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ABSTRACT 
Many HCI and ubiquitous computing systems are charac-
terized by two important properties: their output is uncer-
tain—it has an associated accuracy that researchers attempt 
to optimize—and this uncertainty is user-facing—it directly 
affects the quality of the user experience. Novel classifiers 
are typically evaluated using measures like the F1 score—
but given an F-score of (e.g.) 0.85, how do we know 
whether this performance is good enough? Is this level of 
uncertainty actually tolerable to users of the intended appli-
cation—and do people weight precision and recall equally? 
We set out to develop a survey instrument that can system-
atically answer such questions. We introduce a new meas-
ure, acceptability of accuracy, and show how to predict it 
based on measures of classifier accuracy. Out tool allows us 
to systematically select an objective function to optimize 
during classifier evaluation, but can also offer new insights 
into how to design feedback for user-facing classification 
systems (e.g., by combining a seemingly-low-performing 
classifier with appropriate feedback to make a highly usable 
system). It also reveals potential issues with the ubiquitous 
F1-measure as applied to user-facing systems. 

Author Keywords 
Classifiers; accuracy; accuracy acceptability; inference; 
machine learning; sensors. 

INTRODUCTION 
As we reach the boundaries of sensing systems, we are in-
creasingly building and deploying ubiquitous computing 
solutions that rely heavily on inference. This is a natural 
trend given that sensors have physical limitations in what 
they can actually sense. Often, there is also a strong desire 
for simple sensors to reduce cost and deployment burden. 
Examples include using low-cost accelerometers to track 
step count or sleep quality (Fitbit), using microphones for 
cough tracking [12] or fall detection [20], and using electri-
cal noise and water pressure monitoring to track appliances’ 
water and electricity use [9]. A common thread runs across 
these systems: they rely on inference, hence their output has 

uncertainty—it has an associated accuracy that researchers 
attempt to optimize—and this uncertainty is user-facing—it 
directly affects the quality of the user experience.  

Consider an application that monitors energy usage of ap-
pliances to save on energy costs. Such a system is less use-
ful—frustratingly so—if it consistently confuses two appli-
ances such that the user cannot identify a power-hungry 
appliance. Patel et al. [17] introduced such a system, which 
uses machine learning to predict the usage of electrical ap-
pliances in the home. Their system has an overall accuracy 
of 85–90% in identifying individual appliances. But how 
we do know if 85–90% accuracy is acceptable to the users 
of this application? How much uncertainty is actually toler-
able? Also, how sensitive are people to different types of 
errors—while classifiers in HCI applications are often op-
timized for overall measures of accuracy like F1 score, peo-
ple are often differently sensitive to false positives versus 
false negatives. How can we tell if people prefer higher 
precision or recall in this space? Also, would these toler-
ances change if the same sensing system were used for a 
different application (e.g., sensing activities of daily living 
for an aging parent instead of energy monitoring)?  

Researchers and developers find themselves trying to ex-
tract every bit of inference performance from a system, 
potentially facing diminishing returns. A follow-on to Patel 
et al. [17] by Gupta et al. [9] improved mean accuracy to 
94%, but this took several years, significant hardware up-
dates, and identification of new features of interest. Efforts 
could be made to improve the accuracy even further, but at 
what point should one focus on the user interface over im-
proving the accuracy of the classifier? Given the increasing 
prevalence of such systems, we need a systematic way to 
answer these questions, preferably before even starting to 
design or improve a classifier for a particular application. 

To help researchers address these questions, we have devel-
oped a model and method for predicting how acceptable 
users will find the accuracy of systems that use classifiers. 
The primary contributions of this paper center on connect-
ing evaluation of classifiers to acceptability of accuracy, 
with the aim of predicting the latter on the basis of the for-
mer. These contributions are 1) formalizing the notion of 
acceptability of accuracy; 2) demonstrating the association 
between traditional measures of classifier accuracy and 
acceptability of accuracy (we investigate a class of 
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weighted means of precision and recall that includes the 
ubiquitous F-measure and show how to use acceptability of 
accuracy to select which of measure to use when evaluating 
a classifier); and 3) devising and validating a simple survey 
tool developers of inference-based systems can use to help 
identify acceptable levels of classifier performance before 
expending the effort to build the systems. 

As an example, imagine we are developing a smart alarm 
for the home that automatically identifies intruders and 
alerts the homeowner with a text message. While we have 
built a classifier for this problem, we are unsure what objec-
tive function to optimize: will our users value recall over 
precision, and if so, by how much? We generate a survey 
that describes the application and asks users how acceptable 
they find its accuracy to be in hypothetical scenarios with 
varying precision and recall (given a scenario description, 
the tool described in this paper generates the necessary sce-
narios). We deploy the survey to potential users then fit a 
model of acceptability of accuracy to the results. This mod-
el estimates ߙ, a parameter from 0 to 1 describing the rela-
tive weight users place on precision versus recall: 0 means 
users value only recall, 1 only precision, and 0.5 each 
equally. The model estimates alpha at ~0.35 (some prefer-
ence for recall over precision) and yields an objective func-
tion we can use to tune the classifier before we test it in a 
deployment. This increases the chance that our deployment 
is a success, as our classifier is now tuned to users’ prefer-
ences for different types of errors in this application. 

Our goal is not to impose further requirements for research-
ers to demonstrate that their good classifiers are actually 
good, though we believe it is possible to make such claims 
stronger through consideration of acceptability of accuracy. 
Instead, we aim to provide researchers with the tools to 
systematically make decisions about how to allocate re-
sources: e.g., to think about how to use a seemingly low-
performing classifier to build an application with an appro-
priately fuzzy or broad level of feedback that users will find 
acceptable or to refocus resources on the user interface 
when the classifier is deemed “good enough”. 

In what follows, we outline our proposed survey instrument 
for assessing the acceptability of accuracy of hypothetical 
classifier-based applications. We describe a series of sur-
veys in which we refined and validated our method. First, 
we employed this instrument to assess its face validity in 
four different applications drawn from the ubiquitous com-
puting literature. Second, we deployed a refined version of 
the model and demonstrate its predicative validity in the 
domain of weather forecasting error, showing that we can 
estimate acceptability of accuracy to within one point on a 
7-point Likert scale. We then discuss how we envision use 
of this tool in research and implications of this work on 
classifier evaluation when building systems. 

RELATED WORK 
A growing body of work in Human–Computer Interaction 
(HCI) and Ubiquitous Computing (Ubicomp) has involved 

investigations of the intelligibility of user interfaces: how 
transparent the reasoning or certainty of these systems are 
to users [14,15]. The effects of intelligibility seem to be 
application-dependent: displaying uncertainty sometimes 
has positive [1] or negative [24] effects on task perfor-
mance. In a study of several hypothetical context-aware 
systems, Lim and Dey found that making the certainty of a 
system visible to users—for example, as a confidence re-
gion in location-aware systems—can improve users’ per-
ceptions of the accuracy and appropriateness of a system, so 
long as the accuracy is good enough [15]. However, in the 
context of an inference-based system, it is not clear what 
components of accuracy contribute to assessments of “good 
enough.” For example, it is well-established in information 
retrieval literature that the unweighted F1 score is inade-
quate for many applications, since users may be more con-
cerned (for example) with precision than recall [13,22]. Yet, 
we still commonly use F1 score in evaluating classifiers in 
many user-facing applications. In this paper, we investigate 
the individual effects of precision and recall on the accepta-
bility of accuracy in inference-based applications.  

In addition, given a highly intelligible system with accepta-
ble levels of accuracy, it still behooves us to ask whether 
users find it to be useful. To that end, we use a variant of 
the Technology Acceptance Model (TAM) to validate our 
measure of acceptability of accuracy. TAM is a well-studied 
method for predicting technology acceptance, originally 
proposed for use in the workplace [6]. Since then, numer-
ous variants of TAM have been proposed [27,28], and it has 
been applied to contexts outside the workplace, such as e-
commerce [18] and consumer health technology [16]. The 
core constructs of TAM include perceived ease of use, per-
ceived usefulness, and intent to use a technology, which 
have been shown to predict real-world use [6,18,27]. In this 
work, we adopt a variant of the TAM2 [27], which includes 
a construct called output quality—how well a system per-
forms the tasks it is designed for—which we believe to be 
related to acceptability of accuracy in ubicomp systems. 

The development of methods to evaluate ubicomp systems 
that use sensing and inference has been a popular topic 
within the last decade, and several frameworks have been 
proposed [2,10,25]. These frameworks aim for a holistic 
evaluation, whereas we explicitly look toward a method for 
assessing the acceptability of accuracy. Others call for eval-
uating ubicomp technologies through in-situ deployment 
studies of built systems [23]. This can be a very useful 
method to assess the acceptability of accuracy, and studies 
of applications that use sensing have been able to evaluate 
the acceptability of accuracy of an already built system 
within the context of use (e.g., [5]). These deployments are 
very resource-intensive, however, and thus we aim to re-
duce the overhead of assessing the acceptability of accuracy 
before such systems are built. Finally, other researchers 
have proposed methods of formative assessment of 
ubicomp systems through the concepts of sensor proxies [3] 
and experience sampling [4], but these methods still require 



in person interaction with participants, and do not provide 
explicit guidance on the acceptability of accuracy of infer-
ence systems. We believe our method can complement 
these existing approaches. In particular, by modeling ac-
ceptability of accuracy as a function of measures familiar to 
developers of machine learning applications—and by ex-
pressing its results as an objective function that can be op-
timized by learning processes—we provide a model of ac-
ceptability of accuracy that is expressed in the domain lan-
guage of the experts who build these systems. 

ACCEPTABILITY OF ACCURACY SURVEY INSTRUMENT  
We designed a scenario-based survey instrument to system-
atically examine the effects of differing classifier accuracies 
on user’s perceptions of those classifiers in the context of 
specific applications and user interfaces. The basic structure 
of the survey leads with a description of an application that 
makes use of a classifier; for example: 

Electricity monitor application: Your residence has been 
outfitted with an intelligent electricity monitoring system. It is 
capable of keeping track of how often you use each of your 
appliances and how much electricity each appliance uses. 

This application description is then followed by a series of 
accuracy scenarios in which varying levels of performance 
of the classifier for that system are outlined to participants: 

Please imagine the following: 
 10 times over a three month period, you used your clothes 

dryer. 
o 8 of the 10 times that you used your clothes dryer, the sys-

tem (correctly) reported that you used your clothes dryer. 
o 2 of the 10 times that you used your clothes dryer, the sys-

tem (incorrectly) reported that you used a different appli-
ance. 

 2 other time(s) over the same three month period, the system 
(incorrectly) reported that you used your clothes dryer even 
though you were actually using a different appliance. 

This performance scenario lays out several properties of the 
classifier in bold. In order, they are: 

 Real positives (RP); above, the total number of uses of 
the dryer. This is held constant. 

 True positives (TP); above, the number of times the dry-
er was correctly predicted as having been used. 

 False negatives (FN); above, the number of times the 
dryer was not predicted as being used even though it was. 

 False positives (FP); above, the number of times the 
dryer was predicted as being used even though it was not. 

These properties are expressed as frequencies rather than 
percentages, as work in Bayesian reasoning suggests that 
people’s inferences are better when asked about frequencies 
rather than proportions [8]. The particular wording for each 
scenario was developed through pilots on Amazon’s Me-
chanical Turk (http://mturk.com) and in-person. 

For a given application, we generate 16 different accuracy 
scenarios corresponding to 4 levels of recall (0.5, 0.66, 

0.833, 1.0) × 4 levels of precision (0.5, 0.66, 0.833, 1.0).1 
Note that due to the definitions of recall and precision,  
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ൌ
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ܴܲ
ሺrecallሻ

ܲ ൌ
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ܶܲ  ܲܨ
	 	 ሺprecisionሻ

 

we can calculate all the other values in the above scenarios 
so long as RP is known (e.g. below we fixed RP at 10).  

For each accuracy scenario, we ask three 7-point Likert-
item questions from extremely unlikely to extremely likely. 
These questions correspond to acceptability of accuracy 
(which we introduce here), perceived usefulness, and intent 
to use (the latter two are adapted from the TAM [6,27])2:  

 I would find the accuracy of this system to be acceptable. 

 I would find this system to be useful. 

 If available to me now, I would begin using this system some-
time in the next 6 months. 

This structure allows us to generate scenarios for an appli-
cation with arbitrary accuracy. Essentially, we can sample 
the space of possible accuracies in an application and then 
model how this affects acceptability of accuracy. While we 
have selected particular levels of accuracy here, our scenar-
io-generating code accepts any combinations of levels.  

TESTS OF FACE VALIDITY 
We intend our survey to be able to answer several questions 
about a given application. First, we aim to model accepta-
bility of accuracy based on measures of classifier accuracy. 
To do that, we derive several measures of accuracy from the 
precision and recall of each scenario (such as a weighted F-
measure) and use these to predict acceptability of accuracy.  

Acceptability of accuracy as we define it is intended to cor-
respond to a measure of output quality in TAM2 [27], 
which refers to how well a system performs the tasks it is 
designed for (distinct from how useful someone finds those 
tasks to be) and has been shown to correlate with perceived 
usefulness [27]. This leads to our first test of validity: 

 T1: Acceptability of accuracy and perceived usefulness 
should be highly correlated. 

Further, per TAM [6,27]: 

 T2: Perceived usefulness and intent to use should be 
highly correlated. 

Next, we should not expect two classifiers that have the 
same quantitative accuracy but which are in different appli-
cations to have the same acceptability: users’ sensitivity to 

                                                           
1 The use of frequencies necessitates some rounding, so some 
scenarios have only approximately this precision/recall. 
2 Pilot versions of the survey also included ease of use from the 
TAM, but this question was confusing to users when being asked 
about a hypothetical system, so we omitted it.  



errors will vary between applications, and our instrument 
should uncover this; thus: 

 T3: Our instrument should be sensitive to application: 
classifiers with similar accuracy for different applications 
may have different acceptability of accuracy. 

Finally, different types of classification error do not always 
incur the same cost for users (e.g., the effects of the relative 
weight of precision versus recall is a well-known problem 
in information retrieval [22], where it is more important that 
the top results the user sees are highly relevant than that all 
relevant results are returned). We should therefore expect 
our method to be sensitive to such differences in situations 
where the costs of errors differ. Thus, our fourth test:  

 T4: When classifiers with similar accuracy for the same 
application have different levels of user burden for false 
positives, our test should be sensitive to this, and reflect it 
as a different weighting of precision versus recall. 

STUDY 1: ASSESSING FACE VALIDITY  
We deployed our instrument in a survey with four different 
hypothetical applications inspired by applications found in 
the ubicomp literature [9,19,29]. This variety was intended 
to allow us to validate T3. The applications include an elec-
tricity monitor (introduced above) as well as the following: 

Location tracker: Your workplace has installed a mobile ap-
plication on employees' cell phones that can estimate what 
room at work you or your coworkers are currently in. You can 
use it to locate a colleague or your supervisor when you are 
both present at work, for example, to have a quick meeting. 

Alarm (text message): Your residence has been outfitted with 
an intelligent alarm system that is capable of automatically 
recognizing household members when they enter, without any 
other interaction. For example, it does not require a pass-
word. When a stranger enters the house alone (someone that 
the system does not recognize), it sends you a text message. 

Alarm (police): Your residence has been outfitted with an in-
telligent alarm system that is capable of automatically recog-
nizing household members when they enter, without any other 
interaction. For example, it does not require a password. 
When a stranger enters the house alone (someone that the 
system does not recognize), it calls the police. 

The two variants on the alarm application are meant to ex-
plore two possible extremes of feedback: a relatively low-
burden modality (text messages) and a very high-burden 
modality (calls to the police). These allow us to validate T4. 

Survey structure for data collection 
Due to the length of the survey (each application has 16 
scenarios, with 3 questions per scenario), we split the sur-
vey into two branches (see Figure 1). Each participant is 
randomly assigned to one of two branches: the application 
branch and the user interface branch, corresponding to T3 
and T4. Participants in the application branch are asked 
about the electricity monitor, location tracker, and alarm 
(text message) applications. Participants in the user inter-
face branch are given the alarm (police) and alarm (text 

message) applications. Within survey branches, participants 
were shown each application in a random order. Scenario 
order within each application was also randomized. 

Participants 
Participants were recruited via word-of-mouth, distribution 
on university mailing lists, and advertisements on Face-
book. We had 50 participants, 26 in the application branch 
and 24 in the user interface branch (this was sufficient to 
show credible differences in model parameters due to the 
use of within-subjects design). Participants were entered 
into a raffle to win one of five Amazon.com gift cards: a 
$50 card or one of 4 $25 cards. Due to the length of the 
survey, some participants did not complete the entire survey 
(11 and 3 in each branch, respectively; each of these partic-
ipants completed at least one application), which was ex-
pected due to its length. We used randomization of scenario 
order to account for this so that each application still re-
ceived an adequate number of participants. We had 50% 
female participants, and 50% of each branch was female. 

Model of acceptability of accuracy 
To analyze acceptability of accuracy, we posited that ac-
ceptability of accuracy may be predicted based on some 
measure of classifier accuracy. In particular, because preci-
sion and recall in these applications are visible to the user, 
we concentrated on measures based on them. We did not 
consider measures that involve true negatives, as it is not 
clear in our scenarios that true negatives are meaningful to 
users. For example, what does it mean to a user that their 
alarm correctly did not go off whenever no one was break-
ing into their home? Rather, the user cares about precision: 
when I actually see an alarm, how likely is it genuine? This 
also offers a simpler starting point to model. 

Thus, we first consider the weighted F-measure, which is 
equivalent to a weighted harmonic mean of precision and 

 

Figure 1. Survey 1 structure. Each application page (blue box) 
corresponds to an instance of our acceptability of accuracy 

survey instrument applied to a different application. 
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recall. We note that it can be considered a part of a larger 
class of weighted power means of precision and recall: 

,,ఈሺܲܯ ܴሻ ൌ ሾܲߙ  ሺ1 െ ሻܴሿߙ
ଵ
 

In this class, p specifies the type of mean; for example: 

,ଵ,ఈሺܲିܯ ܴሻ ൌ ൬
ߙ

ܲ

1 െ ߙ

ܴ
൰
ିଵ

ሺharmonic	meanሻ

,,ఈሺܲܯ ܴሻ ൌ ܲఈܴଵିఈ ሺgeometric	meanሻ

,ଵ,ఈሺܲܯ ܴሻ ൌ ܲߙ  ሺ1 െ ሻܴߙ ሺarithmetic	meanሻ

 

The parameter ߙ ∈ ሾ0,1ሿ specifies a relative weighting of 
recall and precision; when ߙ ൌ 0.5, both are weighted 
equally; when ߙ ൏ 0.5, recall is weighted higher than preci-
sion; and when ߙ  0.5, precision is weighted higher than 
recall. In this class, ିܯଵ,ఈ is equal to 1 െ -ఈ (van Rijsberܧ
gen’s Effectiveness measure [22]), or the ܨఉ-measure where 
ߙ ൌ 1/ሺ1   ,,ఈܯ .ଵ scoreܨ ଵ,.ହ is the familiarିܯ ଶሻ; thusߚ
the geometric mean, is also known as the G-measure [21]. 
We consider this larger class of measures so that we have a 
systematic way to ask both whether harmonic mean (i.e., F 
measure) corresponds most closely to how people judge 
acceptability of accuracy for these applications (by deter-
mining p) and so that we can estimate whether for a given 
application, people value precision or recall more highly 
(by determining ߙ for that application).  

We conducted a mixed-effects Bayesian logistic regression3 
of acceptability of accuracy against three different weighted 
power means of precision and recall (harmonic, geometric, 
and arithmetic). Our model was as follows: 

logit൫ߤ,,൯ ൌ ,ߚ  ,ఈ൫ܯଵ,ߚ ܲ,, ܴ,൯  ܷ
,,ݕݐ݈ܾ݅݅ܽݐ݁ܿܿܽ ~ Bernoulliሺߤ,,ሻ

 

For respondent k on scenario j in application i, with p drawn 
from a categorical distribution over (-1,0,1) corresponding 
                                                           
3 While we considered using an ordinal or a multinomial logistic 
regression instead of a binomial regression, ultimately the question 
when evaluating a classifier here becomes “how many people said 
the accuracy was acceptable at all?”, in which case this threshold 
would be applied after regression anyway, so the simpler model 
suffices while invoking fewer assumptions. 

to the aforementioned three types of means. Here we con-
sider ܽܿܿ݁ݕݐ݈ܾ݅݅ܽݐ,, ൌ 1 when a participant rates the 
acceptability of accuracy for that scenario as Slightly likely 
or higher and 0 otherwise. ܷ is the random effect for par-
ticipant k. We used the following uninformed priors: 

,,ߚ ଵ,ߚ ~ Normalሺ0,1000ሻ

ߙ ~ Uniformሺ0,1ሻ

ܷ ~ Normal൫0, 1 ߬ൗ ൯

߬ ~ Gammaሺ0.001,0.001ሻ

  2 ~ Categorical൫1 3ൗ , 1 3ൗ , 1 3ൗ ൯

 

This model allows us to separately estimate ߙ for each 
application i. In addition, the posterior distribution of p will 
give us an estimate for how believable each type of mean is 
as a predictor for acceptability. 

We take a Bayesian approach rather than a null-hypothesis 
significance testing (NHST)-based approach in modeling 
acceptability for several reasons. First, it yields a richer 
estimation of the parameters of interest: it allows us to es-
timate a complete posterior probability distribution of ߙ for 
each application, rather than just a (point) maximum likeli-
hood estimate. Second, as our goal is to propose methods of 
classifier evaluation that others can build upon, a Bayesian 
approach is a natural fit: posterior distributions of parame-
ters from our model (and hopefully in the future, others’) 
can be used to inform prior distributions in future work. We 
adopt Kruschke’s [11] approach to Bayesian experimental 
statistics. In particular, we examine 95% highest-density 
intervals (HDIs) of posterior distributions to estimate credi-
ble differences between parameters (as opposed to an 
NHST approach of a 0.05 p-value threshold on the distribu-
tion of a test statistic).5  

RESULTS 
The posterior distribution of p allows us to estimate which 
measure best approximates acceptability of accuracy. For 
these applications, p = 0 (geometric mean) is most credible 
(P(p = 0) = .81), suggesting the G-measure may more close-

                                                           
5 Where possible we also ran similar more traditional NHST mod-
els and saw similar effects. 

 

Figure 2. Acceptability of accuracy from the survey results plotted against each application’s weighted geometric mean of precision 
and recall from our model. Optimizing this mean has the effect of also optimizing an application’s acceptability of accuracy. 
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ly correspond to users’ estimations of accuracy here. We do 
note that F-measure was more probable than arithmetic 
mean, and had only moderately less believability than G-
measure (P(p = −1) = .17, Bayes Factor = 4.7). Figure 2 
plots the proportion of people who rated the acceptability of 
accuracy at each level against the weighted geometric mean 
for that application derived from our model. Higher 
weighted mean is clearly associated with greater acceptabil-
ity of accuracy. We break down the rest of our results based 
on the validity questions outlined above. 

 T3: Our instrument should be sensitive to application: 
Classifiers with similar accuracy for different applica-
tions may have different acceptability of accuracy. 

Confirmed. See Figure 3A: In the application branch of the 
survey, ߙ for the electricity and location applications were 
both ~0.5, but for alarm (text message), ߙ was ~0.3. The 
differences between alarm (text message) and electricity 
monitor (ߙ െ ߙ ൌ െ.19, 95% HDI: [−.30,−.09]) and be-
tween alarm (text message) and location tracker (ߙ െ ߙ ൌ

െ.19, 95% HDI: [−.32,−.07]) were credible on a 95% HDI, 
suggesting that our tool can be sensitive to differences in 
preferences between applications. ߚଵ for all applications on 
both branches was also credibly different from 0. While it 
varied, ߚଵ/100 typically corresponded to an odds ratio of 
~1.2, or a 20% increase in the odds that a person finds the 
accuracy of a system acceptable for every 0.01-point in-
crease in G-measure. While their posterior distributions of 
 were similar, electricity monitor and location tracker had ߙ
credible differences in ߚଵ (ߚଵ, െ ଵ,ߚ ൌ 6.6, 95% HDI: 
[.3,12.6]), again showing the sensitivity of the model. 

 T4: When classifiers with similar accuracy for the same 
application have different levels of user burden for false 
positives, our test should be sensitive to this, and reflect it 
as a different weighting of precision versus recall. 

Confirmed. See Figure 3C: In the user interface branch of 
the survey, the alarm scenario had ߙ ൌ 0.53 for police 
compared to the much lower ߙ ൌ 0.42 for alarm with text 
message6, and these differences were credible on 95% HDI 
ߙ) െ ߙ ൌ െ.12, 95% HDI: [−.22,−.01]). This demon-
strates that the relative weighting of recall and precision for 
the same classifier on the same application—but with dif-
ferent feedback—can be quite different. Here, a more 
lightweight form of feedback (text messages) leads users to 
value recall over precision—that is, they are much more 
willing to tolerate false positives in order to obtain a higher 
true positive rate. Note also that the bulk of the posterior 
distribution of (81%)  ߙ for alarm (police) is also greater 
than 0.5 (although 0.5 is not outside its 95% HDI), giving 
                                                           

6 While estimates of ߙ for alarm (text message) differed between 
branches, a model combining both branches (Figure 3B) yields a 
more precise estimate of ߙ that is consistent with the separate 
estimates (within their 95% HDIs) and which has all of the same 
credible differences with other ߙs as described above. 

us some evidence that participants here valued precision 
over recall. This is as we would expect given the type of 
feedback: a false positive is costly if it results in a call to 
the police. 

 T1: Acceptability of accuracy and perceived usefulness 
should be highly correlated. 

These measures were highly correlated according to the 
Spearman rank correlation coefficient (0.89 = ߩ, p < 0.001), 
suggesting the validity of our inclusion of acceptability of 
accuracy as a measure of output quality in the TAM.  

 T2: Perceived usefulness and intention to use should be 
highly correlated. 

These measures were also highly correlated (0.85 = ߩ, 
p < 0.001). 

STUDY 2: ASSESSING PREDICTIVE VALIDITY 
To assess the predictive validity of our tool, we conducted a 
survey of perceptions of weather forecasting apps and web-
sites. Weather prediction is a system where people are regu-
larly exposed to the effects of prediction accuracy (e.g. fail-
ing to bring an umbrella when it rains) without knowing the 
precise accuracy of the system, as we might expect in other 
user-facing classification systems, making it a good candi-
date for validation. We obtained ground truth data of precip-
itation predictions from various weather forecasters in Seat-
tle, WA, USA for the period of Sept 1, 2013–Aug 31, 2014 

(http://www.forecastwatch.com/). We focused on one city, 
as people in deferent climates may have different prefer-
ences for precipitation accuracy. This survey had two parts: 

Part 1: Existing acceptability (ground truth). We asked 
participants to specify which weather forecasting apps and 
websites they currently use and to rate each on acceptability 
of accuracy of precipitation prediction over the last 30 days 

 

Figure 3. Posterior distributions of ࢻ for both branches of the 
survey. Mean and 95% HDI are indicated. Note the sensitivity 
of our model to different preferences of precision versus recall 
between applications (A) and for different feedback types (C). 

(B) shows a more precise estimate of ࢻ for alarm (text mes-
sage) from a model combining both branches of the survey. 
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and the last year. We also included usefulness, ease of use, 
and frequency of use questions for validating against the 
TAM. We again used 7-point Likert items, but used the an-
chors strongly disagree/strongly agree instead of extremely 
unlikely/extremely likely, as these statements were not pre-
dicting hypothetical use but describing existing opinions. 
Unlike with our survey tool, these questions do not specify 
the accuracy of the systems in question to participants. 
However, since we have the ground truth of the predictive 
accuracy of these systems over both time periods in ques-
tion, we can model these responses in a similar manner to 
our hypothetical accuracy survey without the caveat that 
people are responding to hypothetical levels of accuracy. 

Part 2: Hypothetical acceptability (our survey tool). We 
randomly selected one application or website from Part 1 
that the participant currently uses and generated a variant of 
our survey instrument for that application or website. We 
asked them to imagine the randomly selected weather app 
had the accuracy described in each scenario (thus making 
the scenario more concrete), then to rate acceptability of 
accuracy, usefulness, and intent to use. Each scenario be-
gan, “15 days in a 30-day period, it rained” (i.e., real posi-
tives were fixed at 15). As before, we specified TP, FN, and 
FP (and additionally TN, as we had a fixed time interval 
and prevalence) using four statements like “13 of the 15 
days that it rained, the weather forecast had (correctly) pre-
dicted that it would rain that day.” We used the same preci-
sion and recall levels as before, but instead of giving all 16 
scenarios to each participant, we gave each participant a 
random subset of 8 scenarios to reduce survey length.  

Due to the reduced number of scenarios shown to each par-
ticipant (potentially sampling over a smaller space of possi-
ble answers on the Likert scale for any individual partici-
pant), we used an ordinal regression instead of a binomial 
regression. Our model assumes the same latent variable 
representing acceptability is associated with the ordinal 
ratings of acceptability of accuracy in Part 1 and in Part 2.  

Besides the use of ordinal instead of binomial regression, 
we also added two additional parameters. We added a fixed 
effect of survey part (ground truth last 30 days, ground 
truth last year, or hypothetical), ߚଶ,, to estimate whether 
people systematically over- or under-estimate their actual 
acceptability, as we might expect if (for example) people 
answering “extremely likely” are likely to give a lower rat-
ing of acceptability of accuracy when answering about a 
system they have experienced. We also added a scaling pa-
rameter, ߞ, (also varied by survey part) to estimate whether 
people are more or less sensitive to changes in accuracy in 
real systems versus the hypothetical scenarios. By modeling 
these effects, we can use an individual’s predictions about 
their own acceptability in hypothetical scenarios to estimate 
how acceptable they will actually find the accuracy of those 
systems to be if they used them. The model specification is: 

logit൫ܲሺ ܻ,,  ݈ሻ൯ ൌ
ߠ െ ,ఈ൫ܯଵߚ ܲ,, ܴ,൯ െ ଶ,ߚ െ ܷ

݁
 

For acceptability level l for respondent k on scenario j (or 
forecaster, in Part 1) in survey part i. We fix the parameters 
for the hypothetical part of the survey (where ݅ ൌ ଶ,ଷߚ ,(3 ൌ
0 and ߞଷ ൌ 0, so the parameters from the ground truth sur-
vey parts (ߚଶ,ଵ, ߚଶ,ଶ, ߞଵ, and ߞଶ) can be interpreted as shifts 
in the location and scale of a person’s hypothetical rating. 

We use leave-one-participant-out cross-validation to assess 
the predictive validity of our model. In each fold, we fit a 
model with all participants’ responses on Part 2 (hypothet-
ical acceptability), but use all participants’ responses except 
one to estimate the bias of hypothetical responses versus 
acceptability of known systems (Part 1). We then use the 
responses of the left-out participant in Part 2 to predict how 
they would rate the randomly-selected weather forecaster 
they saw in Part 2 on Part 1 of the survey based on the 
known accuracy of that forecasting app. 

This mimics the situation where the accuracy and accepta-
bility of an existing system is known, but the real-world 
acceptability of future (possibly better) systems is un-
known. This scenario might arise (e.g.) if researchers in an 
area wish to set future targets for accuracy; such a model 
would provide the ability to predict acceptability levels in a 
population based on a combination of people’s opinions of 
existing systems and their ratings of hypothetical systems. 

Participants were recruited and compensated as in Study 1. 
We had 22 participants, 55% of which were female. 

Results  
Our model had a cross-validated mean absolute error 
(MAE)—the mean difference between the predicted and 
actual acceptability in points on the Likert scale—of 0.93, 
suggesting our predictions are generally within one point of 
the actual value on the scale. This is promising, though we 
note that people’s ratings of actual systems were generally 
tightly clustered in the “acceptable” range (the MAE of 
using the median category as a predictor was 1.09). 

This tight clustering was also reflected in our model. While 
weighted precision/recall had a credible effect (ߚଵ ൌ 13.4, 
95% HDI: [9.92,16.7]), scale parameters for the ground 
truth data indicated that ground truth responses were credi-
bly less variable (ߞଵ ൌ െ0.437, 95% HDI: [−0.829,−0.066]; 
ଶߞ ൌ െ0.346, 95% HDI: [−0.673,−0.003]). These coeffi-
cients suggest that responses in the ground truth data had 
about 60% the variance of the hypothetical data. In other 
words, people were less sensitive to changes in accuracy in 
the systems they used than they predicted they would be in 
the hypothetical survey. People also tended to under-
estimate the acceptability of precipitation predictions in 
hypothetical scenarios, with ground truth responses having 
credibly higher ratings for the same accuracy (ߚଶ,ଵ ൌ 1.59, 
95% HDI: [1.1,2.13]; ߚଶ,ଶ ൌ 3.82, 95% HDI: [2.94,4.8]). 

We found some evidence of wet bias [26] in participants’ 
preferences: the estimated ߙ was 0.461 (95% HDI: 
[0.382,0.545]) with 82.3% of the distribution lying below 



0.5 (see Figure 5). This leads some credence to the idea that 
people may weight recall higher here—desiring forecasters 
to catch more instances of rain in the forecast at the expense 
of making more false predictions of rain. We expect the 
prevalence of this bias to vary by climate, so make no 
claims to generalizability beyond the city we tested in. We 
note that we also asked people to state whether they thought 
it was worse when the forecast “does not call for rain, but it 
does rain” (FN) or when “calls for rain, but it doesn't rain” 
(FP), and 88% considered the former worse, consistent with 
a higher weight on recall, further validating our model. 

As before, acceptability in the hypothetical survey was 
highly correlated with usefulness (0.98 = ߩ, p < 0.001) and 
usefulness with intent to use (0.95 = ߩ, p < 0.001). We also 
saw significant correlations between acceptability of accu-
racy and usefulness in the ground truth survey, though less 
strong (0.37 = ߩ, p < 0.001), which is to be expected in real-
world systems (where concerns like usability and conven-
ience have additional salience over accuracy). Notably, we 
did not see significant correlations between acceptability of 
accuracy and ease of use in the ground truth (0.13 = ߩ, 
p = 0.13), but did see moderate correlations between ease of 
use and usefulness (0.55 = ߩ, p < 0.001)—as predicted by 
the TAM—suggesting that acceptability of accuracy is a 
separate construct from ease of use and is more related to 
output quality and usefulness, as we had predicted. 

DISCUSSION AND IMPLICATIONS 
In this section, we provide a discussion and implications for 
the survey instrument we have built for estimating accepta-
bility of accuracy and its potential uses. Our research has 
broad implications, from deciding how to evaluate classifi-
ers in user-facing systems, to selecting user interfaces and 
feedback for a new system, to allocating research resources. 

What can we say absent a user interface?  
Selecting an objective function 
Given a new classifier, typically, we might tune this classi-
fier to optimize the ܨఉ-measure (where ߚ is usually 1). 
However, even without acceptability of accuracy ground 
truth, our instrument can be used to decide a more appro-
priate objective function to optimize during learning (e.g. 
an F or G measure with a particular weight). While the ac-
tual acceptability will not be known (because we cannot 
estimate shifts in location or scale of real-world acceptabil-
ity without data from actual use), we believe that this esti-
mated objective function will correlate with real-world ac-
ceptability of accuracy more closely than (say) F1 score. 

More broadly, we believe researchers should consider 
whether F1-measure truly matches their evaluation goals 
before employing it on user-facing systems. 

Selecting a user interface to build:  
The potential of a low-performing classifier 
As researchers in HCI and ubicomp, we often find our-
selves asking, is this classifier good enough for our users? 
Indeed, we can recall several conversations with colleagues 
working on classifiers for various problems wherein some-
one asserted that the classifier was not good enough—and 
yet, the system had no user interface to speak of. If we have 
a classifier with (e.g.) better precision than recall, we can 
use our instrument to test out several hypothetical user in-
terfaces or applications for a given classifier, and then build 
the application in which people weight precision as more 
important than recall (or vice versa, as called for by the 
results from our instrument). This gives us a way to in-
crease the chances of building an acceptably accurate user-
facing system given a classifier with known shortcomings. 
Given the potential for lower-burden, fuzzier feedback to 
improve the acceptability of accuracy of a system, it may be 
premature to rule out a weak—but adequately-
performing—classifier without investigating acceptability 
of accuracy for potential instantiations of its user interface. 

A lower performing but still acceptable classifier might also 
be used to preserve privacy or plausible deniability, which 
we believe our approach can help uncover. More simply, 
the lower performance classifier might be the easiest and 
cheapest to implement given system’s computational capa-
bilities. Knowing how accuracy trades off against accepta-
bility would enable researchers to make these types of 
judgments more systematically. 

Same sensor, different application:  
performance may not transfer 
In a similar vein, a classifier that appears quite accurate for 
its domain may not have acceptable accuracy depending on 
what kind of application it is built into. For example, one 
might consider building many different types of systems on 
top of infrastructure-mediated sensing (e.g. sensors that can 
disaggregate energy [9] or water [7] use by appliance). The 
obvious example is an application for identifying high-cost 
appliances on a utility bill. However, a parent might also 
wish to use such a system to track TV usage of their child. 
While a certain level of false positives in tracking energy 
use of appliances seems unlikely to cause large discrepan-
cies in finding high-cost devices, a few false positives in 
TV use may spark arguments between parents and children 
about TV-time quotas. We could more systematically inves-
tigate these intuitions by fitting a model of acceptability of 
accuracy to each of these applications. This would allow us 
to decide if our classifier is adequate for each use case. 

Predicting future acceptability and setting targets 
Given actual use of a classifier with known accuracy, ac-
ceptability ratings of that accuracy, and results from our 
survey instrument, we can estimate the relationship between 

     

Figure 5. Posterior distributions of ࢻ for precipitation predic-
tion. Mean and 95% HDI are indicated. Note the evidence of 

wet bias: 82% of the distribution lies below 0.5. 
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hypothetical and actual acceptability (as with the weather 
data above). In this case, we can actually use hypothetical 
ratings to estimate the acceptability of accuracy for future 
classifiers that are more accurate than existing ones, and use 
this model to set targets for desired accuracy or to identify 
when we have reached a point of diminishing returns. 

Training a new model: predicting when to predict 
Many systems require an initial training period with a new 
user before they can make predictions (e.g., the Nest ther-
mostat, Belkin Echo electricity/water monitor); such sys-
tems wait until they have built a good personalized model. 
But how long should training last? First impressions made 
by poor predictions are likely to sour users on a system. 
Given a model of acceptability of accuracy for an applica-
tion, one could set a desired threshold of acceptability (e.g., 
as a percent of the user base), and use this to determine 
when the system should switch from training to prediction. 

Expanding to other application domains 
Thus far we have examined four specific application do-
mains: electrical appliance detection, person location within 
an office, home alarms, and precipitation prediction. We 
chose applications we felt would be broadly applicable to a 
general audience and that we could use to validate the in-
strument. However, there are many other domains that can 
still be explored. For example, health sensing and recogni-
tion of daily activities for older adults are two popular ap-
plication areas within HCI and Ubicomp. These types of 
applications are often only useful to certain subsets of peo-
ple (e.g., someone with a specific health condition or some-
one caring for an older person), and thus if these domains 
are tested, the surveys should be targeted toward these spe-
cific populations rather than a general population (a primary 
reason we did not test them here). We suspect that health 
and older adult applications might require a higher level of 
accuracy, but that the user interface will again matter great-
ly. This is something our approach is designed to determine.  

To facilitate adoption, we provide code for generating the 
survey based on desired precision and recall levels and fit-
ting the model at: https://github.com/mjskay/acceptability-
of-accuracy. We envision building an online repository of 
application examples and resulting data that can be used as 
guidelines to others wanting to build classifiers in a given 
space. For example, if someone is interested in exploring a 
new sleep sensor, they might look up data for similar appli-
cations in that domain and find that they need to aim for 
about 90% accuracy (as measured by some particular meas-
ure of accuracy, like weighted G-measure). This could also 
serve as a sort of “grand challenges” list for the community 
to help people building classifiers find interesting problems 
worth solving, rather than spending resources on areas with 
diminishing returns. At some point, resources on any given 
application may be better spent on improving the user inter-
face or on another domain altogether. 

Recommendations on applying the survey to research 
Our experience in conducting this research leads us to make 
several recommendations for researchers hoping to apply a 
similar approach to their own applications and classifiers. 
We recommend presenting each user with at most 8 accura-
cy scenarios (as we did for the weather application), as we 
received feedback that the original survey (with 16 scenari-
os) was a bit long. We also recommend including at most 
two applications at a time, as our survey with three different 
applications had a higher rate of partial completions (11/26 
compared to 3/24 in the two-application branch). Note that 
due to its design, a small number of participants (here, ~20-
25 per application) is sufficient to achieve credible esti-
mates of the model parameters from the survey tool.  

In addition, although we used written scenarios in our ex-
ample, researchers should consider other forms of represen-
tation of the system, such as visual screen mockups, story-
boards, or video scenarios to help explain the intended use. 
Deployment on Mechanical Turk offers another approach, 
where each scenario could be made a single, small task. 

LIMITATIONS AND FUTURE WORK 
While we believe that our approach can be useful to help 
give researchers an easy to use method for assessing ac-
ceptable accuracy levels for a given classifier and interface, 
there are some limitations. First, the models are typically 
application-specific. However, as described in the discus-
sion, we believe that it is straightforward to use existing 
classifiers in a domain to derive a model for that domain, 
allowing prediction of acceptability of accuracy of future 
classifiers. A good next step for this would be to test on 
more systems: for example, to simulate varying accuracies 
within a home electricity monitoring system and see wheth-
er people’s perceptions of acceptability of accuracy can be 
predicted using our acceptance of accuracy survey (similar 
to how we validated the precipitation prediction model). We 
also believe that model estimates from previous, similar 
applications can inform future models (and here, our Bayes-
ian approach can facilitate this). Finally, as an initial test 
case for our approach the survey thus far is geared toward 
evaluating the effect of precision and recall in binary classi-
fiers. Further work is necessary to see how (e.g.) true nega-
tives affect perceptions or to incorporate a broader set of 
classifier evaluation measures (c.f. [21]). 

CONCLUSION 
This work was motivated by a persistent question in HCI 
and ubiquitous computing research with end-user feedback 
based on classifiers: is my classifier good enough? We in-
troduced a new measure, acceptability of accuracy and de-
veloped and validated a survey instrument that connects 
classifier evaluation to acceptability of accuracy. By ex-
pressing our model in the domain language of classifier 
designers, our approach allows us to easily adopt an evalua-
tion method that more closely matches users’ perceptions of 
accuracy than does the oft-used unweighted F-measure. At 
the same time, this method yields insight into how to build 
the application’s feedback and whether further work on the 



classifier faces diminishing returns. We advocate for greater 
adoption of these types of evaluation methods in user-
facing classifiers through the use of a community database 
of models of acceptability in HCI application domains. 
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