail to reject a null hypothesis (i.e., 
that there is no effect)? A common use of NHST in HCI is 
to compare a novel system to a control system and, if a p-
value is below the customary p <.05 target, then the new 
system is deemed better, as this p-value suggests that the 
observed difference is not likely due to chance. In other 
words, we reject the null hypothesis of no difference. 

However, getting a p-value less than .05 can still happen 
even when there is no true meaningful difference. Replica-
tion and meta-analysis allow us to reduce this error in 
NHST (for example, the probability of falsely rejecting the 
null hypothesis) by combining the results of many studies 
of the same phenomenon. However, this requires at least 
one additional study, the meta-analysis, which necessitates 
new top-down incentives for conducting and publishing 
meta-analysis in HCI. By contrast, Bayesian analysis incor-
porates prior knowledge from other studies of the same and 
similar phenomena into a paper’s quantitative analysis. A 
series of papers analyzing novel contributions can plausibly 
accrue knowledge and bypass the need for publishing sepa-
rate meta-analyses. This allows increased precision of 
knowledge from the bottom up, within the existing publish-
ing incentives of the field.  

We consider the choice of statistical tools to be a user-
centered design problem, with researchers as the users. In-
sisting that we should conduct meta-analysis amounts to 
blaming the users instead of the tools. Instead, we propose 
changing the tools—from NHST statistics to Bayesian sta-
tistics—in order to make quantitative accrual of knowledge 
easier (and maybe even preferable) within the existing pub-
lishing incentives of HCI. It is not researchers, but the sta-
tistical tools they have been given, which currently prevents 
this. Bayesian statistics are more user-centered statistics. 

In the rest of this paper, we briefly compare Bayesian and 
NHST approaches to statistics and give some background 
on replication and meta-analysis. We then examine a subset 
of the HCI literature in the ACM digital library to assess the 
current state of meta-analyses in the field and establish that 
current incentives do not encourage meta-analyses, espe-
cially at the most prestigious venues. We then run several 
simulated experiments, representing hypothetical experi-

                                                           
2 While there exist Bayesian formulations of NHST based 
on Bayes factors, we believe they share some problems 
with frequentist NHST, such as a focus on binary testing 
rather than precision of estimation and cost/benefit analysis; 
thus we do not consider them here. 

ments run for separate publications, using a realistic effect 
size drawn from an existing meta-analysis. We contrast two 
hypothetical publication worlds: one in which the simulated 
experiments were each analyzed in a traditional (NHST) 
manner (as would occur now), and one in which they were 
analyzed using Bayesian techniques. We demonstrate: 

1. The current state of quantitative knowledge accrual 
in HCI is poor. Through an examination of publications 
in the ACM Digital Library, we demonstrate that little 
meta-analysis is conducted in the community.  

2. Bayesian analysis provides more precise estimates of 
previously-studied conditions in each successive study. 
The NHST approach only increases the precision of ef-
fect sizes if the new study has a larger sample or when a 
meta-analysis is conducted. In contrast, the Bayesian ap-
proach uses prior knowledge to increase the precision of 
effect sizes for known conditions in each successive 
study, without requiring a meta-analysis (which is unlike-
ly to be done in HCI). 

3. Bayesian analysis allows more precise comparison of 
novel conditions against known conditions. By giving 
more precise effect size estimates of previously-studied 
conditions, Bayesian analysis increases the precision of 
estimated differences between existing and novel condi-
tions, making it suited to novel HCI work. 

4. Bayesian analysis facilitates quantitative knowledge 
accrual within HCI's existing publishing incentives. 
Unlike frequentist analysis, Bayesian analysis can accrue 
knowledge within individual studies without new top-
down incentives for publishing meta-analyses, shifting 
knowledge accrual into original papers. Benefits like im-
proved precision may help incentivize this adoption. 

5. Bayesian analysis draws more reasonable conclusions 
from small-n studies. In small-sample studies of novel 
techniques, priors can be used to shrink unreasonably 
large effect sizes. Priors also let us take advantage of 
known conditions to improve estimates of novel ones. 
This makes Bayesian analysis particularly attractive to 
design and engineering researchers running small studies 
on novel technology. 

6. Bayesian analyses help shift the conversation from 
“Does it work?” to “How strong is the effect?”, “How 
confident are we in this estimate?”, and “Should we 
care?” While NHST can incorporate effect size estimates 
and confidence intervals, ultimately, the use of a p-value 
(a fundamental feature of NHST) translates all questions 
into binary answers: can we reject or fail to reject the null 
hypothesis? Bayesian estimates emphasize the probabil-
ity of an effect given prior knowledge, thus shifting the 
conversation from “does it work?” to “how strong is the 
effect?” and “how confident are we?” Frequentist statis-
tics can technically answer these questions but under-
emphasizes them. Bayesian statistics better emphasizes 
the ultimate questions of our work: as practitioners, do 



we care enough about these results to adopt new designs, 
or as researchers, do we care enough to study this more? 

BACKGROUND AND MOTIVATION 

Interpretation of Bayesian versus frequentist statistics 
Interpretations of frequentist statistics are a common source 
of errors amongst HCI researchers and others. The focus on 
p-values/significance testing requires users to learn how to 
interpret the cognitively demanding conceptual double-
negative of a p-value, instead of interpreting results as evi-
dence for a hypothesis—a valid interpretation within a 
Bayesian framework [20]. This interpretation problem has 
resulted in simplifying the results of NHST tests into the 
belief that the p-value answers the question, “Does it 
work?” Unfortunately, this is an inaccurate interpretation 
and lies at the heart of the argument to shift interpretation 
towards effect sizes and confidence intervals [3,6] (though 
95% confidence intervals are the inverse of p < .05, thus 
still succumbing to the interpretation problem [14]). Effect 
size estimates and confidence in those estimates is the es-
sential information sought, but NHST logic unintentionally 
relegates this information as secondary to the p-value. 

By contrast, Bayesian analysis provides formal approaches 
to quantifying our existing beliefs (for example, as a proba-
bility distribution over the expected difference in the means 
of some variable between two conditions), and then updat-
ing those beliefs based on new experimental evidence. This 
gives results expressed as probabilistic evidence for or 
against hypotheses, emphasizing effect size estimates and 
confidence in the estimates. This information supports the 
decisions researchers and practitioners are making with the 
data: should I incorporate this technology into my practice 
or, if confidence is low, are the results promising enough to 
continue to study it? Conceptually, Bayesian statistics are 
feasibly more user-centered as they emphasize the infor-
mation needed to support the decisions researchers want to 
make without the need to interpret double-negative logic. 

Replication and meta-analysis in HCI 
The statistical tools researchers customarily use in HCI do 
not help them effectively accrue knowledge from one study 
to the next, even when the variations in design of novel 
systems are informed by previous work. The classic strate-
gy for knowledge accrual of a series of NHST studies is 
literature reviews conducted often in the related work sec-
tion of a CHI paper that implicitly use the vote-counting 
method of knowledge accumulation [13]. In this method, 
the number of significant and non-significant findings are 
counted up to infer if an effect is true or not (e.g., three 
studies found a significant effect, four did not, therefore this 
strategy is likely not effective). There are many problems 
with this approach, particularly when a field utilizes small 
samples to estimate statistical significance, as many of 
these significant differences are likely due to chance [17]. 

A step towards better knowledge accrual is via the use of 
meta-analyses, where the focus is not on the statistical sig-

nificance of any single study, but instead on combining the 
results from many studies to estimate the effect size (e.g., 
this system designed for encouraging exercise results in 
1,000 more steps per day compared to control) and the con-
fidence in that effect (i.e., that 1,000 step increase could 
feasibly be as low as 100 steps or as high as 1,900 steps). 
This strategy relies somewhat on increasing the incentives 
for replication in the literature, an approach currently ad-
vanced by RepliCHI [26]. While encouraging more 
standalone replication studies and meta-analyses is useful 
for knowledge accrual, we argue that it has difficulty fitting 
into HCI culture and the incentives for publishing novel 
findings. As we will show, few meta-analyses are currently 
conducted in the community, supporting our intuition. 

Within a Bayesian approach, prior beliefs can be derived 
from previous work, allowing knowledge accrual from 
study to study without requiring a separate meta-analysis. 
To derive priors in HCI, we can capitalize on the fact that 
partial replication is common to the field in the form of the 
comparison of a new technique against the state-of-the-art. 
As we will show, incorporating prior quantitative results 
into new analyses using a Bayesian framework is straight-
forward in these cases, allowing us to accrue quantitative 
knowledge without the need for top-down incentives for 
meta-analysis. We will also discuss how to use prior work 
to set prior expectations on the size of an effect even when 
not conducting a partial replication. In contrast to tradition-
al meta-analysis, Bayesian analysis allows the effect sizes 
in successive studies to be estimated more precisely in each 
study. This could feasibly fit into the publishing incentives 
for HCI: knowledge accrues with each individual, novel 
study (easily published at CHI), making it unnecessary to 
publish standalone meta-analyses (less publishable at CHI). 

HCI RESEARCHERS CONDUCT FEW META-ANALYSES  
To assess the current state of quantitative knowledge aggre-
gation in HCI, we conducted a review of meta-analyses 
accessible through the ACM Digital Library, as many of the 
most prominent HCI publication venues are archived there 
(e.g. CHI, CSCW, UIST, UbiComp, TOCHI). We searched 
the extended library for the terms meta-analysis, meta-
analyses, metaanalysis, or metaanalyses in the abstract or 
title fields on August 17, 2015, yielding 509 unique results. 
We examined abstracts and eliminated 151 domain-specific 
statistical methods and techniques, mostly in biology and 
machine learning. We examined the full-text of the remain-
ing papers. We found 40 dissertations, which we discarded 
since their results may have been published in other venues. 
We found 56 HCI (or HCI-related) papers with quantitative 
meta-analyses, defined as modeling effect sizes or using 
traditional meta-analysis based on the results of multiple 
studies found from a literature search with inclusion crite-
ria. Only 3 were published at the venues above [15,25,28]. 
This low number prompted us to search the DL full text for 
“meta-analysis” for the top venues, yielding 159 results. 
The top 3 results were the meta-analyses we had already 
found, and we did not find any others after reviewing the 



abstracts (and full text as needed) from this additional 
search. Most meta-analyses were in other journals and 
communities, from management information systems and 
HICSS to specialized venues (e.g. ICMI '06: Proceedings of 
the 8th international conference on multimodal interfaces).  

Our search suggests that meta-analyses are not being re-
warded within the community. The CHI conference is re-
garded by many as the top publication venue for work in 
human-computer interaction. Given the paucity of meta-
analysis at CHI, it seems clear that the incentives do not 
currently exist for such work to be published there (or prior-
itized in the field overall). However, within the frequentist 
paradigm, a meta-analysis is the gold standard for quantita-
tive knowledge accrual, representing the best estimates we 
can make. We must either build new incentives for meta-
analysis, or find another way to accrue knowledge within 
the existing incentives. We believe that Bayesian analysis 
may be that other way. 

CONTRASTING FREQUENTIST AND  
BAYESIAN KNOWLEDGE ACCRUAL  
USING SIMULATED EXPERIMENTS 
By way of explaining the differences between frequentist 
meta-analysis and a Bayesian incremental approach to 
knowledge accrual, in this section we provide an example 
of these approaches applied in two different hypothetical 
worlds. Specifically, we examine a series of 4 simulated, 
hypothetical experiments on the effects of progress indica-
tors on completion rates of online surveys.  

Domain: Varying progress indicators in online surveys 
We chose this domain because it will be familiar to the HCI 
audience (as many researchers in our field make use of 
online surveys), and because a meta-analysis has previously 
been conducted in this domain by Villar et al.[24], provid-
ing us with realistic effect sizes to use in our simulations.  

That meta-analysis looked at experiments comparing the 
effects of different types of progress indicators on survey 
completion rates. A progress indicator is any type of textual 
or graphical display communicating how much of the sur-
vey has been completed so far (“10%”, a graphical progress 
bar, etc.). Progress indicators can be distinguished by the 
relationship between the true progress and the displayed 
progress. A constant indicator communicates the true pro-
gress. Progress in a fast-to-slow indicator starts fast, telling 
the participant they have made more progress than they 
actually have near the beginning of the survey, then slows 
down later. By contrast, a slow-to-fast indicator starts slow, 
then speeds up near the end of the survey. 

In their meta-analysis, Villar et al. [24], found that using a 
slow-to-fast progress indicator decreased the probability 
that a person would complete the survey. They found an 
effect size (as a log odds ratio3) of ~-0.45.4 A log odds ratio 
                                                           
3 A log odds ratio of 0 indicates no difference between con-
ditions. The log odds ratio is the log of the ratio of the odds 
of someone completing the survey in one condition com-

of -0.45 means that in a survey that would otherwise have a 
completion rate of 50%, we would expect the same survey 
with a slow-to-fast progress indicator to have a completion 
rate of ~39%. 

Simulation Method 
To compare Bayesian and frequentist approaches, we will 
simulate 100 hypothetical “worlds” in which we know the 
true effect of different progress bar types on completion 
rates, and then run the same series of 4 experiments in each 
world. Each experiment could represent an experiment run 
by different authors, thus representing the error that would 
be present from a single study, the current primary mecha-
nism for estimating effect sizes. We will conduct analyses 
on each world as if 1) all authors take a frequentist ap-
proach or 2) all authors take a Bayesian approach.  

For the purposes of our simulations, we will consider the 
true effect of a slow-to-fast progress bar on the log-odds of 
the completion of a survey to be -0.45, as suggested by the 
meta-analysis of Villar et al. [24]. We will also surmise a 
similarly-sized effect of fast-to-slow progress indicators, in 
the opposite direction, of 0.45.5 This approach supports 
examination of knowledge accrual in both worlds and al-
lows comparison to the known fact (because we define it in 
the simulation) that there is an effect size of -0.45 (slow-to-
fast) and 0.45 (fast-to-slow) compared to no indicator.  

In each world, we simulate the results of 4 experiments:6 

 Experiments 1-3 have between-subjects designs compar-
ing a fast-to-slow progress indicator against a control 
condition of no indicator. 

 Experiment 4 also compares a fast-to-slow progress in-
dicator against a control condition, but adds an additional 
slow-to-fast indicator. We can think of this experiment as 
representing one of the common ways that partial replica-
tion happens in the HCI community: through comparison 
to previous state-of-the-art results. Perhaps some authors, 

                                                                                                 
pared to another condition. It is regularly used in comparing 
probabilities between two conditions because (unlike, say, 
differences of proportions), it is unbounded, which simpli-
fies analysis. It is related to logistic regression in that coef-
ficients of a logistic regression can be interpreted as log 
odds ratios. 

4 While their results use probability of drop-out, we use 
probability of completion. 

5 It is worth noting that this effect may be larger than the 
true effect in the real world, since Villar et al. [24] found 
the fast-to-slow effect is likely closer to .3; but for our pur-
poses it remains a realistic effect size based on the slow-to-
fast results, and simplifies the example by mirroring slow-
to-fast. 

6 See https://github.com/mjskay/bayes-for-chi for simula-
tion data and code (DOI: 10.6084/m9.figshare.2061669) 



having seen the success of fast-to-slow indicators, wished 
to know how the opposite type of indicator might per-
form (or perhaps conducted this experiment as part of 
work to establish a more complete theory explaining why 
we see these particular results). 

For simplicity of exposition, we assume the same experi-
mental design in each case: a between-subjects design with 
100 participants per condition (thus, 200 participants in 
experiments 1-3 and 300 in experiment 4). This is similar to 
the number of participants in the studies in Villar et al.’s 
meta-analysis, and is a reasonable number to expect to re-
spond to an online survey. The between-subjects design is 
necessary primarily because it is difficult to ask someone to 
take the same survey twice and observe their drop-out rates. 

Frequentist analysis 
In the frequentist analysis, we conduct a logistic regression 
in each experiment to model the probability of completion 
based on the progress indicator condition: control (no indi-
cator), fast-to-slow, and slow-to-fast (experiment 4 only). In 
addition, after all four experiments are analyzed, we con-
duct a meta-analysis on the log-odds ratios for the effect of 
the fast-to-slow progress indicator, as in Villar et al. [24]. 
This yields a final, more precise estimate of the effect of 
that indicator based on the preceding four experiments. 

Bayesian analysis 
In the Bayesian analysis of each world, we also conduct a 
logistic regression in each experiment to model the proba-
bility of completion based on progress indicator. However, 
we do not conduct a final meta-analysis. Instead, starting 
with experiment 2, we build upon the previous results by 
using the posterior distribution (i.e., estimates from the pre-
vious study) of the estimated effect of the fast-to-slow pro-
gress indicator in experiment i as the prior for that effect in 

experiment i + 1. This could happen, for example, if the 
author of experiment i + 1 had read the previous paper, and 
therefore was able to use the posterior estimate from that 
paper in their analysis (previous study’s posterior becomes 
the next study’s prior). This results in incremental 
knowledge accumulation without a meta-analysis. 

In experiment 4, we must also place a prior on the new 
slow-to-fast indicator. We use a Cauchy7 distribution cen-
tered at 0 (no effect) with a scale equal to the furthest point 
in the 95% credibility interval8 of the estimated effect of 
fast-to-slow in experiment 3. This prior is weakly-informed: 
it expresses a belief that fast-to-slow might reasonably have 
about twice the effect (positively or negatively) that slow-
to-fast does compared to control condition. While it is be-
yond the scope of this paper to discuss the various strategies 
for setting priors, this is a core topic in any book on Bayesi-
an analysis (see e.g. [21]). 

Results 

In a single world 
Before contrasting the Bayesian and frequentist results 
across all simulated worlds, we will first walk through the 

                                                           
7 The Cauchy distribution is similar to the Normal distribu-
tion, but with fatter tails. Gelman recommends it for use as 
a weakly-informed prior because the fatter tails express less 
certainty in the location of the effect [9]. 

8 Roughly, a credibility interval is the Bayesian analog to a 
confidence interval. Unlike a confidence interval, however, 
a proper credibility interval is an expression of the probabil-
ity of the location of a parameter (the confidence interval is 
not, despite its common misinterpretation [14]; again a rea-
son frequentist statistics are not user-friendly). 

Figure 1. Forest plots of effects from the frequentist (A) and Bayesian (B) analyses applied to one of our simulated worlds  
with 100 participants per condition. 
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results of one simulation. The results of the frequentist 
analysis are shown above in Figure 1A and the results of 
the Bayesian analysis in Figure 1B. Each figure shows a 
forest plot with 95% CIs (confidence intervals in the fre-
quentist case; credibility intervals in the Bayesian case). In 
the frequentist case, a 95% confidence interval that does not 
overlap 0 is equivalent to a p value of less than .05, suggest-
ing that the null hypothesis (i.e., no effect) can be rejected 
with 95% confidence. The dashed vertical lines indicate the 
true effect sizes from which the data was simulated. 

In the frequentist analysis, we have a promising first re-
sult in experiment 1. This is followed by two borderline 
results in experiments 2 and 3. Looking strictly at p-values, 
experiment 4 fails to replicate the result of experiment 1, 
though it does find some evidence of a difference between 
fast-to-slow and slow-to-fast progress indicators. Finally, 
the meta-analysis is able to combine the previous estimates 
into a more precise and accurate estimate of the true ef-
fect—assuming it is conducted and published. 

Note that, because all of these experiments are run using the 
same number of participants, the confidence intervals are 
all approximately the same width; the only ways to increase 
our precision (i.e., decrease CI width) in the frequentist 
world are to increase the power of our experiment/analysis 
(for example by increasing our sample size, using a within-
subjects design, or including covariates that explain some 
of the variation in the response) or by conducting meta-
analysis. This limitation is not particularly helpful to the 
authors of experiments 1-4, since they may not have the 
resources to recruit more participants. 

In addition, the small variations in intervals from experi-
ments 1-3 represent vastly different conclusions if we re-
duce the results to vote counting of null hypothesis tests: 
experiments 1 and 3 reject the null (p < .05); experiment 2 
does not. This highlights the problem with reducing estima-
tion to a binary choice (“effect” or “no effect”): these esti-
mates are all similar, but the decision to reject (or not) the 
null hypothesis hinges on whether the 95% confidence in-
terval overlaps 0 in that particular study, thus resulting in 
false conclusions as per the vote-counting method discussed 
earlier (current HCI standard practice).  

In the Bayesian analysis, the result of the first experiment 
is virtually identical to the frequentist world (we used a 
weakly-informed Cauchy(0, 2.5) prior for logistic regres-
sion parameters recommended by Gelman et al. [9]). How-
ever, in contrast to the frequentist world, in each subsequent 
experiment our estimate of the effect size becomes more 
precise. The authors of experiments 2 and 3 make a strong-
er contribution to the field by building on the results of pri-
or work, rather than borderline failed replications. In exper-
iment 4, the estimated effect of the fast-to-slow indicator is 
similar to that of the frequentist meta-analysis, one paper 
early. Bayesian analysis helps us learn faster and with 
fewer publications.  

Besides the benefit of getting quantitative knowledge ac-
crual into the literature without requiring publication of 
meta-analysis, this also has additional benefits for the au-
thors of experiment 4: note that, even though they are test-
ing a new technique that they don’t have explicit priors for 

 

Figure 2. Results of the frequentist (A) and Bayesian (B) anal-
yses of all simulated worlds, 100 participants per condition. 
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(the slow-to-fast indicator), the prior knowledge of the ef-
fect of the fast-to-slow indicator helps them estimate the 
effect of the novel technique more precisely. This is be-
cause the more precise estimate of fast-to-slow also helps 
makes the estimate of the difference between fast-to-slow 
and slow-to-fast a little more precise. In other words, more 
precise estimates of techniques we’ve seen lead to more 
precise estimates of comparisons to new techniques, which 
even makes estimates of those new techniques a little more 
precise. Bayesian analysis helps us apply old knowledge 
to novel questions. 

In many worlds 
We now step up to consider the effects of the two analysis 
approaches in all 100 simulated worlds. Each point in Fig-
ure 2A represents the mean estimated effect from the fre-
quentist analysis in one simulated world. Figure 2B shows 
the mean estimated effects from the Bayesian analyses.  

We can see that the pattern observed in our single example 
world holds true across simulations: the estimated effect 
becomes narrower (more precise) with each experiment in 
the Bayesian analysis, and the final estimate for fast-to-slow 
resembles the frequentist meta-analysis, one publication 
early. In addition, the estimates for slow-to-fast are more 
precise in the Bayesian analysis of experiment 4 due to the 
use of prior knowledge, even though we have never seen 
that condition before. This increased precision (and accura-
cy) is reflected in the root-mean-squared error of those es-
timates compared to their true effects in experiment 4: 

 Frequentist Bayesian 

fast-to-slow − control 0.27 0.17 

slow-to-fast − control 0.27 0.20 

slow-to-fast – fast-to-slow 0.26 0.22 

Table 1. Root mean-squared error of estimates in experiment 
4 with 100 participants per condition. 

Note that the estimated effects in the frequentist analysis all 
have approximately the same error, reflective of the power 
of the experiment. The Bayesian approach gives us esti-
mates with less error by building knowledge as we go. 

BAYESIAN ANALYSIS OF SMALL SAMPLES 
Due to limited resources and an emphasis on novelty, HCI 
studies are often conducted with fewer participants than a 
traditional power analysis would suggest is prudent [10,18]. 
With a frequentist analysis, this increases the probability of 
what Gelman calls a magnitude error [8]: because the con-
fidence intervals are so wide, the only effects that reach 
significance are those that overestimate the effect size.  

That said, we believe that there are many reasons why 
small-n studies are conducted in HCI, including limited 
resources and the emphasis on novelty discussed earlier as 
fundamental for contributions to the field. Thus, we ask: 
can Bayesian analysis help make better use of our limited 

resources while still acknowledging the importance of nov-
elty? To assess this, we repeated our simulations with 20 
participants per condition instead of 100 and examined how 
the use of priors could be used to reduce false conclusions 
both from single studies and across studies.  

Results 
At only 20 participants per condition, in the frequentist 
world a  large effect size (a log odds ratio of nearly 1.5) is 
required to reject the null hypothesis—3 times the known 
(because we defined it) effect size. To put this in context, 
imagine a survey whose completion rate with no progress 
indicator would be 50%. The correct log odds ratio of 0.45 
would imply that switching to a fast-to-slow indicator 
would raise the completion rate to 61%, a modest effect. 
However, a log odds ratio of 1.5—the size needed to reject 
the null hypothesis—would imply that a fast-to-slow indi-
cator would yield an 82% completion rate on this survey. 
This gross overestimate exemplifies a magnitude error [8]. 
Even though we haven’t (in our hypothetical world) studied 
this particular effect, we do have prior knowledge about 
anticipated effect sizes based on standard small, medium, 
and large effects in humans. In the Bayesian analysis, we 
encode this knowledge in the prior we set on the effect; we 
adopt a weakly-informed prior from Gelman [9] (we ad-
dress prior-setting in more detail in the discussion). 

Bayesian analysis effectively weighs how strong our prior 
knowledge is against how much evidence we have: with 
larger samples (e.g., our 200-participant experiments) the 
evidence more strongly influences the estimate. With only 
20 participants, the prior has more influence. This enables 

  

Figure 3. The effects of shrinkage towards 0 in experiment 1 
with 20 participants, from a single simulation (A) and from all 

simulations (B). 

Frequentist analysis

Bayesian analysis

A. Fast-to-slow − control in experiment 1, one simulation

B. Fast-to-slow − control in experiment 1, all simulations

Frequentist analysis

Bayesian analysis

Log odds ratio for chance of completing survey
−3 −2 −1 0 1 2 3

Log odds ratio for chance of completing survey
−3 −2 −1 0 1 2 3

1. Compared to the 
frequentist estimate, 
the prior in the Bayesian 
analysis shrinks the 
unreasonably large 
estimate towards 0.

2. Looking at all 
experiments, shrinkage 
affects estimates far 
from 0 more than those 
close to 0, pulling in 
the most unreasonably 
large effects, reducing 
the chance of a 
magnitude error.

True effect for fast-to-slow



us to quantify our skepticism and mitigate the risk of mak-
ing a magnitude error in small samples. In the frequentist 
world we might intuitively dismiss large effect sizes in 
small studies as unreasonable, but not have a formal way to 
specify this skepticism. In the Bayesian world we can con-
sistently and quantitatively apply this intuition by encoding 
it in a prior and using the prior to shift unreasonably large 
effects towards zero. This is called shrinkage.  

We can see the effects of shrinkage by comparing an inflat-
ed estimate (by chance, a common occurrence with small 
sample studies) from experiment 1 with its corresponding 
Bayesian estimate (Figure 3). Compared to the frequentist 
estimate, the Bayesian estimate is shrunk towards 0. The 
resulting posterior is still quite diffuse: we haven’t learned 
all that much from the small study. That said, we did learn 
something from our 20 participants: The Bayesian analysis 
weights what we knew before (specifically, that small effect 
sizes are generally anticipated if nothing more is known) 
against how much evidence we have (in this case, observa-
tions of a small number of participants).  

Overall, Bayesian analyses allow for information to be 
gleaned in proportion to the strength of available evidence. 
In contrast, estimates from individual small sample studies 
in the frequentist world are only corrected via meta-
analysis. Prior to a meta-analysis, however, NHST can cre-
ate more confusion in effect size estimates if only signifi-
cant results are published (publication bias). In the above 
example, this would mean that the effect size estimate 
would need to be nearly 3 times the actual effect within a 
single small sample study. If, by chance, this large effect 
were found (as was the case with our hypothetical scenar-
io), it would create an inflated effect size estimate in the 
literature that is unlikely to be corrected due to the lack 
meta-analyses in the HCI community. 

In many worlds 
We can see the effects of shrinkage in the first experiment 
when we look at all of the 20-participant simulations 
(Figure 4): the most extreme estimates in experiment 1 are 
moved slightly towards 0. This has the effect of reducing 
the overall error in experiment 1 by discounting unreasona-
bly large estimates that occur due to chance: 

 Frequentist Bayesian 

fast-to-slow − control 0.61 0.56 

Table 2. Root mean-squared error of estimate in experiment 1 
with 20 participants per condition, reflecting the effect of 

Bayesian shrinkage on discounting unreasonably large effects 
in small-n studies. 

Compared to the frequentist world, the Bayesian world also 
offers more precise and accurate estimates across studies 
(as represented in the root mean square error). By the time 
we reach experiment 4, the difference in error is dramatic: 
the estimate for fast-to-slow has nearly half the error in the 
Bayesian world (.36 versus .66), and we again get better 

estimates of the novel condition, slow-to-fast (see Table 3 
below). In contrast, effect size estimates are only corrected 
with meta-analysis in the frequentist world, thus the correc-
tion is unlikely in HCI because of a lack of meta-analyses.   

 

Figure 4. Results of the frequentist (A) and Bayesian (B) anal-
yses of all simulated worlds, 20 participants per condition. 
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 Frequentist Bayesian 

fast-to-slow − control 0.66 0.36 

slow-to-fast − control 0.68 0.51 

slow-to-fast – fast-to-slow 0.83 0.60 

Table 3. Root mean-squared error of estimates in experiment 
4 with 20 participants per condition 

DISCUSSION 

Bayesian analysis increases the  
value of small-n studies of novel work 
The traditional solution to the problems associated with 
low-power studies (and one HCI researchers are often ad-
monished to adopt) is to spend resources recruiting more 
participants. In other words, the frequentist solution to low 
power is not to run low-powered studies. 

However, researchers developing complex new systems or 
interaction techniques have the expertise, time, and re-
sources for that type of work; spending their limited re-
sources on running larger studies may be a poor allocation 
of work across the research community as an accurate ef-
fect size might not be their first priority. These researchers 
already (in our view, rightly) protest that they are asked to 
run pro forma evaluations when their primary contributions 
are in engineering or design (see e.g., Greenberg and Bux-
ton [12]); telling them not only to run evaluations but to 
recruit more participants amounts to blaming the users.  

Statistics can be a tool for communication and collabora-
tion. Bayesian analysis can feasibly support collaborations 
that take advantage of specialization. We see researchers 
that produce novel systems and interaction work as having 
a symbiotic relationship with others who have the resources 
and expertise for larger quantitative work, but perhaps not 
the expertise for novel engineering. The latter researchers 
might find a novel technique in the literature, adapt it to 
some domain based on users’ needs (or collaborate directly 
with its inventors, as often happens in novel health sensing 
work), and evaluate it more extensively. In this context, the 
goal of small, early studies then becomes to demonstrate 
face validity of a technique and provide a rough first esti-
mate of its effectiveness, not to find a (likely over-estimated 
in terms of magnitude) significant difference. For this, 
Bayesian analysis helps draw reasonable conclusions from 
small-n studies. It provides a more nuanced and accurate 
tool for evaluating contributions and combining them given 
the varying skills and resources of researchers. 

Part of the goal of this paper is to release novel work in 
HCI from the chains of meaningless p-values from small-n 
studies. We believe that small, early evaluations of novel 
work are still valuable, but that their output should be a 
probability distribution of expected effect size, whether or 
not it overlaps 0. “No effect” as determined via p-values 
should not be a barrier to publication of novel design work 
when we know that any effect that is found in a small study 

is suspect. Instead, the novel work should be (and already 
often is) judged on the merits of design and engineering, 
not a pro forma small-n evaluation. Bayesian analysis pro-
vides a richer conceptual understanding and role for these 
initial evaluations and helps to quantify information (i.e., 
effect sizes and confidence in those effect sizes) to support 
the questions implied by the community: should I incorpo-
rate this novel tool into my practice or, if not confident 
enough, is further research warranted? 

Bayesian analysis fits into how  
statistical practice is shaped in HCI 
The HCI community is large and multi-disciplinary; there-
fore, we believe that statistical practice in HCI is best shift-
ed in a bottom-up fashion. For example, Wobbrock et al. 
[27] at CHI 2011 introduced a nonparametric analysis tech-
nique to the community—the aligned rank transform 
(ART)—applicable to various forms of data, including Lik-
ert scales. Since then, this approach has been cited 170 
times.9 This adoption did not require new top-down incen-
tives for improved analysis, but spread study-to-study and 
researcher-to-researcher. 

We believe that Bayesian analysis can be adopted gradually 
in individual studies, sidestepping the difficulty of shifting 
an entire multi-faceted field from the top down. Statistical 
practice in scientific fields tends towards a model of men-
torship and of drawing upon approaches found in prior 
work—e.g., as other papers begin adopting techniques like 
ART, readers of those papers will use similar techniques 
when conducting their own analyses in follow-up work. 
This is how Bayesian analysis can spread: when readers see 
it used in a paper they wish to build upon, the analysis of-
fers a direct way to do that, teaching them by example [1]. 
Such a paper also provides priors for the next researcher. In 
this manner such analyses can spread in the community, 
slowly building and accumulating knowledge. 

Bayesian analysis is increasingly accessible 
Even 15 years ago, Bayesian analysis was arguably imprac-
tical for most researchers due to a lack of tools and compu-
tational power. However, tools for building and running 
Bayesian models are now widespread, and have mature 
support in languages already used for data analysis, such as 
R and Python. These tools include modeling languages like 
JAGS [23] and Stan [2] (both with R packages, and Stan 
includes a Python interface), and Python-specific libraries 
like emcee [7] and PyMC [22]. In addition, literature aimed 
at practicing researchers has made Bayesian modelling ac-
cessible; we particularly recommend Kruschke’s Doing 
Bayesian Data Analysis [21] (which includes a table of 
common frequentist analyses and their Bayesian equiva-

                                                           
9 According to Google Scholar, accessed 2016-01-07: 
https://scholar.google.com/scholar?cites=162541277233536
00671&as_sdt=5,48&sciodt=0,48&hl=en 



lents), as well as his proposed BEST test,10 a robust Bayesi-
an alternative to the t-test [19]. Other accessible articles 
have also been written about practical concerns in Bayesian 
analysis, including discussions of how to choose priors 
[9,11]. Still, statistical tools, whether frequentist or Bayesi-
an, can exhibit high barriers to entry or silently fail, provid-
ing a poor interface. We believe there is a fruitful area of 
work in designing better tools and interfaces for statistical 
methods. 

Challenges and opportunities in setting priors 
A particular difficulty in Bayesian analysis, in contrast to 
frequentist analysis, lies in setting priors for novel condi-
tions. Careful suggestions on prior-setting is an essential 
topic that requires further work but preliminary recommen-
dations can be made. Within HCI, we propose the use of 
informed skeptical priors for novel conditions. Such priors 
shrink unreasonably large estimates, particularly in small-n 
studies, making them well-suited for the HCI community.    

For example, for generalized linear models (which encom-
pass many models in HCI, including linear and logistic re-
gression), reasonable priors on coefficients can often be 
specified as a Student-t distribution. This symmetric, bell-
shaped family is parameterized by degrees of freedom (݂݀), 
location, and scale. It includes the Normal (as ݂݀ → ∞) and 
Cauchy (݂݀ ൌ 1) distributions. A lower ݂݀ means fatter 
tails, encoding a higher probability that we may see a more 
extreme effect size. To express skepticism, we set the pri-
or’s location to 0, the equivalent of "no effect" here. The 
scale parameter expresses the range of reasonable effect 
sizes around 0. For example, one can set a small scale 
around 0 to express skepticism in large effects. This will 
require more robust evidence to shift these beliefs, thus 
making them less susceptible to inflated effect size esti-
mates common to frequentist analysis of small samples [8]. 
We saw the benefit of this strategy in the reduction in error 
in our small-n simulations.  

Skeptical priors acknowledge the known problem of inflat-
ed effect sizes in small samples, which makes them a good 
fit for HCI. However, there are many strategies for setting 
priors. For example, another approach, which would mimic 
a frequentist approach, would be to use uninformed priors 
(e.g., a flat prior on regression coefficients), yielding results 
similar to frequentist confidence intervals.  

Overall, Bayesian analysis puts a greater onus on the ana-
lyst to describe their priors, but this cost brings several ben-
efits, particularly mathematical specification of skepticism. 
Even for novel conditions, effect sizes of previously studied 
phenomena (e.g., fast-to-slow) can be used to establish in-
formed skeptical priors of an unknown, but related phe-
nomena (e.g., slow-to-fast). That said, prior-setting can be 
daunting for those new to Bayesian analysis. There is fruit-

                                                           
10 Somewhat glibly, BEST stands for Bayesian estimation 
supersedes the t-test 

ful work to be done in guiding researchers in this process, 
perhaps via interactive systems for prior specification. 

Practical impact of research  
through cost/benefit analysis 
Finally, we wish to address another common thread of dis-
cussion in the HCI community, a perhaps more existential 
one: how can we have practical effects on real-world de-
ployed systems? How can practitioners derive value from 
results in the HCI literature? We believe that the language 
of statistical significance is not the language of practitioners 
or business; cost/benefit analysis is. The results of a Bayes-
ian analysis can easily be incorporated into cost/benefit 
analysis: given the probability distribution of an estimated 
effect, we can simply apply a cost function to it.  

For example, imagine a market research company that 
wishes to evaluate the cost/benefit of switching from an 
existing survey tool that does not have a fast-to-slow pro-
gress indicator to one that does. This would incur some 
costs for converting the survey into a new format. It would 
also have an estimated benefit in that the company could 
recruit fewer participants to reach a desired sample size, in 
proportion to the expected increase in completion rate. This 
company could take the probability distribution of estimat-
ed completion rate in both cases (whether or not the differ-
ence has passed the statistical significance filter) and use it 
to derive a probability distribution of expected cost relative 
to the probable benefit, and then decide a course of action 
to minimize cost. This simplifies the translation of research 
into real-world use, and gives a way to put practical effect 
sizes in context. 

CONCLUSION 
Bayesian analysis allows us to learn more quickly by build-
ing on previous results. It also fits more effectively into the 
publication incentives of HCI than approaches to improving 
knowledge accrual within the NHST framework, such as 
meta-analysis. At the same time, it is compatible with calls 
for more replication (RepliCHI), and allows us to make 
stronger claims about novel work through comparison to 
well-studied conditions. This, combined with a shift to an 
emphasis on probable effect sizes instead of simply “signif-
icant” differences between conditions, will help free design 
and engineering researchers from the shackles of meaning-
less p-values in small-n studies, while also allowing the 
field to make better use of the results of such studies. In 
short, Bayesian statistics are more user-centered statistics. 
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