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Figure 1: An example scenic design created using Neural Canvas with 3D sketching and generative AI models. Left: The 3D
environment with three camera views. Right: 3D sketches and projected AI-generated appearance in the corresponding views.

ABSTRACT
We propose Neural Canvas, a lightweight 3D platform that inte-
grates sketching and a collection of generative AI models to facili-
tate scenic design prototyping. Compared with traditional 3D tools,
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sketching in a 3D environment helps designers quickly express spa-
tial ideas, but it does not facilitate the rapid prototyping of scene
appearance or atmosphere. Neural Canvas integrates generative AI
models into a 3D sketching interface and incorporates four types
of projection operations to facilitate 2D-to-3D content creation.
Our user study shows that Neural Canvas is an effective creativity
support tool, enabling users to rapidly explore visual ideas and
iterate 3D scenic designs. It also expedites the creative process
for both novices and artists who wish to leverage generative AI
technology, resulting in attractive and detailed 3D designs created
more efficiently than using traditional modeling tools or individual
generative AI platforms.
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CCS CONCEPTS
• Computing methodologies→ Graphics systems and inter-
faces; • Human-centered computing→Web-based interaction.
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1 INTRODUCTION
Scenic design refers to the creation of a 3D environment as theatrical
scenery, which involves the design and configuration of sets, props,
and other elements for dramas, games, films, and performance-
based mediums. A good scenic design should offer the audience an
immersive experience through aesthetic appeal and better story-
telling, atmosphere, and spatial organization [4, 23]. Scenic design
is challenging because of its conceptual and abstract nature. De-
signers often need to spend considerable time and budget, and must
possess sufficient technical expertise in order to externalize their
ideas. They also need to incorporate many divergent ideas into
existing design drafts and then constantly modify and polish them.

Options for scenic design prototyping tools are currently rather
limited, with sketching and 3D modeling being most commonly
used in the design process. In a typical workflow, designers would
collect many reference images to make a mood board, and then use
traditional 3D modeling software to create polygon meshes, texture
maps, and light sources so they could finally render a possible
design. This workflow is time-consuming because tools such as
3D modeling software are better suited for final production rather
than rapid prototyping. Designers often face a dilemma where they
must spend considerable time finalizing designs before they can
check whether their initial design ideas even work.

Sketching is widely regarded as an agile prototyping tool [19, 24,
89] and has often been used in scenic design, as it allows design-
ers to quickly explore visual ideas and iterate design alternatives.
However, it is not easy to use traditional sketching to present spa-
tial and appearance information in 3D scenic design, in particular
the relative depth relationships between objects and their material
properties. Some recent 3D sketching interfaces [5, 44, 61] have
proved their effectiveness in expressing spatial design ideas, but it
is still difficult to create material appearances with these tools.

Recent advances in generative AI havemade appearance creation
much easier and offered new alternatives to sketching and tradi-
tional 3D modeling. In particular, recent diffusion models can pro-
duce photorealistic 2D images from text prompts and sketches [60,
68, 90, 95]. We conducted a formative study with professional scenic
designers or related artists to understand how generative AI can
facilitate scenic design prototyping. Our key finding is that an ideal
scenic design prototyping tool needs to support 1) efficient creation
of appearance, 2) intuitive externalization of spatial concepts, and
3) rapid idea exploration and design iteration. As shown in Table 1,

existing tools cannot satisfy these requirements simultaneously,
while the benefits of integrating 3D sketching and generative AI
make this possible.

We propose Neural Canvas, a lightweight web-based 3D platform
that integrates 3D sketching and generative AI to meet the above
three requirements of a desired scenic design prototyping tool.
With Neural Canvas, users begin by drawing sketches on canvases
placed in a 3D environment and use projection functions to create
an initial 3D design. Neural Canvas also integrates a collection of
generative AI models, which enables users to easily convert 3D
sketches into photorealistic assets with detailed appearance. Users
can then edit them to iterate their designs until they achieve the
desired visual effect.

We conducted a user study to evaluate the effectiveness of our
system as a scenic design prototyping tool, and to explore new use
cases enabled by integrating 3D sketching and generative AI. The
study shows that Neural Canvas is an effective prototyping tool
and supports the creation of diverse scenic designs. It also reveals
new user behaviors enabled by Neural Canvas such as using 3D
sketching to control the viewpoint and improve input quality for
generative AI.

Our main contributions are as follows:

• We propose Neural Canvas, a web-based platform that sup-
ports scenic design prototyping. Users can prototype 3D
shapes and their spatial relationships using operations like
sketching, canvas manipulation, and projection.

• We integrate various generative AI models supporting differ-
ent modalities into our platform, which allows users to avoid
switching back and forth between individual AI applications,
enabling them to discover new ideas with the convenient
interaction between various AI models.

• We design two new projection methods working closely with
generative AI functions, which easily project objects in a
generated image back onto their corresponding sketch or
desired planes. We also provide users with three ways to use
3D sketches as input to generative AI models.

• Our user study shows that our system can facilitate scenic
design prototyping and help users explore new ideas that
they would not have conceived otherwise. Neural Canvas
makes it easier to express and prototype scenic design ideas
resulting in more detailed and attractive 3D content.

2 RELATEDWORK
2.1 Image-Based Modeling and Rendering
Designers often resort to geometric and appearance modeling to
render a photorealistic scene. However, this approach requires a lot
of expertise and can be time-consuming. How this process can be
streamlined and expedited has, therefore, become the main focus
of previous research. One approach focuses on using multiple 2D
images to construct 3D scenes directly. For example, structure from
motion (SfM) is an effective way of 3D reconstruction based on
feature matching and camera pose estimation. Using photogram-
metry, Snavely et al. [78] estimated camera pose information from
crowdsourced images and reconstructed tourist attractions, en-
abling Photo Tourism [77], a 3D virtual tour of the reconstructed
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Table 1: A summary of scenic design prototyping tools and whether they satisfy the three requirements. Note that sketching is
limited in externalizing spatial concepts because 2D sketches may not represent full 3D information.

Tools Efficient creation Intuitive externalization Rapid idea exploration
of appearance of spatial concepts and design iteration

Mood Board ✓ ✗ ✗

Sketching ✗ limited ✓

3D Software ✓ ✓ ✗

Scale Model ✗ ✓ ✗

Neural Canvas (ours) ✓ ✓ ✓

architectures. Other studies use a single image to generate 3D mod-
els for viewing. Oh et al. [58] combined interactive tools with a
decoupling filter for large- and small-scale textures to model a scene,
and Hoiem et al. [29] introduced a model to automatically label
different regions and “cut and fold” the image into a pop-up model
for a simple scene. 360proto [57] can capture paper mockups of
all components simply by taking a photo with a smartphone. It
also allows organizing and editing captures, layering the captures,
and making them interactive in a 360-degree AR/VR environment.
Reframe [65] analyzes the security and privacy concerns of an AR
environment by building scenarios with some preset image assets
and interaction components. While these methods attempt to create
scenes with preexisting images, we incorporate generative AI to
produce images and textures on demand.

Another approach uses depth information embedded in planes
to accomplish scene rendering. Layered Depth Images [71] extracts
depth data from images and segments the corresponding compo-
nents into multiple different planes to embed spatial positional re-
lationships, and many studies have proven its effectiveness [39, 75].
Based on this method, more studies [21, 91] attempt to use deep
learning for novel view synthesis. Zhou et al. [99] implemented
a new method called multiplane images (MPI) for view synthesis.
With depth information and transparency information learned from
videos, it represents a scene with multiple layers of images. Based
on the MPI method, AdaMPI [25] introduced two modules to ad-
just plane depth and color prediction and achieve better results in
view synthesis. Neural Canvas is inspired by the idea of embedding
depth information into multi-layered images, facilitating design
with editable images on conveniently adjustable planes placed in a
3D environment.

Additionally, Neural Canvas decouples the process of generating
multiplane images, namely depth estimation, object detection, im-
age inpainting, etc. Users possess full control of the process, with
the freedom to choose between manual design and generative AI
at each step.

2.2 3D Sketching
Sketching is an effective tool for design prototyping. However, 2D
sketching cannot represent depth information or the 3D spatial re-
lationship between objects, which are essential in 3D scenic design.
Therefore, many studies have explored 3D sketching in various
design contexts.

One approach is to generate accurate 3D models by analyzing
the structural information in 2D line drawings, known as sketch-
based modeling [59]. Due to the lack of depth information and
positional relationship of strokes, sketch-based modeling is an ill-
posed problem. Researchers usually set some spatial constraints
so that the 3D reconstruction problem can be solved procedurally.
SmartCanvas [97] uses a background picture to build the context of
3D sketching and optimize results during the process of sketching.
SweepCanvas [49] uses a pair of strokes to generate 3D surfaces and
extracts spatial information from RGB-D images. DreamSketch [42]
uses coarsely defined 3D sketches as the design context and uses
generative algorithms to build a model with new strokes and back-
ground.

Another approach introduces planar canvases into 3D sketching
for designing, using strokes to describe objects. This approach pre-
serves descriptive details in 2D sketching while storing 3D spatial
information in canvases. Mental Canvas [17] uses planes with ad-
justable positions to depict and generate corresponding scenes, and
the scene of depth is achieved through the relationship between
planes. Insitu [61] builds simple scenes with geometry positions and
plane-based images. Also, some studies implement planar canvases
in their systems to reconstruct cultural heritage sites. CHER-ish [70]
introduces heritage images and corresponding camera positions for
creators to create scenes with strokes, and Shen et al. [72] extract
contours from photographs to facilitate reconstruction based on
former work.

In addition, some studies focus on sketching directly in a 3D
environment. With new hardware and systems, these methods
map positions in the real world into a sketching coordinate space.
Mobi3DSketch [46] uses mobile devices to set up planar or surface
proxies in the real world and draw strokes onto them. Many other
studies [5, 6, 43, 82] implement 3D sketching in VR and AR.

Neural Canvas implements a plane-based 3D sketching system
for designers to create scene prototypes. Based on planar canvases,
Neural Canvas combines sketch planes with image-based planes,
encouraging users to make scene design prototypes with sketching
and optimize the process with images. Furthermore, designers can
iterate their designs with new ideas inspired by generated images.

2.3 Generative AI
Recently, generative AI has gained popularity thanks to efficient
deep learning models and large-scale datasets. Several works have
exhibited extraordinary performance in image synthesis.
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Earlier research on AI generate models is mainly based on Gener-
ative Adversarial Networks (GANs) [96]. Isola et al. [37] introduced
conditional GANs to achieve image-to-image translation tasks, such
as synthesizing images from labels and colorizing images. Style-
GAN [40] introduced a new data set and used style vectors to
control high-level attributes in images and generate realistic pic-
tures. GauGAN [62] can generate realistic pictures by filling the
corresponding textures of users’ sketched color blocks.

Recent image generation models use variants of the diffusion
model [79], and they can produce more realistic pictures than pre-
vious methods [16, 28]. Stable Diffusion [68] is currently one of
the most popular variants and is capable of generating realistic
images given any text input. ControlNet [95] adds handles such as
sketches, human body poses, and depth to prime image generation
with Stable Diffusion.

Like generative AI, segmentation models also benefit from large-
scale datasets. Previous works in segmentation mainly focus on
tasks separately, such as interactive segmentation [11, 41], seman-
tic segmentation [74, 80] and edge detection [3]. Segment Any-
thing [45] built the largest segmentation dataset to date (by far) and
proposed a new segmentation task model to accomplish challeng-
ing assignments. It provides users with interactive control and can
solve a range of downstream segmentation problems effectively.

Many researchers release their pre-trained models to the public.
To help users obtain desired models, Modelverse [50] provides a
model search platform to retrieve a model or pre-trained network
weights using an image, a sketch, or a text description. However,
because different kinds of AI models were not well integrated, de-
signers still had to switch between different websites and upload
and download files multiple times to generate images. Neural Can-
vas solves this problem by integrating generative AI models into
one single platform.

3 FORMATIVE STUDY
We conducted a formative study to gain insight into the current
practice of scenic designers and to understand their desired features
in a prototyping tool. We invited five professionals to participate in
a one-hour semi-structured interview. Our participants include an
off-Broadway stage designer (FP1), a TV show stage designer (FP2),
a 3D content creator (FP3), and two new-media artists (FP4, FP5),
all of whom have extensive experience and professional expertise
in scenic design. We covered the following topics in this interview:
1) the typical practices and challenges in a scenic design workflow,
and 2) the benefits and shortcomings of existing design tools.

3.1 Scenic Design Pipeline
From the responses of our interviewees, we were able to summa-
rize a typical scenic design workflow. Fig. 2 shows this workflow.
It consists of three phases: preparation phase, prototyping phase,
and implementation phase. The preparation phase often involves
the entire larger project in which the scene design is included.
The preparation phase includes screenplay selection, story writing,
team-up, etc. The prototyping phase consists of multiple rounds of
communication, research, idea exploration, and visual representa-
tion making. The final plan will be delivered to the implementation

phase to build a stage or build a virtual world according to the
needs of the project.

During the prototyping phase, designers need to first commu-
nicate with other colleagues, such as directors or editors, on the
theme, style, and atmosphere needed for the scene. Then, design-
ers conduct research on the designated topic and explore initial
ideas. They use visual representations like paintings or 3D software
renderings to express their design ideas and then present them to
others for further discussion. This process may be repeated many
times until the final plan is determined so they can enter the next
implementation stage.

3.2 Existing Creativity Support Tools
From the interviews, we gathered participants’ feedback on existing
design prototyping tools and identified issues in these tools.

Mood Board. FP1 mentioned that the mood board can serve
as a representation of research results. She pastes the materials
collected during her research on a whiteboard and wants to look
for more inspiration from the materials she has already gathered.
However, mood boards can only display past works and materials,
lacking the ability to edit and present design ideas. Therefore, a
mood board can only participate in the stages of research, idea
exploration, and communication.

Sketching. All participants regarded traditional sketching as
a very efficient prototyping tool before the emergence of digital
tools, but they also agreed on some of its major drawbacks. All par-
ticipants mentioned that sketches cannot easily present material
appearance, which is vital for the theme and atmosphere of the
scene. FP1 and FP2 also said that even sketches with good perspec-
tive relationships cannot accurately reflect spatial relationships.
FP1 said “I have to observe the relationship between the motion lines
in space and the position of objects.” Because traditional sketching
is unable to represent spatial and appearance information, its use-
fulness in the prototyping phase is limited. As more digital tools
emerged, traditional sketching has been increasingly replaced by
other tools.

3D Software. FP2 and FP3 used 3D software, such as Blender [22],
C4D [51], SketchUP [36] extensively for their design. 3D software
enables users to place and observe objects in a three-dimensional
environment in a WYSIWYG manner. However, to achieve the
expected appearance, users are required to do complex modeling
operations and search for suitable materials and textures. Lighting
is also another challenge. All the participants claimed that using
existing 3D software costs a lot of time and it is difficult to find
inspiration and make large-scale changes.

Scale Model. A scale model is a physical model that is geometri-
cally similar to the prototype. Designers use real materials to build
scale models, such as wood, metal, and fabric. FP1 referred to scale
models as the final level of the prototyping phase. Scale models
can provide designers with the most realistic material and lighting
effects, but they are extremely inconvenient to produce and difficult
to edit. Therefore, scale models are only used as a final check and a
way to share the design with others.
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Figure 2: A typical workflow for scenic design. The prototyping phase usually requires multiple rounds of iteration, and each
round may require communication with peers, where attractive and understandable visual expression is essential.

3.3 Design Considerations
Based on the interviews in our formative study, we summarized
three key requirements that an ideal scenic design prototyping tool
should meet simultaneously.

• It should support efficient creation of appearance. Ap-
pearance is very important to express the atmosphere and
mood of a scenic design. Traditional sketching requires a lot
of time to fill in color while existing 3D software requires
skills to search and adjust material, texture, and lighting to
create desired appearance.

• It should support intuitive externalization of spatial
concepts. In scenic design, users need to consider the spatial
relationships for object placement to provide the audience
with a plausible and appealing environment. Traditional
sketching fails to present 3D spatial information even with
accurate perspectives.

• It should support rapid idea exploration and design
iteration. As a prototyping tool, it should help users find
inspirations and quickly modify and change the content
whenever they would like to iterate their design ideas.

4 NEURAL CANVAS
Following the three principles we identified in the formative study,
we designed Neural Canvas to leverage both 3D sketching and
generative AI to support scenic design prototyping. 3D sketching
allows users to embed spatial information in their strokes, whereas
generative AI models can quickly generate detailed appearance.
Both 3D sketching and AI content generation are lightweight oper-
ations from a user’s perspective, making it easy to explore a variety
of ideas and iteratively improve design.

Referring to the Cognitive Load Theory [83] and Hick–Hyman
Law [27, 32], we think that compared with using each AI model on
a separate platform, integrating these features into one platform
can reduce the complexity and cognitive burden of user choices,
improve user experience, and help users iterate design faster with-
out switching between different platforms and applications. Fig. 3
depicts the overall system architecture of our platform, Fig. 4 show-
cases the user interface design, and Fig. 5 demonstrates the use-case
scenarios of creators employing Neural Canvas.

4.1 System Architecture
Our platform is a web-based application with a client-server struc-
ture for easy access without requiring users to install or deploy
the system. The front-end client includes an editor module, an AI

module, a 3D renderer, a camera module, and basic image editing
operations. The back-end services are divided into three parts: a
web server, self-hosted services, and services provided by cloud
or SaaS companies. We deploy some complex image editing algo-
rithms and multiple open-source AI models on our server. We can
also integrate services provided by open-source communities like
models hosted on Huggingface, and companies like OpenAI.

Our front-end interface is implemented mainly using JavaScript,
Vue.js [94], and Three.js [10]. The front end is responsible for vi-
sualization and basic image processing. AI functions and complex
computations operate on a high-performance server designed to
accommodate the huge computing power demands of deep learning
models and equipped with a CPU of 64-core Intel Xeon Platinum
8370C 3.50GHz and 4 NVIDIA RTX 4090 GPUs. The back-end server
is implemented with Nginx [67], Python, Flask [69], PyTorch [63],
Gradio [1] and other scientific computing packages [9, 26]. Such ar-
chitecture gives us the flexibility to plug in cutting-edge AI models
and deploy them on different platforms including the cloud.

Neural Canvas integrates 3D sketching and more than ten gen-
erative AI models to support scenic design prototyping. To make
the integration tighter and provide a smoother user experience, we
propose three input methods for generative AI in Sec. 4.3.2 and two
projection methods in Secs. 4.5.3 and 4.5.4.

4.2 Editor Module
The editor module implements an array of basic operations essential
for 3D content creation. The Stroke Editor and Image Editor provide
specialized tools for creating and modifying visual assets in our
platform. The StateManager oversees the application’s current state
and provides undo/redo capabilities. The View Controller is used to
manipulate the virtual camera. The Canvas Controller allows users
to place and manipulate any geometric primitives in 3D that they
can later draw on top of. The Layer Manager provides an interface
for organizing all objects currently present in the scene. Finally, the
user can use the file I/O capabilities of the File Manager to save/load
their work and share their work with others. More implementation
details for the Editor Module are provided in Appendix A.

4.3 AI Module
AI-generated content provides a way to enrich 3D sketching with
appearance information and the ability to iterate quickly.

4.3.1 Integrated AI models. We integrated 13 AI functions to give
users more choices to enhance the creative experience.
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Figure 3: System architecture overview. The front-end and back-end separation design allows Neural Canvas to be used on
different types of devices, and deploying AI functions on remote servers or clouds ensures the scalability of the AI Module to
integrate cutting-edge generative AI models.

Text to Image. Text-to-image synthesis refers to the process
of generating a visual representation, typically in the form of a
photorealistic image, based on a textual description. Designers can
use this function to generate desired art assets without externalizing
visual ideas. In Neural Canvas, we adopt Stable Diffusion [68] for
this purpose.

Sketch to Image. Converting sketches to images can greatly
increase information capacity and is a very important functionality
supported in our system. In order to make sketch-based synthesized
images better reflect the user’s creative intention, we need control-
lable image generation from sketches. To that end, we decided to
deploy ControlNet [95] with Stable Diffusion because users can
have more control over AI-generated results using this architecture.

Image Inpainting. Image inpainting refers to the process of
filling in missing or corrupted parts of an image in a visually co-
herent and plausible manner. The goal is to restore the image such
that the filled-in regions are indistinguishable from the original,
uncorrupted parts. When we segment objects out from the image
and project them elsewhere, they leave large blank holes behind
in the original images. We use image inpainting algorithms like
LaMa [81] and Stable Diffusion [68] to fill these holes. Neural Can-
vas sends two images to the backend server as inpainting inputs.
The first image is the original image without any holes, and the
second one is a binary image representing which areas are missing.

Image Outpainting. Image outpainting, or image extrapola-
tion, is the process of extending the content of an image beyond its

original boundaries while maintaining visual coherence. Outpaint-
ing techniques analyze the content of the input image, taking into
account the patterns, textures, and structures, to extrapolate it to
a larger image that appears as a natural extension of the original
scene. This is particularly helpful when creators want to place their
scenes within a larger background or panorama. Our system uses
DALL·E 2 [60], a proprietary image synthesis service.

Image Segmentation.AI-generated content adds a lot of details,
and sometimes designers only want to select a certain part of it
to add to their work. In order to better help users quickly crop
regions of interest, we have introduced an image segmentation
algorithm using a deep learningmodel. Neural Canvas also provides
traditional lasso andmagnetic lasso tools to provide users withmore
flexible options.

Other AI Functions. Besides the above five frequently-used AI
functions, eight additional AI functions are available to users. Their
details can be found in Appendix B.

4.3.2 Input Methods. We provided users with three input methods
to control the content generated by generative AI models.

Current Canvas. The user can input the drawn content on
the currently selected canvas into an AI model. The AI model can
generate an image based on content on the current canvas and a
text prompt.

Full-ScreenContent. In our system, users can create 3D sketches
by drawing on multiple planar canvases. Generating images on one



Neural Canvas: Supporting Scenic Design Prototyping by Integrating 3D Sketching and Generative AI CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 4: The user interface of Neural Canvas. a1) Mode selection buttons. a2) Gerneral operation buttons. a3) Canvas operation
buttons. a4) Brush operation buttons. a5) Image operation buttons. a6) Projection operation buttons. b1) The brush parameter
panel. b2) The layer manager panel. b3) The camera manager panel. b4) The 3D primitive manager panel. b5) The environment
control panel. b6) The text box panel. c) AI function panel: this drop-down panel consists of multiple tabs of different AI
functions.

canvas at a time is not only cumbersome but also adverse to control-
ling the style of the overall generated content.We enabled providing
what the user sees on the full screen as input to a generative model.
Specifically, it uses the camera from the user’s current perspective
to render the entire scene and obtain a 2D picture as input to the
generative model.

Current Canvas with Background Reference. Sometimes,
users want to modify an existing 3D scene by drawing sketches on a
new canvas. We offer a method for users to generate images on the
new canvas and use the existing background as a reference. This
input method is particularly useful for AI models that take multiple
inputs like ControlNet [95]. This allows image generation with a
similar style or color tone to the reference image and generated
content is conditioned on user-drawn sketches.

4.4 Camera Module
The camera module records the parameters of bookmarked cameras.
Inspired by previous work [77, 92], our camera module can generate
virtual tours by interpolating parameters between different cameras.
A simple animation system allows the camera view to navigate the
scene according to the bookmarked cameras.

Using the camera module, users can quickly switch camera views
to observe their design from bookmarked perspectives and then
use AI functions to create from different perspectives. Collecting
images from multiple points of view enables users to achieve an
effect similar to modeling scenes from images [78].

4.5 Projection Operations
Projectionmaps any asset on a canvas to another canvas while keep-
ing the scene from the current perspective unchanged, as shown
in Figure 6. This process assigns spatial information to strokes and
images through user-specified receiver canvases. Projections, along
with many other operations, allow users to select objects from a
2D plane and place them in 3D space, offering more perspectives
to observe their designs and build immersive environments.

To tightly integrate the 3D environment and AI-generated 2D
images, we designed four projection operations to place images in
3D space, which are demonstrated in Fig. 6.

4.5.1 Stroke Projection. We designed the stroke projection func-
tion based on the plane-based 3D sketching methods [17, 87, 88].
Users can first sketch on a 2D plane and then project any strokes
onto a specified plane. During this process, the strokes appear
apparently unchanged from the user’s point of view, but the 3D
position of the strokes shifts from one plane to another.

We define a sketch as a list of 3D strokes, 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛},
where each stroke 𝑠𝑖 consists of a list of vertices𝑉𝑖 = {𝑣𝑖1, 𝑣

𝑖
2, . . . , 𝑣

𝑖
𝑁
}.

We adopted a planar-based 3D sketch representation method. The
user first selects the target plane 𝑃𝑡 and the plane 𝑃𝑜 where the
current stroke is located, and then clicks on the stroke 𝑠𝑝 to project.
We project all vertices 𝑣𝑝1 , 𝑣

𝑝

2 , . . . , 𝑣
𝑝
𝑛 of 𝑠𝑝 onto the target plane 𝑃𝑡 ,

and connect them to form a new 3D stroke.
The projection process is described as follows. Denote 𝒙𝑣 as the

3D coordinates of a vertex, and 𝒙𝑐 as the current camera position.
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Figure 5: Neural Canvas in use. Left: Our system design supports various types of digital tablets and mouse input. Middle and
Right: Two example views of their scenic design.

Figure 6: Illustration of four projection operations in Neural
Canvas. These projection operations provide an intuitive way
for users to create 3D content.

A straight ray can be obtained from these two points, on which
each point can be expressed as 𝒙𝑐 + 𝜆 (𝒙𝑣 − 𝒙𝑐 ). Given the plane 𝑃𝑡
to project on, the position of the point after projection 𝒙′𝑣 can be
obtained by

𝒙′𝑣 = 𝒙𝑐 −
𝑛 · 𝒙𝑐 + 𝑑

𝑛 · (𝒙𝑣 − 𝒙𝑐 )
· (𝒙𝑣 − 𝒙𝑐 ) ,

where the equation of 𝑃 𝑗 is 𝒏 · 𝒙 + 𝑑 = 0, 𝒏 is the normal vector of
the plane, 𝒙 is any point on the plane, and 𝑑 is a scalar.

4.5.2 Image Projection. Image projection allows the image to be
projected onto a plane as if by a slide projector. In this way, users
can map an image to a specified plane in 3D space to construct a
3D scene. We first project the corners of the texture image to the
target plane and then warp the image to fit the projected shape.

4.5.3 Stroke-Controlled Image Projection. When users create a
scene via 3D sketching, they are likely to draw strokes on mul-
tiple planes. If the user subsequently chooses to generate an image
from this 3D sketch using AI, it is not immediately obvious which
parts of the image belong to which planes. It is tedious for users to
segment objects of interest manually from the original image and
then project them onto target planes.

We propose a projection method for AI-generated image parts
controlled by their corresponding input strokes on multiple can-
vases, as shown in Fig. 7. Our method enables intuitive projection
of an AI-generated 2D image to the 3D environment given a 3D
sketch.
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Figure 7: Illustration of stroke-controlled image projection. a) The original sketch. b) The connected strokes are divided into
groups using the disjoint-set data structure [84]. c) Masks generated from the stroke groups. d) Generated image from the sketch.
e) The segmentation map generated by SAM. f) Segmented objects are projected onto their corresponding sketch canvases,
creating a parallax effect.

Technically speaking, we can denote a partial sketch drawn on a
canvas as 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛}, where 𝑠𝑖 represents the 𝑖th stroke. We
first find the bounding box 𝐵𝑖 for each stroke 𝑠𝑖 . Then we use the
disjoint-set data structure to group the connected bounding boxes
as𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑚}. Group 𝑔 𝑗 represents a cluster of strokes that
the user draws for object 𝑗 . Next, we find the bounding box of group
𝑔 𝑗 on this canvas and project it back onto the AI-generated image
plane to create amask𝑀 . To better project pixels controlled by these
strokes, we also applied the Segment Anything Model (SAM) [45]
on this image to get its segments and project the segments onto
the canvas if over half of the pixels of a segment fall in mask𝑀 .

4.5.4 Segment-Based Image Projection. AI-generated images often
contain content beyond the initial input sketch. Such content will
not be projected through stroke-controlled image projection. Neural
Canvas also supports segment-based image projection, so users can
create image segments using SAM [45] and project them onto any
specified plane placed in the 3D environment. Segment-based image
projection first maps the user-specified area from screen space to
image space. Next, it uses SAM to segment the image. When the
area covered by the designated area of the segmentation block
reaches a certain threshold, we consider it to belong to the object
that the user wants. Finally, we will merge the segmentation blocks
that are covered by masks above a certain threshold and map them
onto the projection plane.

5 USER STUDY
We conducted a user study to evaluate Neural Canvas’s ability
to support scenic design prototyping for both professionals and
novices. The goal of the study is to understand how well Neural
Canvas supported participants with their scenic design prototyping
tasks. We recorded the screen and logged all user operations for
further analysis.

5.1 Participants
We recruited 12 users to participate in our study. Eight were male,
three were female, and one was non-binary. Their average age was
26.25. Six of them had experience with 3D software and a relevant
design background, while the remaining participants with only 3D
software experience were regarded as novice users. On a scale of
1–7, the average self-reported familiarity of the expert group with
scenic design was 5.67, while that of the novice group was 3.33.
Overall, users have used twelve kinds of 3D software (Blender [22],
Solidworks [13], Inventor [34], Catia [85], Cinema4D [51], Unity [86],
Unreal [20], Maya [35], SketchUp [36], 3DS MAX [33], ZBrush [52],
Houdini [76]) and four kinds of AI tools (Midjourney [55], Stable
Diffusion [68], DALL·E 2 [60], Meshy [54]) .

Table 2: Participants’ groupings, assigned task 2 themes, and
their occupations. Theme 1 is ‘ “aquarium,” theme 2 is “the
world outside the window,” and theme 3 is “disaster.”

# Group Theme Occupation

P1 Novice 2 Researcher
P2 Novice 3 Researcher
P3 Novice 2 Researcher
P4 Expert 1 Designer
P5 Expert 3 Artist
P6 Novice 1 Researcher
P7 Novice 3 Researcher
P8 Expert 1 Artist
P9 Novice 1 Researcher
P10 Expert 2 Artist
P11 Expert 2 Artist
P12 Expert 3 Artist
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5.2 Design Tasks
We designed two tasks for the participants. We asked them to
complete design task 1 in 15 minutes and design task 2 in one hour.

Task 1 is designed as a trial task. Since our system is relatively
large and usage is different from that of traditional 3D software, it
takes some time for users to become familiar with the user interface
and the projection functionality. We designed Task 1 to familiarize
participants with one of our regular workflows. Participants are
guided to author a simple still-painting scene. They are required
to draw 2D sketches on a plane. Then, strokes are projected onto
different 3D planes to construct a 3D scene. AI models generate
content with detailed appearance information according to the 3D
sketch. Finally, users project generated content to corresponding
planes to complete the scene.

Task 2 is an open-ended design task to understand how partici-
pants would author a 3D scene using Neural Canvas. We designed
three broad design themes: “aquarium,” “the world outside the win-
dow,” and “disaster.” The aquarium theme focuses on appearance
information. The theme of “the world outside the window” focuses
on displaying the spatial information of the scene. The disaster
theme encourages designers to use appearance information and
spatial information to express the mood and atmosphere of the
scene. Each theme has 4 participants involved in the design, includ-
ing two experts and two novice users. All users randomly select a
theme on a first-come, first-served basis; if the number of partici-
pants in a theme reaches the limit, the theme is then removed from
the poll.

5.3 Procedure
The whole user study consists of four parts. First, we introduced
the basic operations in our system. Then, participants were asked
to complete Task 1 to gain familiarity with the system. After users
were comfortable using the tool, they were introduced to Task 2
and the final deliverables. After task completion, the authoring ex-
perience of each participant was collected with a questionnaire, and
a short semi-structured interview was conducted to collect users’
opinions and feedback. Questions asked in the semi-structured in-
terview can be found in the Appendix C. The study lasted about 120
minutes for each participant, and each participant was reimbursed
$15.

5.4 Measurement
We recorded the screen and audio during the study for further
analysis. The participants answered questions adapted from the
Questionnaire for User Interface Satisfaction (QUIS) [12] and the
System Usability Scale (SUS) [7, 38] questionnaire. In the User Ex-
perience Ratings section, we asked participants to rate how much
they agreed with seven statements on a scale of 1–7, with 1 being
“strongly disagree” and 7 “strongly agree.” In the System Features
Ratings section, we asked participants to rate how useful each fea-
ture was in helping them complete the design on a scale of 1–7,
with 1 being “not useful at all” and 7 “extremely useful.” We also
collected the participants’ comments on our system and the overall
user experience during the interview.

Figure 8: User experience ratings. The color of a bar repre-
sents how much participants agreed with a statement. The
number in the bar represents the participants who submitted
the same rating.

5.5 Results
We analyzed the differences in participants’ questionnaires, inter-
views, logged operations, and recorded videos.

5.5.1 Overall Experience. Fig. 8 shows an overview of participants’
ratings of their experience. Overall, the participants gave positive
ratings on their experience using Neural Canvas (12/12 in Qa1).
They found it very efficient to use the integrated AI functions with
the 3D platform to create and iterate their scenic design. The ratings
also showed that 3D sketching and generative AI are powerful tools
for prototyping.

Neural Canvas gave the participants an intuitive sense of space
and appearance. Qa6,I can feel the sense of space and appearance
information to help me express my intention and design ideas., re-
ceived a high average score of 5.91 out of 7 (std=1.037). P2, P3, P8,
P9 found it novel to sketch in an environment that they considered
to have more liveliness than static 2D sketching. Additionally, the
3D platform reduced the time and effort of creation. P1, P3, P5,
and P12 mentioned that they could arrange the assets once and
change the location and angle of the camera to obtain a series of
renderings with the same theme and asset composition but with
different angles of view. Third, the 3D platform increased artistic
freedom. P1, P2, P3, P4, P7, P8, P9, P10, and P12 agreed that the 3D
platform allowed them to easily explore different relative locations
and sizes between the assets, which helped them realize ideas they
have never imagined.

As for the ease of prototyping and design iteration using Neural
Canvas, most participants reported some frustration due to differ-
ences in shortcuts and mouse button functions between Neural
Canvas and other 3D software that they were accustomed to. For
Qa2 and Qa3, expert users gave lower scores than novice scores
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Figure 9: System features ratings. The color of a bar repre-
sents how useful participants found a feature. The number in
the bar represents the participants who submitted the same
rating. Not all users made use of the functions we introduced
in the guide section, so some of the functions did not receive
ratings from all 12 participants.

because they were more sensitive to this inconsistency with their
familiar operations. P4, P5, P11, and P12 mentioned they would
enjoy using Neural Canvas more if the shortcuts and key layout
were more consistent with the software they are familiar with. Nev-
ertheless, all users except P6 said it is easier to prototype and iterate
scenes with Neural Canvas than with existing 3D software due to
the cumbersome operations of modeling, finding materials, and
adjusting lighting in 3D software. P10, a professional 2D animator,
claimed “though using Neural Canvas costs more time than sketching
to prototype a scene, it gave me a sense of space and saved me from
the complex work of manual coloring. And thus I could try a lot of
different styles.”

5.5.2 Ratings of Main Functions. The ratings of separate features
(shown in Fig. 9) prove the effectiveness of generative AI and 3D
sketching in prototyping. In task 2, not all users made use of the
functions we introduced in the guide section, so some of the func-
tions did not receive ratings from all 12 participants.

According to Qb1, Qb2, Qb3, and Qb4, the four projection opera-
tions received average scores of 5.30, 5.41, 5.28, and 6.5 respectively.
These four operations aim to integrate AI-generated content tightly
with the 3D environment. P5, a digital artist drawing the most
strokes among all participants, said “with stroke projection, I can
draw 2D sketches as usual and build 3D scenes with different layers
very quickly.” P7 segmented a wall from a generated image and pro-
jected it onto a transverse plane, and commented “image projection

enables me to inversely render 2D images back to the 3D environment.”
P4, P5, P8, and P12 thought stroke-controlled projection made a
good combination of 3D sketching and Sketch to Image function,
allowing them to quickly assign color and material information to
their sketches.

For scenic design prototyping, AI functions were also well re-
ceived. The five main AI functions introduced in the guide section
received average scores of 5.25, 5.91, 6.08, 5.58, and 5.41.Text to
Image and Sketch to Image inspired participants’ creativity and im-
proved efficiency. P1, P3, P8, and P9 compared these two functions
to automatic coloring and emphasized their usefulness in scenic
design prototyping, which provided different creation styles they
had not tried before. Image segmentation received the highest aver-
age score for improving the user experience of obtaining desired
assets. When users are interested in a part of the generated image,
they can use these functions to isolate and segment that part very
quickly. P1, P2, P3, P4, P5, P6, P8, P9, P10, and P12 claimed that it is
especially useful to get assets to iterate design quickly.

5.5.3 Quality of Prototypes. We analyze the quality of created
prototypes based on user evaluation and discuss howNeural Canvas
facilitates prototyping. From Fig. 10, we can see the improvement
that our system brings to the user’s original hand-drawn sketches
to the built 3D scenes.

Almost all participants said in Qa6 that they could feel the sense
of space and appearance information brought by Neural Canvas.
Compared with users in the expert group, users in the novice group
are more impressed by the effects as they are not able to draw
complete work. P1 said “I didn’t expect the AI to be able to generate
such good pictures based on my sketches, and that I could convert
them into 3D scenes.” P3 also expressed similar opinions. P9 drew a
dog, which is hard for people to recognize, and said “the generated
dog is far better than what I drew. I could never draw like this.”

Expert users think the same quality of work requires them to
spend several rounds of effort with other tools. For example, while
Mental Canvas allows users to draw on different planes to bring
depth information, creating 3D sketches with fine color and texture
requires a significant amount of time and effort. Some content
creators [15, 64] shared on video platforms that prototyping a scene
on Mental Canvas requires dozens of hours.

During the interview, we noticed that participants in the expert
group were more likely to notice artifacts and distortions in im-
ages than users in the novice group. P11 and P12 commented that
segmentation by AI did not handle well at the edges of objects
sometimes, and the projected images may be distorted if they are
projected from the wrong points of view. Projection distortion can
be avoided by undoing the operation, manually adjusting the cam-
era position, and applying projection again. Segmentation artifacts
can be alleviated by using SAM multiple times or manually editing.

6 DISCUSSION
In this section, we provide an in-depth discussion of the synergistic
effects of integrating generative AI and 3D sketching, as well as
new user behaviors that emerged from the process of using Neural
Canvas. The discussion aims to provide insight into the future
design of more user-friendly generative AI models and 3D content
creation interfaces.
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Figure 10: Two example views of scenic designs created by our study participants. Left: Theme 1 “aquarium.” Middle: Theme 2
“the world outside the window.” Right: Theme 3 “disaster.”

Figure 11: Visualization of how users develop multiple ideas from generated images. Left: The maximum number of images
used given the same input to a generative model. Right: A screenshot of P8’s design in progress. She used one prompt to
generate multiple candidate images to develop the scenic design. The red arrows indicate that P8 used the same prompt to
generate eleven candidate images.

6.1 How Integrating Multiple Generative AI
Models Facilitates Prototyping

We observed that all participants were very willing to use AI func-
tions during their scenic design prototyping. P1, P2, P3, P4, P7,
P8, P9, and P12 mentioned that AI functions helped them a lot in
designing an initial scene with mood and atmosphere.

6.1.1 Generative AI Offers New Ideas to Users. Some users empha-
sized that the Text to Image function offered them many insights
by generating a lot of candidate images only from some keywords.
They are willing to mix up their initial idea with synthesized im-
ages. More than two-thirds of the participants thought generative
AI models gave them some ideas they had never thought of. P7 said

“It is as if an anonymous person is having a brainstorm with you.”
Although Sketch to Image function generates images conformed
to users’ specified outline, the generated images still give creators
more ideas in terms of color and atmosphere. P4 said “Although I
already had some rough ideas in my mind, AI showed my ideas in a
more brilliant form.”

6.1.2 Generative AI Provides Appealing Content for Rapid Proto-
typing. Users would need to spend a lot of time drawing an image
with an appealing appearance. Generative AI models could quickly
externalize fleeting thoughts into images that could be refined by
other AI functions or manually edited. Such a process can be seen in
Fig. 10. P12 claimed that “Neural Canvas allows users to freely explore
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which elements are needed in the initial stage, how to place them, and
then make adjustments afterward. Designers have the opportunity to
freely combine multiple elements and explore the possibilities of dif-
ferent combinations; AI can also accelerate the process of exploration.”
Generative AI makes it much faster for designers to explore visual
ideas and thus enables a rapid prototyping experience.

Principal benefits of effective prototyping tools include motivat-
ing users to explore a broader range of design possibilities through
rapid iteration of a single concept and simultaneous exploration of
various ideas [73]. Generative AI gives users a lot of candidates for
design and can restart designing again from a desired time point as
users wish. As shown in Fig. 11, most participants import two or
more generated images for one idea into the 3D environment. They
chose one image to build 3D scenes and kept some of the other
images as references or tried to blend some of their elements. P6,
P7, P11, and P12, four participants of the expert group, were not
satisfied with their early-stage work and used previous 3D sketches
to re-generate images to prototype a better 3D scene.

6.1.3 Multimodal Input Prompts to Generative AI Make Design Eas-
ier. Generative AI lowered the barrier of entry for novices. P1, P3,
and P9 from the novice group mentioned that they could express
their ideas clearly with sketches using AI-generated content. P9
said, without the AI-generated content, I can only draw very simple
and rough drafts, which were ineffective for sharing my ideas. Fur-
thermore, multiple modalities of the input to generative AI models
bring users more control and creative possibilities than only using
one modality. AI models with sketch prompts can offer good control
of layout over generated images, while Text to Image models could
quickly enrich the scene with very little manual effort. Almost all
participants agreed that using multiple input modalities speeds up
their creative process compared to using only one modality. P12
commented, “First, I used sketching to set up objects I really need,
and then I used Text to Image function to create surroundings with
mood and atmosphere, which is not easy to express with strokes.”

6.1.4 Integration of Generative AI Models Improves Efficiency. The
integration of generative AImodels improved the creation efficiency.
All participants spoke highly of integrating different generative AI
models so they do not need to use them on different websites. P1,
P2, P3, P4, P8, and P12 mentioned that the AI models can rapidly
generate content, saving time and effort compared to searching
on the internet or creating by themselves. P8 said, It took time to
consider the assets’ textures, shades, and light effects in 3D software.
However, generative AI can save some time so they can focus on
arranging the assets and choosing angles. P12, a professional artist,
mentioned the completion time of using our system (Text to Image
followed by Image Segmentation) was within one minute compared
to his accustomed workflow (Midjourney [55] + Photoshop [2])
that took more than ten minutes.

6.2 How 3D Sketching Facilitates AI Content
Generation

Though the input to AI models is mostly text and 2D images, our
user study showed that 3D sketching plays an important role in
facilitating AI content generation.

Figure 12: AI-generated images from the same 3D sketch
from different views.

6.2.1 3D Sketching Offers Control over Viewpoint for Generative AI.
Viewpoint control of AI-generated content is widely considered
a challenging task. However, for 3D sketching, users can change
the angle of view in the 3D environment, and AI models can gen-
erate images from corresponding viewpoints (shown in Fig. 12).
P2, P3, and P10 used sketching to build a 3D scene and then feed
AI functions with renderings from different perspectives. In this
way, users directly control the perspective of generated content.
P2 said “I drew a sketch of the corridor, then viewed it from different
angles, and finally adopted an angle that I was satisfied with and
input it into the AI model for generation.” Designers may not have
thought about the perspective from which they initially want to
portray their ideas. But with 3D sketching, they can look at their
designs from different angles and subsequently use the AI function
to generate better renderings that meet their expectations.

6.2.2 3D Sketching Improves the Quality of Input to Generative AI.
Users can check whether their sketch conforms to the perspective
relationship in the 3D environment, which is very useful for those
not very skilled in sketching. Most current AI models are trained on
photographs and paintings by professional artists, which typically
have an accurate perspective relationship. AI models will generate
inferior output if the sketch prompt has poor perspectives or pro-
portions. P1 mentioned “I do not have a lot of drawing experience, so
the sketches I draw look a bit weird; but when I map them from the
2D plane to different positions in the 3D space, I quickly found the
perspective and scale relationships of my drawings are not correct, and
then I can edit them very quickly.” 3D sketching could help users,
especially novices, avoid errors in their sketches so that they can
obtain better AI-generated output.
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Figure 13: Correcting perspective errors in 3D sketching. Users can easily observe perspective errors with sketches after they
are projected onto multiple planes, such as the distorted windows and walls at the top of (c. Users can then edit sketches quickly
to obtain high-quality input to generative AI models.

Figure 14: Visualization of user behavior patterns between novice and expert groups. Left: The number of strokes and usage of
AI functions over time. Overall, experts drew more strokes than novices and tended to use Sketch to Image throughout the
entire design process. The dots indicate Text to Image, and the triangles indicate Sketch to Image. Right: The number of Text to
Image and Sketch to Image calls. Novices preferred using Text to Image while experts preferred using Sketch to Image.

6.3 Different User Behavior Between Novices
and Experts

We analyzed the workflows of both novices and experts using our
collected data, and visualized them in Fig. 14. We noticed some
usage patterns that differ across novices and experts.

Between the Text to Image and Sketch to Image functions, novices
seemed to prefer Text to Imagewhile experts seemed to prefer Sketch

to Image. According to our data, novices used image generation
functions 8.6 times on average, with 5.0 out of 8.6 times being Text
to Image and 3.6 out of 8.6 times being Sketch to Image. On the
other hand, experts used image generation functions 10.6 times on
average, with 2.3 out of 10.6 times being Text to Image and 8.3 out
of 10.6 times being Sketch to Image. In addition, experts drew an
average of 164.6 strokes during their design process while novices
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only drew 67 strokes on average, further demonstrating the experts’
strong preference for sketching.

Experts also seemed to be more selective than novices about
which generated images they decided to keep in their designs.
Novices on average adopted 6.6 out of 8.6 generated images, whereas
experts on average adopted 6.8 out of 10.6 generated images. Ex-
perts, despite generating 2.0more images than novices, only adopted
0.2 more images in their final designs than novices.

We logged the timestamps of Sketch to Image and Text to Image
used in participants’ design sessions, as shown in Fig. 14.We noticed
that expert users tended to use Sketch to Image throughout their
entire design process while novice users mainly used Text to Image
at the beginning of their design.

7 LIMITATIONS AND FUTUREWORK
Despite participants’ favorable reviews of Neural Canvas, our sys-
tem still has some limitations in terms of the overall user experience.
This section discusses possible improvements in the future.

Layer and Perspective Selection for Projection. While pro-
jection operations have demonstrated their efficiency, some users
initially had trouble understanding how they work. Additionally,
a few users voiced their frustration with the need to switch view-
points frequently during the projection process. P10 explained that
“the thought process involved in projection significantly differs
from the intuitive approach used in painting. Painting relies on
an instinctive understanding, while projection demands a more
rational consideration of perspective and spatial relationships. I
plan to employ projection selectively for critical tasks, resorting
to simpler operations to complete the scene.” A more intuitive and
streamlined projection interaction method is needed to alleviate
user frustration and facilitate a smoother transition between sketch-
ing and projection. One potential solution is using image depth
estimation algorithms [56, 66] to automatically provide users with
candidate layers. Introducing an auxiliary view may also help users
understand the 3D environment from multiple views at the same
time, which is adopted by Mental Canvas [53].

Layer Management. As scenic design progresses into its later
stages, the number of layers present in the scene increases substan-
tially. The default naming scheme for layers (layer type suffixed by
an index, e.g., Plane 0) makes it difficult to mentally keep track of
and select layers when the number of layers is large. To address this
issue and enhance the overall user experience, it is worth exploring
the dynamic interactions between 3D layers, possibly with tech-
niques such as physical gesture control [18, 47, 93]. Additionally,
incorporating layer thumbnails could provide a visual aid, allow-
ing users to swiftly identify and locate specific layers amidst the
growing complexity of the scene. Furthermore, there is an exciting
avenue to explore the integration of AI methods to automatically
assign meaningful names to layers, thereby reducing the burden
on users and streamlining their workflow. These potential improve-
ments could significantly enhance the efficiency and usability of
any 3D software, making it more accessible and user-friendly for
all users.

Arsenal of Generative AI Models. In our user study, partici-
pants expressed a strong desire to employ various styles of models
in their scene designs. However, it is important to note that our AI

functions are limited to a pre-selected collection of generative AI
models. This was an intentional design choice so that users would
not be overwhelmed by too many AI models. Nonetheless, expand-
ing the system to accommodate a broader spectrum of generative
AI models is a worthwhile direction for future research. The main
objective is to ensure scalability and enhance style diversity within
the system. One promising approach to achieve this is to interface
with model sharing and search platforms like Modelverse [50]. This
would enable designers to access and incorporate a rich array of
generative models, thereby fostering creativity and versatility in
their 3D design.

8 CONCLUSION
In this paper, we have proposed Neural Canvas, a lightweight plat-
form that leverages 3D sketching and the integration of multiple
generative AI models to facilitate scenic design prototyping. With
Neural Canvas, designers can easily draw sketches and place them
in the 3D environment to embed spatial information. The inte-
gration and interaction of multiple cutting-edge deep generative
models also make it easier for designers to create attractive and
detailed content from sketches for scenic design prototyping.

Our user study showed that Neural Canvas helped users easily
express their early-stage visuospatial ideas and concepts. By view-
ing scenes from different perspectives in 3D space and integrating
multiple AI generative models, users can rapidly express and iterate
their design ideas and freely explore new possibilities.

We also observed from our user study that 3D sketching benefits
AI content generation. Such findings may lead to a new and more
controllable modality of prompt in the future generative AI research.
In addition, we also proved that integrating multiple generative AI
models facilitates scenic design prototyping in many ways.

We think Neural Canvas can serve as a creativity support tool
in scenic design prototyping, and we plan to release the platform
and support user-customized generative AI models so that creative
communities can maximize the synergy between 3D sketching and
the latest AI technologies.

ACKNOWLEDGMENTS
We would like to thank Jiayang Huang and Yiran Chen for their
creative work using Neural Canvas and thank the reviewers for
their valuable comments and helpful suggestions. This work is sup-
ported by Guangzhou-HKUST(GZ) Joint Funding #2023A03J0670
and Guangzhou Basic Research Scheme #2024A04J4229.

REFERENCES
[1] Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan, Abdulrahman Alfozan, and

James Zou. 2019. Gradio: Hassle-Free Sharing and Testing of ML Models in the
Wild. arXiv preprint 1906.02569 (2019).

[2] Adobe. 2023. Photoshop. https://www.adobe.com/products/photoshop.html.
Accessed Apr 5, 2023.

[3] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. 2010. Con-
tour Detection and Hierarchical Image Segmentation. IEEE transactions on pattern
analysis and machine intelligence 33, 5 (2010), 898–916.

[4] Arnold Aronson. 2005. Looking into the Abyss: Essays on Scenography. University
of Michigan Press.

[5] Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice, and Karan
Singh. 2018. SymbiosisSketch: Combining 2D & 3D Sketching for Designing
Detailed 3D Objects in Situ. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association

https://www.adobe.com/products/photoshop.html


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yulin Shen, Yifei Shen, Jiawen Cheng, Chutian Jiang, Mingming Fan, and Zeyu Wang

for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/
3173574.3173759

[6] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karan Singh,
and George W Fitzmaurice. 2017. Experimental Evaluation of Sketching on
Surfaces in VR.. In CHI, Vol. 17. 5643–5654.

[7] Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An Empirical Evalu-
ation of the System Usability Scale. International Journal of Human-Computer
Interaction 24, 6 (2008), 574–594.

[8] Blockade Labs. 2023. Skybox - AI-Generated 3D Worlds. https://skybox.
blockadelabs.com/. Accessed Sep 12, 2023.

[9] Gary Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[10] Ricardo Cabello. 2023. three.js. https://threejs.org/. Accessed Apr 5, 2023.
[11] Xi Chen, Zhiyan Zhao, Feiwu Yu, Yilei Zhang, and Manni Duan. 2021. Condi-

tional Diffusion for Interactive Segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 7345–7354.

[12] John P Chin, Virginia A Diehl, and Kent L Norman. 1988. Development of an
Instrument Measuring User Satisfaction of the Human-Computer Interface. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
213–218.

[13] SolidWorks Corporation. 2023. SOLIDWORKS | 3D CAD Design Software &
PDM Systems. https://www.solidworks.com/. Accessed Sep 12, 2023.

[14] Thomas Cover and Peter Hart. 1967. Nearest Neighbor Pattern Classification.
IEEE Transactions on Information Theory 13, 1 (1967), 21–27.

[15] Fan DanDan. 2023. Interstellar: A One-Shot Scene Created Using Procreate and
Mental Canvas With One Month’s Hardworking. https://www.bilibili.com/video/
BV1k24y16761. Accessed Dec 13, 2023.

[16] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion Models Beat Gans on
Image Synthesis. Advances in neural information processing systems 34 (2021),
8780–8794.

[17] Julie Dorsey, Songhua Xu, Gabe Smedresman, Holly Rushmeier, and Leonard
McMillan. 2007. The Mental Canvas: A Tool for Conceptual Architectural Design
and Analysis. In Proceedings of the Pacific Conference on Computer Graphics and
Applications (PG). IEEE, 201–210.

[18] Tomas Dorta, Gokce Kinayoglu, and Michael Hoffmann. 2014. Hyve-3D: A
New Embodied Interface for Immersive Collaborative 3D Sketching. In ACM
SIGGRAPH 2014 Studio. 1–1.

[19] Catherine Elsen, Anders Häggman, Tomonori Honda, and Maria C Yang. 2012.
Representation in Early Stage Design: An Analysis of the Influence of Sketching
and Prototyping in Design Projects. In International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Vol. 45066.
American Society of Mechanical Engineers, 737–747.

[20] Inc. Epic Games. 2023. The most powerful real-time 3D creation tool - Unreal
Engine. https://www.unrealengine.com/. Accessed Sep 12, 2023.

[21] John Flynn, Michael Broxton, Paul Debevec, MatthewDuVall, Graham Fyffe, Ryan
Overbeck, Noah Snavely, and Richard Tucker. 2019. Deepview: View Synthesis
With Learned Gradient Descent. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2367–2376.

[22] Blender Foundation. 2023. Blender: A 3D Modeling and Rendering Package.
http://www.blender.org. Accessed Apr 5, 2023.

[23] J Michael Gillette. 2012. Theatrical Design and Production: An Introduction to Scene
Design and Construction, Lighting, Sound, Costume, and Makeup. McGraw-Hill
Higher Education.

[24] Michael Graves. 2005. The Necessity for Drawing. In Michael Graves: Images
of a Grand Tour. Princeton Architectural Press, New York, NY, 235–245. https:
//doi.org/10.1007/1-56898-657-2_9

[25] Yuxuan Han, Ruicheng Wang, and Jiaolong Yang. 2022. Single-View View Syn-
thesis in the Wild with Learned Adaptive Multiplane Images. In ACM SIGGRAPH
2022 Conference Proceedings. 1–8.

[26] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array Programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[27] William E Hick. 1952. On the Rate of Gain of Information. Quarterly Journal of
experimental psychology 4, 1 (1952), 11–26.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic
Models. Advances in neural information processing systems 33 (2020), 6840–6851.

[29] Derek Hoiem, Alexei A. Efros, and Martial Hebert. 2005. Automatic Photo Pop-
Up. In ACM SIGGRAPH 2005 Papers (Los Angeles, California) (SIGGRAPH ’05).
Association for Computing Machinery, New York, NY, USA, 577–584. https:
//doi.org/10.1145/1186822.1073232

[30] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations.

[31] Xun Huang, Arun Mallya, Ting-Chun Wang, and Ming-Yu Liu. 2022. Multimodal
Conditional Image Synthesis with Product-of-Experts GANs. In Proceedings of
the European Conference on Computer Vision. Springer, 91–109.

[32] Ray Hyman. 1953. Stimulus Information as a Determinant of Reaction Time.
Journal of experimental psychology 45, 3 (1953), 188.

[33] Autodesk Inc. 2023. Autodesk 3ds Max: Create massive worlds and high-quality
designs. https://www.autodesk.com/products/3ds-max. Accessed Sep 12, 2023.

[34] Autodesk Inc. 2023. Autodesk Inventor: Mechanical design software for ambitious
ideas. https://www.autodesk.com/products/inventor. Accessed Sep 12, 2023.

[35] Autodesk Inc. 2023. AutodeskMaya: Create expansiveworlds, complex characters,
and dazzling effect. https://www.autodesk.com/products/maya. Accessed Sep
12, 2023.

[36] Trimble Inc. 2023. 3D Design Software | 3D Modeling on the Web | SketchUp.
https://www.sketchup.com/. Accessed Sep 10, 2023.

[37] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
Image Translation with Conditional Adversarial Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 1125–1134.

[38] Patrick W Jordan, Bruce Thomas, Ian Lyall McClelland, and Bernard Weerd-
meester. 1996. Usability Evaluation in Industry. CRC Press.

[39] Sing Bing Kang. 1998. Survey of Image-Based Rendering Techniques. In Video-
metrics VI, Vol. 3641. SPIE, 2–16.

[40] Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Ar-
chitecture for Generative Adversarial Networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4401–4410.

[41] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active
Contour Models. International journal of computer vision 1, 4 (1988), 321–331.

[42] Rubaiat Habib Kazi, Tovi Grossman, Hyunmin Cheong, Ali Hashemi, and
George W Fitzmaurice. 2017. DreamSketch: Early Stage 3D Design Explorations
with Sketching and Generative Design. In Proceedings of the ACM Symposium on
User Interface Software and Technology. 401–414.

[43] Florian Kern, Peter Kullmann, Elisabeth Ganal, Kristof Korwisi, René Stingl,
Florian Niebling, and Marc Erich Latoschik. 2021. Off-The-Shelf Stylus: Using XR
Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces.
Frontiers in Virtual Reality 2 (2021), 684498.

[44] Yongkwan Kim, Sang-Gyun An, Joon Hyub Lee, and Seok-Hyung Bae. 2018.
Agile 3D Sketching with Air Scaffolding. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3173574.3173812

[45] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
2023. Segment Anything. arXiv preprint arXiv:2304.02643 (2023).

[46] Kin Chung Kwan and Hongbo Fu. 2019. Mobi3DSketch: 3D Sketching in Mobile
AR. In Proceedings of the CHI Conference on Human Factors in Computing Systems.
1–11.

[47] Paul Lapides, Ehud Sharlin, Mario Costa Sousa, and Lisa Streit. 2006. The 3D
Tractus: A Three-Dimensional Drawing Board. In First IEEE International Work-
shop on Horizontal Interactive Human-Computer Systems (TABLETOP’06). IEEE,
8–pp.

[48] Mengtian Li, Zhe Lin, Radomír Mˇ ech, Ersin Yumer, and Deva Ramanan. 2019.
Photo-Sketching: Inferring Contour Drawings from Images. In Proceedings of the
Winter Conference on Applications of Computer Vision.

[49] Yuwei Li, Xi Luo, Youyi Zheng, Pengfei Xu, and Hongbo Fu. 2017. SweepCanvas:
Sketch-based 3D Prototyping on an RGB-D Image. In Proceedings of the ACM
Symposium on User Interface Software and Technology. 387–399.

[50] Daohan Lu, Sheng-Yu Wang, Nupur Kumari, Rohan Agarwal, David Bau, and
Jun-Yan Zhu. 2022. Content-Based Search for Deep Generative Models. arXiv
preprint 2210.03116 (2022).

[51] Maxon. 2023. Cinema 4D: 3D Computer Animation, Modeling, Simulation, and
Rendering Software. https://www.maxon.net/en/cinema-4d. Accessed Apr 5,
2023.

[52] Maxon. 2023. ZBrush. https://www.maxon.net/en/zbrush. Accessed Sep 12,
2023.

[53] Mental Canvas, Inc. 2024. Mental Canvas. https://www.mentalcanvas.com/.
Accessed Feb 20, 2024.

[54] Meshy. 2023. Meshy | Create 3D Game Assets with Generative AI. https://www.
meshy.ai/. Accessed Sep 12, 2023.

[55] Midjourney. 2023. Midjourney. https://www.midjourney.com/. Accessed Sep 12,
2023.

[56] Yue Ming, Xuyang Meng, Chunxiao Fan, and Hui Yu. 2021. Deep Learning for
Monocular Depth Estimation: A Review. Neurocomputing 438 (2021), 14–33.

[57] Michael Nebeling and Katy Madier. 2019. 360proto: Making Interactive Virtual
Reality & Augmented Reality Prototypes From Paper. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–13.

[58] Byong Mok Oh, Max Chen, Julie Dorsey, and Frédo Durand. 2001. Image-Based
Modeling and Photo Editing. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’01). Association for
Computing Machinery, New York, NY, USA, 433–442. https://doi.org/10.1145/

https://doi.org/10.1145/3173574.3173759
https://doi.org/10.1145/3173574.3173759
https://skybox.blockadelabs.com/
https://skybox.blockadelabs.com/
https://threejs.org/
https://www.solidworks.com/
https://www.bilibili.com/video/BV1k24y16761
https://www.bilibili.com/video/BV1k24y16761
https://www.unrealengine.com/
http://www.blender.org
https://doi.org/10.1007/1-56898-657-2_9
https://doi.org/10.1007/1-56898-657-2_9
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/1186822.1073232
https://doi.org/10.1145/1186822.1073232
https://www.autodesk.com/products/3ds-max
https://www.autodesk.com/products/inventor
https://www.autodesk.com/products/maya
https://www.sketchup.com/
https://doi.org/10.1145/3173574.3173812
https://doi.org/10.1145/3173574.3173812
https://www.maxon.net/en/cinema-4d
https://www.maxon.net/en/zbrush
https://www.mentalcanvas.com/
https://www.meshy.ai/
https://www.meshy.ai/
https://www.midjourney.com/
https://doi.org/10.1145/383259.383310
https://doi.org/10.1145/383259.383310


Neural Canvas: Supporting Scenic Design Prototyping by Integrating 3D Sketching and Generative AI CHI ’24, May 11–16, 2024, Honolulu, HI, USA

383259.383310
[59] Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and Joaquim A Jorge. 2009.

Sketch-Based Modeling: A Survey. Computers & Graphics 33, 1 (2009), 85–103.
[60] OpenAI. 2023. DALL·E 2: Creating Realistic Images and Art from a Description

in Natural Language. https://openai.com/product/dall-e-2. Accessed Apr 5, 2023.
[61] Patrick Paczkowski, Min H. Kim, Yann Morvan, Julie Dorsey, Holly Rushmeier,

and Carol O’Sullivan. 2011. Insitu: Sketching Architectural Designs in Context.
ACM Trans. Graph. 30, 6 (Dec. 2011), 1–10. https://doi.org/10.1145/2070781.
2024216

[62] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic
Image Synthesis with Spatially-Adaptive Normalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2337–2346.

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems. Curran Associates,
Inc., 8024–8035.

[64] Dong Men Ban Qiao. 2021. 50 Hours to Build the Magnificent Ancient Mythical
World: Your First Experience With Mental Canvas. https://www.bilibili.com/
video/BV12b4y1871E. Accessed Dec 13, 2023.

[65] Shwetha Rajaram, Franziska Roesner, and Michael Nebeling. 2023. Reframe:
An Augmented Reality Storyboarding Tool for Character-Driven Analysis of
Security & Privacy Concerns. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology. 1–15.

[66] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. 2021. Vision Transformers
for Dense Prediction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 12179–12188.

[67] Will Reese. 2008. Nginx: the High-Performance Web Server and Reverse Proxy.
Linux Journal 2008, 173 (2008), 2.

[68] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10684–10695.

[69] Armin Ronacher. 2023. Flask. https://flask.palletsprojects.com/en/2.2.x/. Accessed
Apr 5, 2023.

[70] Victoria Rudakova, Nathan Lin, Natallia Trayan, TevfikMetin Sezgin, Julie Dorsey,
and Holly E Rushmeier. 2017. CHER-ish: A Sketch-and Image-based System
for 3D Representation and Documentation of Cultural Heritage Sites. In GCH.
195–199.

[71] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered
Depth Images. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques. 231–242.

[72] Yifei Shen, Zeyu Wang, Qinying Sun, Anne Chen, and Holly Rushmeier. 2021.
Reconstructing Dura-Europos From Sparse Photo Collections Using Deep Con-
tour Extraction. In Eurographics Workshop on Graphics and Cultural Heritage,
Alan Chalmers and Vedad Hulusic (Eds.). The Eurographics Association.

[73] Ben Shneiderman. 2007. Creativity Support Tools: Accelerating Discovery and
Innovation. Commun. ACM 50, 12 (2007), 20–32.

[74] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. 2006. Tex-
tonboost: Joint Appearance, Shape and Context Modeling for Multi-Class Object
Recognition and Segmentation. In Computer Vision–ECCV 2006: 9th European
Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I
9. Springer, 1–15.

[75] Harry Shum and Sing Bing Kang. 2000. Review of Image-Based Rendering
Techniques. In Visual Communications and Image Processing 2000, Vol. 4067. SPIE,
2–13.

[76] SideFX. 2023. Houdini | 3D Procedural Software for Film, TV & Gamedev | SideFX.
https://www.sidefx.com/products/houdini/. Accessed Sep 12, 2023.

[77] Noah Snavely, Steven M. Seitz, and Richard Szeliski. 2006. Photo Tourism: Ex-
ploring Photo Collections in 3D. ACM Transactions on Graphics 25, 3 (July 2006),
835—-846.

[78] Noah Snavely, Steven M Seitz, and Richard Szeliski. 2008. Modeling the World
from Internet Photo Collections. International Journal of Computer Vision 80
(2008), 189–210.

[79] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep Unsupervised Learning Using Nonequilibrium Thermodynamics. In
International Conference on Machine Learning. PMLR, 2256–2265.

[80] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. 2021. Seg-
menter: Transformer for Semantic Segmentation. In Proceedings of the IEEE/CVF
international conference on computer vision. 7262–7272.

[81] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova,
Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park,
and Victor Lempitsky. 2021. Resolution-robust Large Mask Inpainting with
Fourier Convolutions. arXiv preprint arXiv:2109.07161 (2021).

[82] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2020. RealitySketch: Embedding Responsive Graphics and Vi-
sualizations in ARwith Dynamic Sketching. In Proceedings of the ACM Symposium
on User Interface Software and Technology. 166–181.

[83] John Sweller. 1988. Cognitive Load During Problem Solving: Effects on Learning.
Cognitive science 12, 2 (1988), 257–285.

[84] Robert Endre Tarjan. 1975. Efficiency of a Good but Not Linear Set Union
Algorithm. Journal of the ACM (JACM) 22, 2 (1975), 215–225.

[85] TECHNIA. 2023. CATIA | TECHNIA (US). https://www.technia.us/software/
catia/. Accessed Sep 12, 2023.

[86] Unity Technologies. 2023. Unity Real-Time Development Platform | 3D, 2D, VR
& AR Engine. https://unity.com/. Accessed Sep 12, 2023.

[87] Osama Tolba, Julie Dorsey, and Leonard McMillan. 1999. Sketching With Pro-
jective 2D Strokes. In Proceedings of the 12th annual ACM symposium on User
interface software and technology. 149–157.

[88] Osama Tolba, Julie Dorsey, and Leonard McMillan. 2001. A Projective Drawing
System. In Proceedings of the 2001 symposium on Interactive 3D graphics. 25–34.

[89] Barbara Tversky. 2002. What do Sketches say about Thinking. In 2002 AAAI
Spring Symposium, Sketch Understanding Workshop, Stanford University, AAAI
Technical Report SS-02-08, Vol. 148. 151.

[90] Andrey Voynov, Kfir Aberman, and Daniel Cohen-Or. 2023. Sketch-Guided
Text-To-Image Diffusion Models. In ACM SIGGRAPH 2023 Conference Proceedings.
1–11.

[91] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard
Zhou, Jonathan T Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas
Funkhouser. 2021. Ibrnet: Learning Multi-View Image-Based Rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4690–4699.

[92] Zeyu Wang, Weiqi Shi, Kiraz Akoglu, Eleni Kotoula, Ying Yang, and Holly Rush-
meier. 2018. CHER-Ob: A Tool for Shared Analysis and Video Dissemination.
Journal on Computing and Cultural Heritage (JOCCH) 11, 4 (2018), 1–22.

[93] Min Xin, Ehud Sharlin, and Mario Costa Sousa. 2008. Napkin Sketch: Handheld
Mixed Reality 3D Sketching. In Proceedings of the 2008 ACM symposium on Virtual
reality software and technology. 223–226.

[94] Evan You. 2023. Vue.js. https://vuejs.org/. Accessed Apr 5, 2023.
[95] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding Conditional

Control to Text-to-Image Diffusion Models. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 3836–3847.

[96] Xiaoming Zhao, Fangchang Ma, David Güera, Zhile Ren, Alexander G Schwing,
and Alex Colburn. 2022. Generative Multiplane Images: Making a 2D GAN
3D-Aware. In Proceedings of the European Conference on Computer Vision (ECCV).
Springer, 18–35.

[97] Youyi Zheng, Han Liu, Julie Dorsey, and Niloy J Mitra. 2016. SmartCanvas:
Context-inferred Interpretation of Sketches for Preparatory Design Studies. In
Proceedings of the 37th Annual Conference of the European Association for Computer
Graphics. 37–48.

[98] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and
Antonio Torralba. 2019. Semantic Understanding of Scenes Through the ADE20K
Dataset. International Journal of Computer Vision 127, 3 (2019), 302–321.

[99] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely.
2018. Stereo Magnification: Learning View Synthesis Using Multiplane Images.
ACM Transactions on Graphics 37, 4 (2018), 1–12.

A SUBMODULES OF EDITOR MODULE
Other submodules of the editor module are detailed in this section.

Sketch Editor.Neural Canvas uses 3D vector lines for sketching,
enhancing the user’s ability to create and visualize drawings with
a greater sense of depth and spatial awareness while also providing
an immersive and intuitive drawing experience. The sketch edi-
tor consists of functions for drawing, deletion, splitting, polygon
drawing, color selection, and projection.

State manager. The state manager holds a series of states in
the current project, including objects that need to be rendered, the
current operating mode of the platform, redo and undo queues, and
other common basic functions.

View controller. We provide separate view modes for creating
and examining a scene respectively. The first enables mouse control
of the rotation, pan, and zoom of the field of view. The second
enables navigation through the scene in a first-person perspective
using the arrow keys.
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Canvas controller.We use canvases, i.e., planes with unlimited
size placed in 3D space, as the basic medium of creation. Users can
draw strokes and edit images on a canvas. Users can transform
and rotate these planar canvases in 3D space to embed spatial
information. To better embed the spatial relationship in each plane,
the canvas controller allows hinge rotation, which is the rotation
of a plane around the intersection line of two planes.

File manager. The file manager of our system is designed to
facilitate efficient input and output of 3D scene data. All relevant
scene information, such as geometry, strokes, texture, and material,
can be serialized and stored in a JSON file. This functionality enables
designers to save and load working projects for further complex
design, making it easier to collaborate on projects with others.

Layer manager. Layer management is an essential feature in 3D
platforms that allows users to efficiently organize and manipulate
various elements or objects within a scene. Layers in a 3D platform
serve as containers that hold different objects or components, mak-
ing it easier to work with complex scenes by isolating or grouping
elements. The layer manager in Neural Canvas provides functions
including adding, deleting, renaming, grouping, and regrouping
layers, as well as visibility control.

Image editor. The image editor enables image uploading, dele-
tion, scaling, lasso, magnet lasso, etc. These functions provide de-
signers with more freedom and more fine-grained operations.

B OTHER LOADED AI FUNCTIONS
The AI module currently contains thirteen functions. Some of them
are deployed on our back-end server, and others are offered by
companies or public applications deployed on the cloud.

Image to Image.The image-to-imagemethod converts an image
to another with a similar color distribution. We decide to implement
ControlNet [95] with Stable Diffusion. Therefore, users can generate
stylistically congruent components.

Style Transfer. Style transfer can transform the style expression
of images based on descriptive prompts. We choose Stable Diffusion
for style transfer. Although other prior studies [37, 40] have had
great success in style transfer, the huge volume of training data of
Stable Diffusion makes it suitable for more styles. Additionally, the
open-source community provides a large number of model weights
tailored toward different styles.

Image Inpainting with Prompts.We introduce another im-
age inpainting method based on Stable Diffusion [68]. Users can
use texts to describe objects to fill holes under the image context.
Designers may gain more ideas from this method, as the AI model
may generate unexpected elements.

Image to Sketch. We introduce Image to Sketch to enhance
the fusion of drawn strokes and generated images in sketch-based
expression. To convert existing images to detailed sketches, we
built a pipeline leveraging Stable Diffusion [68], ControlNet [95]
and LoRA [30]. We use the model weights of LoRA trained on a
sketch dataset to force Stable Diffusion to generate sketches, while
ControlNet forces Stable Diffusion to generate content based on
input images. We also load PhotoSketching [48] as an alternative,
which is a legacy deep model to extract the contours from images.

Image to Contours.When users use Image to Sketch for sketch
generation, results might be too complicated or filled with cluttered

Figure 15: Example output from the image-to-sketch func-
tion.

lines. Therefore, we introduce Image to Contour based on PhotoS-
ketching [48] for transformation from images to sketches. Users
can make scene design prototypes with simplified sketches.

Segmentation to Image.Designers can use color blocks to draw
a semantic map to represent the layout of a scene. With built-in
semantic brushes, users can draw semantic maps that can be used to
generate pictures as input for Segmentation to Image. Existing deep
generative models [31, 62] can synthesize images from semantic
maps. In Neural Canvas, we use ADE20K [98] protocol to define
color-semantic pairs. Two models are integrated into our platform:
GauGAN [62] provided by the original authors on the cloud and
ControlNet [95] deployed on our back-end server.

Layer Split by Depth.We provide an alternative workflow al-
lowing users to split layers besides various lasso tools and SAM,
which leverages the depth information of images to split different
layers automatically. First, we leverage a single view depth estima-
tion model called DPT [66] to predict the depth of each pixel. Then,
we use the KNN [14] clustering algorithm to decide the layer each
pixel belongs to, where the number of clusters is the number of
split layers specified by users.

Skybox Generation.We set a sphere geometry as the sky dome
in our system for better immersion.We introduce Skybox Generation
provided by Blockade Labs [8] to generate stylistic textures of the
sky dome with text prompts.

C QUESTIONS OF THE SEMI-STRUCTURED
INTERVIEW
• What features are easy to use? What features gave you a
hard time? What can we do to further improve the user
experience with Neural Canvas?

• What AI functions did you use in your design, except those
introduced in the guide section? And why did you use them?

• Compared with traditional sketching and existing 3D soft-
ware respectively, which features of Neural Canvas give you
deep impressions?

• Please list some AI functions you used in the tasks and illus-
trate why you used them together. How can you realize the
same effect if there is no Neural Canvas? How much more
time and effort would it take?

• How do you think 3D sketching helps generative AI? How
do you like the integration of 3D sketching and generative
AI in Neural Canvas?
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