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ABSTRACT
In this paper we demonstrate a Markov model based tech-
nique for recognizing gestures from accelerometers that ex-
plicitly represents duration. We do this by embedding an
Erlang-Cox state transition model, which has been shown
to accurately represent the first three moments of a general
distribution, within a Dynamic Bayesian Network (DBN).
The transition probabilities in the DBN can be learned via
Expectation-Maximization or by using closed-form solutions.
We test this modeling technique on 10 hours of data col-
lected from accelerometers worn by babies pre-categorized
as high-risk in the Newborn Intensive Care Unit (NICU) at
UCI. We show that by treating instantaneous machine learn-
ing classification values as observations and explicitly mod-
eling duration, we improve the recognition of Cramped Syn-
chronized General Movements, a motion highly correlated
with an eventual diagnosis of Cerebral Palsy.
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INTRODUCTION AND RELATED WORK
There is emerging data that patterns of motion early in life
can predict impairments in neuro-motor development. How-
ever, current techniques to monitor infant movement mainly
rely on expert observer scoring, a technique limited by skill,
fatigue, and inter-rater reliability. Consequently, we ana-
lyzed data collected by a lightweight, wireless, accelerom-
eter system that measures movement and can be worn by
premature babies without interfering with routine care. We
hypothesized that we could improve the detection of CSGMs
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Figure 1. Baby being monitored in the NICU with accelerometers on
each limb. The equipment in our study is wireless.

to a sufficient fidelity that it would be feasible to utilize the
system in clinical care by reducing the amount of video that
a clinician would need to review for positive diagnosis.

Medical Background
Over the past two decades, the incidence and survival of
preterm births (infants born at less than 37 weeks of ges-
tation) have increased dramatically [3]. Not surprisingly,
long-term neurological complications are often associated
with prematurity, such as cerebral palsy (CP) [4, 25] or
the less severe category of minor neurological dysfunction
[20] which has increased as well. The early assessment of
physical activity patterns in premature babies is increasingly
recognized as an essential step in identifying metabolic and/
or neuromotor impairments and optimizing therapeutic ap-
proaches [9, 8, 42].

Given the fragility of this population and the constraints im-
posed on diagnostic procedures in premature babies, it is
not surprising that early assessment of physical activity has
proven to be quite challenging. Such measures depend al-
most exclusively on direct observation of infants, or on view-
ing post hoc, real-time videotape of infant activity [19]. Very
little is known about the normal developmental patterns of
physical activity in premature babies, and, as a consequence,
identification of abnormalities can occur quite late. For ex-
ample, it is generally agreed upon that the diagnosis of a
condition like CP cannot be made definitively until a child



is at least 4 years-old [25]. While sophisticated brain imag-
ing such as MRI can provide additional anatomic mecha-
nisms for conditions like CP [24], these approaches are not
yet suited for screening and early diagnosis.

Gesture Recognition
While there has been a wide variety of work in gesture recog-
nition in the computing field in recent years, there has been
limited research using accelerometers to monitor infant move-
ment. Factors such as accelerometer weight and size, which
are not problematic for physical activity measurement in older
children [14, 38], are major obstacles in premature babies.
In our work we chose to use custom wireless accelerometers
as the medium for detecting gestures due to their small size
and high data density.

Broadly, gesture recognition can be done through a variety
of media including video cameras [32, 29], touch screens,
pointing devices [44], accelerometers [5, 23], forearm elec-
tromyography [39], fabric-embedded sensors [15, 11] and
range-sensors [26]. Applications of gesture recognition in-
clude recognizing Activities of Daily Living (ADLs) like
“setting the table” [35], recognizing the components of sign
language (fenemes) [6], assisting in completing question-
naires [1] and for end-user gesture programming [2].

Machine Learning

Recognizing Gestures
There is also much work applying machine learning tech-
niques to accelerometer data for gesture recognition. Hid-
den Markov Models are used for predefined gesture recog-
nition [40]. An improved version of support vector machines
(frame based SVM) was designed to improve recognition
accuracy [45]. These gesture recognition techniques lack
extensibility since they focus on a pre-defined gesture set.
uWave extends it to more general user-defined personal ges-
tures recognition [27].

Of particular interest to this work are methods for using ma-
chine learning to model explicit durations.

Modeling Duration in Markov Models
Frequently in activity and gesture recognition Hidden Markov
Models are used to model the hidden state representing the
occurrence of an event. This approach has been very suc-
cessful in a number of studies [12, 35, 28] A single state
discrete markov model assumes that the transition through
the model will be distributed according to a geometric dis-
tribution. The probability of leaving the state after exactly t
steps given the self-transition probability, aii, is

p(t) = aii
(t−1)(1− aii)

While this has worked in many cases, it falls short when the
actual duration of activities is not distributed accordingly.
In fact, intuition suggests that most activities are far more
likely to be distributed very differently, perhaps uniformly
or normally. When the time duration becomes an important
component to the recognition task, a single markov model or
a chain of markov models is inadequate.

Modeling Duration in Hidden Semi-Markov Models
If the underlying distribution is not geometric, a Hidden Semi-
Markov Model may be a more appropriate choice for mod-
eling the duration of an event. An HSMM has an exit distri-
bution which depends on the amount of time that has been
spent in the state so far and multiple observations can be
made of the system while the model remains in the same
state. Unfortunately a straight-forward application of the
Baum-Welch algorithm to an HSMM is not possible and
more computationally complex variants must be introduced.
Nonetheless HSMMs have been broadly and successfully
applied to areas including the recognition of Activities of
Daily Living [16]. See [46] for a thorough survey.

Modeling Duration with Continuous Time Bayesian Networks
A different approach to modeling durations is represented
by continuous time markov processes which represent tran-
sitions as rates rather than probabilities. Researchers have
extended these ideas to collections of dependent processes
which form Continuous Time Bayesian Networks. The ad-
vantage of such an approach is that the state of the system
can be queried at any time period rather than just at discrete
time-steps. Additionally they do not suffer from numerical
representational problems when the duration of an activity
is very long, but the discrete time sampling is very frequent.
Exact inference in a CTBN is generally intractable, but ap-
proximate inference techniques have been developed [30]

Cramped Synchronized General Movements
Very few studies, have quantifiably measured infant limb
movement and tied these movements with neurodevelopmen-
tal outcomes. Intriguingly, even using a large (4 g, 20 x 12.5
x 7.5 mm) commercially available accelerometer placed on a
single upper extremity, Ohgi et al. [31], in pioneering work,
found different patterns of spontaneous movements of pre-
mature infants with known brain injuries compared with con-
trols. In addition, promising research has recently been con-
ducted by Heinze et al. showing that a wired accelerometer
could be used to differentiate between healthy babies and
those at risk for CP [22].

A barrier in evaluating any new approach toward measur-
ing infant movement is the dearth of metrics for compari-
son; however, in the case of the early diagnosis of CP, there
exists a standardized, direct observation tool developed by
Prechtl [36]. We designed our present experiments to com-
pare our accelerometers with the Prechtl direct observational
approach. In normal infants, Prechtl defined “general move-
ments” (GMs) as elegant, smooth, variable in sequence, in-
tensity and speed with a clear beginning and end. Prechtl
also observed a unique abnormality of GMs that he named
“cramped-synchronized” (CSGMs) in which the infant’s limbs
were rigid and moved nearly in synchrony. CSGMs have
high predictive value for the development of CP. [37, 13,
17].1 The literature shows that other motions are also corre-
lated with CP. We did not investigate these alternatives, nor
develop hypotheses for new signals such as audio cues (e.g.,
crying).
1 An example video demonstrating a CSGM be seen here:
http://archpedi.ama-assn.org/cgi/content/full/156/5/460/DC1
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Figure 2. Histogram of age of participants at birth and at monitoring.

Contributions of this paper
This paper adds to the literature on how to use accelerometer
measurements to identify motion disorders in babies that are
already classified as high-risk. The specific contributions of
this paper are as follows:

• We build on previous work [41] by conducting a rigor-
ous comparative ROC evaluation of the classes of machine
learning methods previously published for detecting CS-
GMS.

• We demonstrate a lack of additional classification power
in adding features which were developed to specifically
represent motion symmetry observed in CSGMs.

• We demonstrate a technique for combining Erlang-Coxian
(EC) distribution modeling with Dynamic Bayesian Net-
works.

• We evaluate EC methods using closed-form solutions, and
compare it to other duration modeling methods.

• We conduct a cost-benefit analysis for an expert video
scorer using our system in a clinical setting.

METHODOLOGY

Data Collection
Our experimental protocol was reviewed and approved by
the Human Subjects Institutional Review Board at UCI. We
identified potential participants by screening the medical records
of infants in the NICU at the UCI Medical Center and re-
cruited preterm infants with a gestational age at birth of be-
tween 23 and 36 weeks. Infants were excluded if they had
mothers less than age 18 or if they had skin disorders which
could preclude the attachment of the accelerometers to the
skin. We recruited high-risk babies who had cerebral ul-
trasound abnormalities and low birth weight, both of which
increase risk for CP. For this study the parents of 10 prema-
ture infants provided written informed consent and enrolled
in the study. (Figure 1 shows an example of a baby being
monitored by our equipment in the NICU, although not a
participant in this study).

All infants were monitored and videotaped for 1 hour at 30-
43 weeks corrected gestational age (see Figure 2) in their
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Figure 3. Distribution of samples after removing interventions. (The
number of abnormal samples are shown above column)

isolette wearing only a diaper and with all swaddling re-
moved to allow for free limb movement. The ambient tem-
perature of the isolette was adjusted and maintained accord-
ing to the judgment of the NICU nurse.

A video camera was positioned with a mid-sagittal view of
the infant above the isolette at a downward angle of 45 de-
grees to record motion for post hoc video scoring.

Four custom wireless accelerometers were used for data col-
lection [34]. Each one measured 3 orthogonal axes of accel-
eration each of the 4 limbs. Devices were embedded in cloth
bands that were placed around the wrists and ankles of the
infants with a canonical anatomical orientation.

The accelerometers transmitted data that was sampled non-
uniformly at approximately 19Hz in real-time to a computer
located near by. The raw accelerometer data consisted of
real valued samples of the 3 axes measuring the degree of
acceleration due to gravity and changes in limb motion. The
choice of a non-uniform sampling rate was a technical limi-
tation of the devices, not a methodological choice. 2

Expert Review
After each data collection session, the video data was trans-
ferred to a nurse trained in identifying CSGMs. The nurse
was blinded to the patient information and accelerometer
data and was asked to record the start and stop time for
each observed CSGM. The annotations were then associated
with the timestamp of the accelerometer readings. Although
these readings became our ground truth and classification
target, clearly the nurse was not able to accurately identify
the movements to the accuracy of the data rate of the ac-
celerometers. Start and stop boundaries were likely not exact
as a result. Notably this process was similar to how a clinical
evaluation would be conducted without any assistance from
our system.

Cleaning Data
We followed several steps in order to clean the data and cre-
ate features. First the video data and accelerometers streams
2 The data set used in this paper is the same as reported in [41],
however our data processing was done independently with corre-
sponding differences seen in Figure 3.



had to be temporally aligned. This was done manually by
comparing the motion in the video to the motion in the ac-
celerometer stream. Second, during data recording, the nurses
might move the babies a little if they needed care (For in-
stance to change a diaper or attend to a medical concern) or
adjust the sensors (e.g. sensors might slip off their limbs).
All these activities were defined as “interventions”, since it
induces artificial errors in sensor data. So we manually re-
viewed all video to identify all possible interventions (e.g.
starting and ending time) and removed the corresponding
corrupted accelerometer data.

Feature Extraction
After cleaning, our data set was structured as shown in Fig-
ure 3. We represent the resulting raw data sample as a 14-
tuple:

S1 = (T, x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, c)

where T is the timestamp of the sample, x1, .., z4 are 12 real
numbers corresponding to 3 axes of 4 accelerometers. Each
accelerometer corresponds to left arm, right arm, left leg,
and right leg, respectively. The accelerometer readings vary
between −3g <= x1, .., z4 <= 3g and c is the ground truth
indicating the presence of a CSGM.

Accelerometers measure a combination of gravity and mo-
tion. It was beyond the scope of this work to separate the
acceleration caused by the baby’s motion from gravity. This
is a difficult task due to the changing pose of the baby. First
we calculated the magnitude of the acceleration of each limb.

mi =
√
x2i + y2i + z2i

In order to get rid of low frequency noise, including gravity
and sensor calibration drift, we subtracted the mean of a 10
second window centered at each sample, mi.

From this data we calculated several basic motion features:

m1,m2,m3,m4,max(m1,m2),max(m3,m4)

max(m1,m3),max(m2,m4),max(m1,m2,m3,m4),

m1 ∗m2,m3 ∗m4,m1 ∗m3,

m2 ∗m4,m1 ∗m2 ∗m3 ∗m4

It is worth pointing out that the choices above support aggre-
gations both across arms and legs, but additionally a novel
feature for representing aggregation down the left and right
side. This was motivated by a desire to capture the observed
symmetric property of motion in CSGMs (left side body vs.
right side body).

In addition, we also calculated temporal features for each
one of the above 14 basic features, which were mean, max,
min, standard deviation and z-score of a 2 second window
centered on the current sample. Therefore, we end up with
84 features and one class label.

NON-TEMPORAL MODELING
We modeled our basic data using machine learning tech-
niques from three different algorithmic classes, tree ensem-
bles, boosted Naive Bayes and Support Vector Machines. In
all the experiments that we report in this paper we conducted
a full 10-fold cross validation on a baby-by-baby basis such
that each experiment generated 10 models. Descriptions of
our techniques follow.

Random Forest (RF) is an ensemble method which combines
tree predictors of randomly selected features [7]. In our ex-
periment, we used a random forest of 100 trees, each con-
structed while considering 7 random features (Out of bag
error: 0.0004) without limiting the maximum depth.

AdaBoost is a powerful meta-algorithm, which can be used
with other learning approaches to improve their performance
[18]. We iterate AdaBoost with Naive Bayes (AdaBoost(NB))
for 10 rounds of iterations. During each iteration we reweight
our learner with a pruning threshold of 100.

Support vector machines (SVM) are another state-of-art su-
pervised learning technique which try to maximize the mar-
gin between classes. In our setting, we use the “radial ba-
sis function” (RBF) as our kernel because RBF can handle
nonlinear attributes by nonlinearly mapping samples into a
higher dimensional space, unlike a linear kernel [10].

In all non-temporal classification we ran our test cases using
the “WEKA” toolkit [21]. In order to support comparison,
we set the algorithms to generate probability estimations in-
stead of binary labels.

To do performance analysis, we utilized “Receiver Operat-
ing Characteristic” (ROC) curves. ROC curves provide in-
formation about dynamics of true positive rate (TPR) and
false positive rate (FPR), which can be used to evaluate the
trade-offs between the relative cost of false positives vs. false
negatives.

The first contribution of our paper is the analysis of the com-
plete ROC curves shown in Figure 4. From these curves
it is clear that the class of machine learning algorithm that
is chosen to conduct the classification is not critical to the
success of the algorithm. There is a slight bias toward Ad-
aBoost(NB) when the cost of false positives is higher than
false negatives. The overall measures of area under the curve
(AUC) for SVM, RF and AdaBoost(NB) are 0.5937, 0.6264
and 0.6403, respectively. With regard to AUC, AdaBoost(NB)
performs best while SVM is worst. A t-test validated that the
differences between these algorithms were significant with
p << 0.01.

Based on the nature of CSGMs, we hypothesized that adding
features which captured symmetry in motion would be help-
ful in recognizing CSGMs more accurately. We conducted
a comparison of models trained with and without them. The
AUC for SVM, RF and AdaBoost(NB) with the additional
features are 0.5756, 0.6266, 0.6388. AdaBoost(NB) still
performed the best and SVM performed worst. These dif-
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Figure 4. ROC curves of SVM, Random Forest and AdaBoost(NB)

ferences are again statistically significant. Comparing the
AUC of two cases (with and without new features) for the
same ML technique, we find that adding these new features,
while causing a statistically significant difference, did not
noticeably or consistently improve performance.

MODELING DURATION
CSGM vs. Non-CSGM
One of the key short-comings in previous work by Singh,
et.al. [41] was a lack of any temporal modeling of the CS-
GMs. Using a simple sample based classifier didn’t take into
account any limits on switching CSGM guesses from one
sample to the next. We improved this by specifically model-
ing the duration of a CSGM. We also chose to model the gap
of time between CSGMs, which we called non-CSGMs.

There are 98 CSGM segments and 100 non-CSGM segments
in all 10 babies’ data. The distribution of their durations are
shown in Figure 5 and Figure 6 (CSGM:µ = 14.5, σ2 =
189.6; non-CSGM: µ = 334.9, σ2 = 636310). Discrete
Markov Chains assume geometric distribution of data, how-
ever, it’s not clear from the data that the CSGM and non-
CSGM distributions are best modeled this way. This caused
us to find an alternative solution, which led us to consider
a class of Phase-Type distributions called Erlang-Cox distri-
butions.

Phase-Type Distributions
A Phase-Type distribution is the distribution of the absorp-
tion time in a continuous time Markov chain [33]. Approx-
imating general distributions (in our case CSGM and non-
CSGM duration distributions) by phase-type (PH) distri-
butions is a popular technique in stochastic analysis, since
PH distributions are often analytically tractable due to their
Markovian properties.

It is known that a general distribution G is in a tractable sub-
set of PH , called PH3, iff its normalized moments satisfy
mG

3 > mG
2 > 1, where mG

3 ,m
G
2 are the third and second

normalized moments of distribution G. This is true in gen-
eral for any non-negative distribution. In our case this holds
as the third and second normalized moments for CSGMs are
3.01 and 1.89, while those for non-CSGMs are 13.57 and
5.30. Since 3.01 > 1.89, 13.57 > 5.30, both CSGM and
non-CSGM duration distributions belong to PH3.

MERGING EC AND DBNS
An n-phase EC (Erlang-Coxian) distribution (Figure 7) is
a convolution of an (n-2)-phase distribution and a 2-phase
Coxian+ distribution possibly with mass probability at zero.
The set of EC distributions is general enough, however, that
for any distribution, in PH3, a minimal closed form solution
can be derived for all the parameters in Figure 7 [33],

(n, p, λY , λX1, λX2, pX) (1)

Although these parameters are calculated in closed-form, they
do not have simple mappings to the data that we collected.
Regardless, such a model is simply a Markov Model and it is
possible to solve it using existing Baum-Welch and Viterbi
solvers without any additional overhead. Yet at the same
time one gets some of the benefit of the Hidden Semi-Markov
Model’s ability to model durations.

Because of this we decided to evaluate modeling CSGM
and Non-CSGM durations with EC models embedded within
DBNs. To accomplish this it is necessary first to take the
parameters of the EC model above, which are expressed as
rates, and convert them to probabilities based on the fre-
quency of observations. Our sampling rate was approxi-
mately 19Hz. The next step was to embed the EC model
into a Dynamic Bayesian network.

Our technique for accomplishing this can be seen in Fig-
ure 8. In this figure, each column represents a time step.
The single observable variable is the gray circle which rep-
resents the confidence of the AdaBoost(NB) classification
of the accelerometer data features taken at that time step.
AdaBoost(NB) was chosen because it was the top perform-
ing non-temporal method we evaluated. The hidden vari-
ables in the system are the boxes 1..n (n from Equation 1)
which each represent one state of the EC model at time t.
The transition probability f(λ) is the function of transition
rate λ and time between samples, δt: f(λ) = 1 − e−λδt .
At each time-step every state of the EC model is rolled out.
The probabilities of transitioning between states in the EC
model are incorporated into the temporal transitions in the
DBN. The transition parameters can be set by closed form
calculations based on the observed CSGM durations shown
in Figure 5. There is a deterministic dependency that causes
the AdaBoost(NB) circle to be true if any of the states 1..n
are true.

There is a parallel set of states that represent the transition
through a non-CSGM event. All of these states are abstracted
into the box labelled NONCSGM, which has a parallel struc-
ture as the DBN for the CSGM. Any transition out of the
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minimal in that it requires at most OPT(G) + 2 phases. Unfortunately, their algorithm requires solving a
nonlinear programming problem and hence is computationally inefficient, requiring time exponential in
OPT(G).

Above we have described the prior work focusing on moment matching algorithms, which is the focus
of this paper. There is also a large body of work focusing on fitting the shape of an input distribution
using a PH distribution. Recent research has looked at fitting heavy-tailed distributions to PH distributions
[4,6,7,14,20,24]. There is also work which combines moment matching with the goal of fitting the shape
of the distribution [8,22]. The work above is clearly broader in its goals than simply matching three
moments. Unfortunately there is a tradeoff: obtaining a more precise fit requires more phases, and it can
sometimes be computationally inefficient [8,22].

The key idea behind our algorithm: The EC distribution. In all the prior work on computationally
efficient moment matching algorithms, the approach is to match a general input distribution G to some
subset, S, of the acyclic PH distributions. In this paper, our subset S is the EC distribution:

Definition 7. An n-phase Erlang–Coxian (EC) distribution is a convolution of an (n − 2)-phase Erlang
distribution, En−2, and a two-phase Coxian+ distribution possibly with mass probability at zero.

Fig. 2 shows the Markov chain whose absorption time defines an n-phase EC distribution. Below, an
N-phase Erlang distribution, EN , is also called an Erlang-N distribution.

We now provide some intuition behind the creation of the EC distribution. Recall that a Coxian+

PH distribution is very good for approximating a distribution with high variability. In particular, a two-
phase Coxian+ PH distribution is known to well represent any distribution that has high second and third
moments (any distribution G that satisfies mG

2 > 2 and mG
3 > (3/2)mG

2 ) [19]. However a Coxian+ PH
distribution requires more phases for approximating distributions with lower second and third moments.
For example, a Coxian+ PH distribution requires at least n phases to well represent a distribution G with
mG

2 ≤ (n + 1)/n for n ≥ 1 (see Section 3). The large number of phases needed implies that many free
parameters must be determined, which implies that any algorithm that tries to well represent an arbitrary
distribution using a minimal number of phases is likely to suffer from computational inefficiency.

By contrast, an n-phase Erlang distribution has only two free parameters and is also known to have
the least normalized second moment among all the n-phase PH distributions [1,16]. However the Erlang
distribution is obviously limited in the set of distributions which it can well represent.

By combining the Erlang distribution with the two-phase Coxian+ PH distribution, we can represent
distributions with all ranges of variability, while using only a small number of phases. Furthermore, the
fact that the EC distribution has a small number of parameters (n, p, λY , λX1, λX2, pX) allows us to obtain
closed from expressions for these parameters that well represent any given distribution in PH3.

Fig. 2. The Markov chain whose absorption time defines an n-phase EC distribution. The first box above depicts the Markov
chain whose absorption time defines an Erlang-N distribution, where N = n − 2, and the second box depicts the Markov chain
whose absorption time defines a two-phase Coxian+ PH distribution. Notice that the rates in the first box are the same for all
states.

Figure 7. EC distribution from [33]

Model AUC
AdaBoost(NB) 0.649
EC Model 0.7001
Smoothed AdaBoost(NB) 0.745
Smoothed EC Model 0.745

Table 1. Area under the ROC curve.

CSGM box goes into the first state of the NONCSGM box
and vice versa.

In our experiments using this model we first set the param-
eters of the model to the closed-form solutions, then we
allowed all the parameters to converge using Expectation-
Maximization training.

RESULTS
With these modeling details in place it was possible to eval-
uate their performance. The overall goal of this next set of
experiments was to model duration to improve recognition
accuracy by smoothing the classifications of the underlying
machine learning algorithms.

Accuracy-Based Results
Figure 9 shows as a baseline the best performing non-temporal
machine learning algorithm in blue, AdaBoost(NB). As pointed
out in Table 1 the area under the ROC curve was 0.649. Un-
like AdaBoost, a DBN does not typically produce confidence
values because its goal is to determine the maximum likeli-
hood path through state space given the observations. The
expected experimental result for each time step is to only
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deduce a binary CSGM or No CSGM classification. The
resulting ROC curve would be degenerate. To create a bet-
ter comparison, for each training fold of the EC Model we
generated 35 models by sampling 7 babies out of 9 to train
on. The we tested the 35 resulting models on the held out
baby’s data and averaged the resulting guesses at each time
step. This data is shown on the figure in green. The rela-
tively small number of possible average confidence values is
reflected in the small number of tightly bunched points.

This results of the EC model confirmed our hypothesis that
explicitly modeling duration produced improvements in ac-
curacy. The resulting AUC was 0.7001.

However, a simpler way of smoothing the output of the ma-
chine learning guesses would be to average the confidence
values from AdaBoost over a window of time. The green
dotted line in Figure 9 (“AdaBoost(NB)+Smoothing”) shows
this result when using an averaging window of 14s, the mean
CSGM duration. The Area-Under-the-Curve increases to
0.745.

Finally, we applied the same smoothing to the EC Model and
found that it scored the same as the smoothed AdaBoost re-
sult. The resulting curve is shown in gray (“EC+Smoothing”).
The results show different biases in that the smoothed EC
model emphasizes low false positives and the window-based
smoothing emphasizes low false negatives. Both results are
much better than the classification that did not consider du-
ration of CSGMs at all.

Cost-Based Results
As Ward et. al. point out, continuous activity recognition
can be evaluated in a wide variety of ways which are not

all time sample based [43]. In order to evaluate our results
in a different way we referred back to the original clinical
motivation for this work of providing a cheaper way to eval-
uate high-risk babies for CSGMs. The primary cost in the
system currently comes from the time required for specially
trained experts to review video data for evidence of CSGMs.
In light of this, we conducted an analysis of the cost-savings
our system could provide.

We propose that rather than viewing the full hour of data that
was recorded for each baby, we only ask the expert to re-
view the portions of the video data in which our accelerom-
eter based assessment predicted the presence of a CSGM.
This would focus the expert video reviewer on evaluating
the most likely portions of the video in which a CSGM may
be present.

In order to conduct this assessment we used the EC model to
label the data of each baby. Cross-validation was conducted
on a baby-by-baby basis in contrast to the work in [41] in
which cross-validation was done by random sampling of in-
dividual samples. This resulted in the video being segmented
into sequentially alternating estimates of CSGMs and non-
CSGMS.

The ground truth also had sequentially alternating estimates
of CSGMs and non-CSGMS. For each prediction, we di-
vided the corresponding ground truth into segments at the
end-points (see Figure 10). Each predicted segment became
one sample. If a prediction of non-CSGM overlapped with
a section of ground truth with no CSGMs, that was consid-
ered a true negative. If a prediction of CSGM contained
or overlapped one or more sections of ground truth with a
CSGM that was considered a true positive. This was based
on the presumed clinical outcome that the expert video re-
view would identify the presence of a CSGM in the predicted
segment. Furthermore, if a predicted CSGM overlapped a
ground-truth CSGM, then we did not allow the ground-truth
CSGM to penalize the next sequential prediction of non-
CSGM, as predicting the exact boundaries of a CSGM is not
clinically relevant. If our system predicted that there was no
CSGM present and there was a CSGM in the ground-truth
we considered that a false negative. Finally, if we predicted
a CSGM and there was no CSGM in the ground truth, that
was considered a false positive.

The results were very encouraging. In Figure 11, the amount

No CSGM

CSGM

No CSGM

CSGM

Ground Truth

Prediction

TP TN FNTP TN FP

Figure 10. Scoring for the Cost Analysis
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Figure 11. Time savings for each individual baby’s video review

Measure Value (Std)
Sensitivity(Recall) TP/(TP+FN) 0.72 (0.37)
False Positive Rate FP/(FP+TN) 0.43 (0.09)
Specificity TN/(FP+TN) 0.57 (0.09)
Precision TP/(TP+FP) 0.24 (0.30)

Table 2. Confusion matrix calculations.

of video that is required to be reviewed by an expert after
classification by our system is shown. On average the video
review time is reduced to 18% of the original, so instead
of reviewing an hour of video, an expert is only required to
watch 11 minutes.

Such a reduction in video viewing time, comes at a cost of
some accuracy, however which is demonstrated by the trade-
offs in various measures of the confusion matrix as shown in
Table 2. In our data we identified 72% of the actual CSGMs
in the data (Recall). 24% of the CSGMs that the expert video
scorer would be required to view in our approach would be
actual CSGMs (Precision). Notably, in the case of baby 8
(representing 10% of the participants), we narrowly missed
catching any of the 6 CSGMs that were present in the data.
This baby would have appeared to be healthy because our
system did not present a portion of video with the CSGM
present to the expert. The data collection for this baby had
unusual transmission problems, however, which can be seen
in Figure 3 and may be the source of the error.

CONCLUSIONS
In this paper we conducted a rigorous analysis of accelerom-
eter data collected from high-risk babies in the Newborn In-
tensive Care Unit. Our goal was to support the automatic de-
tection of Cramped Synchronized General Movements which
are correlated with eventual diagnoses of Cerebral Palsy. To
accomplish this we used expert video review as the ground
truth and applied explicit duration modeling techniques to
the data.

We showed results comparing the accuracy of three classes
of machine learning techniques without temporal modeling.
By conducting a complete Area-Under-the-Curve analysis
we showed that AdaBoost applied to Naive Bayes classi-

fiers is a highly accurate classifier. Although we expected
that CSGMs would be more easily recognizable if symmet-
ric features were explicitly given to the machine learning
algorithm, we found that our method of doing this did not
create an improvement in accuracy.

To improve accuracy further we demonstrated that explicitly
considering durations of CSGMs was valuable. We showed
a way of using Erlang-Cox models to build Dynamic Bayes
Networks that can model the first three moments of any dura-
tion directly while still being tractable with well-understood
algorithms such as the Viterbi algorithm. This approach has
the added strength of being able to set the transition proba-
bilities in closed-form.

We compared the EC/DBN model to an averaged window
model applied to the AdaBoost algorithm and found that
the two algorithms were equivalent in terms of AUC per-
formance, but showed markedly different biases toward re-
porting false positives and false negatives.

Our study is limited in that it was based on 10 babies. In
future work we will be extending the generalizability of the
results by applying these techniques to a larger patient pop-
ulation. It should be emphasized that these babies were al-
ready at high-risk of developing CP as a result of our selec-
tion criteria. As a result, the babies are representative of that
population, but not of a population of babies born at term.
Our study was also limited in that it was attempting to model
the expert video reviewer’s annotations rather than a directly
measurable quantity. Errors by the scorer would negatively
effect our modeling techniques. We suspect that our data has
higher reliability and more information content than the ex-
pert video scorer’s rating, but we have yet to clearly demon-
strate this.

Finally we showed that these techniques could have clinical
impact. In current U.S. medical practice there is no estab-
lished use of Prechtle’s method to evaluate high-risk babies.
A fundamental reason for this is because the cost of having
an expert video scorer review an hour of video for evidence
of CSGMs is prohibitive. Furthermore, while previous stud-
ies have demonstrated inter-rater reliability of the Prechtle
method for discovering CSGMS and a high correlation exists
between CSGMs and CP [42], there is no well-established
therapy for mitigating CP in newborns. Nonetheless unless
newborns can be diagnosed, developing a therapy will be
difficult.

In our study, our abbreviated video review process identified
at least one CSGM in 5 of the 6 children manifesting CS-
GMs. On average it required 11 minutes (σ = 9) per baby
of video review for all babies to discriminate between true
and false positives. In a statistically equivalent population of
high-risk babies, this would equate to 83% recall of babies
manifesting CSGMs. This approach simultaneously reduces
the amount of expert video scoring by 82%, significantly
lowering the cost of video review. Although this means that
17% of babies exhibiting CSGMs would be missed by our
procedure, the cost of adding full video review to clinical



practice prevents the use of the Prechtle method: 0% of chil-
dren with CSGMs are currently being detected now.
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